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Goals:
* Extend the length scale
* Consider finite temperature effects © O gas phase
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Thermodynamics

* Basic concepts
e Connection to first principles calculations
e Chemical potentials

Applications

e Defects/Impurities
* Alloys

Convergence aspects
e Defect-defect interaction
e Charged defects



Thermod_ynamic Potentials

Key quantity:

Partition function: Z(V,T)= Z o EilkgT
[

Free energy: F(V,T)=-k BTln{Z(V’T)}

Gibbs Free energy:  G(p,T)=F(V,T)+ pV

G(A™)
Chemical potential: Ha = an
P
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Connection to first-principles calculations (I)

Total energy surface:
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electronic ground state index of the vibronic eigenstate




Connection to first-principles calculations (1I)
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Total energy: [ ({RIO}) — Eg' + Eioovn

electronic ground state index of the vibronic eigenstate

Partition function: Z(V,T) — e‘ES' [kgT Z e—Eéivb/ kgT
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How to obtain the Phonon frequencies?

Calculate dynamical matrix:

S HazE i2})

_ 5
JM M, H aR,aRJ aao

] dynamical matrix
e H@F I ({Rl }) H can be calculated
\ — .
H OR B@O by M selfconsistent

Solve eigenvalue problem: I calculations!
det (D—lco,z) =0

Calculate ionic contribution of the free energy/entropy:

[
on 1 ion 1 Dl 1 D
SlO - _ "~ F + = L
T T ZE@ 1 TkBT _q 5
Note: Vibrational effects are often excluded

 contributions cancel to a large extent
 small energies (L1...10 k;T)




Gibbs free energy

Gibbs Free energy: G(p,T)= F(V, T)"‘ pV

Free energy: F(V,T) — feonfig 4 el 4 prion
FO¢ = —f T InW W...number of equivalent
states

el _ el el
Fe' = E§' —kyTIn DZ

Entropy: g = _EGEH

0T [)
S8 = InW

S =kyInDgy,

Note: The volume change is often small and can be neglected
G(p,T)=F*"¢ +E§

Exceptions: - Equilibrium with a gas (pressure and entropy effects crucial)
- Small energy differences
- Temperature dependent properties (thermal expansion, ...)




Example: Point defects

Assumption: Thermodynamic equilibrium

Free energy: F=U-=TS

For isolated defects: =nkp

/\

number of defects  formation energy of
an isolated defect

Configurational entropy:

= -n- !
Sconﬁg:kBInW with W:N(N 1)(N n l) _ NI
nl (N—n)!n!
F
Minimize free energy: %H =Eq—kg =0

‘ Defect concentration: [n =N epo— E
kT [




Defect Formation energy

Defect concentration:  7perr = Vs eXpE- T @

How can we calculate formation energy E?

Note: To create a defect the number of atoms in the system may change!

Example: Creation of a vacancy in GaN (two steps)

’ Ga atom gains energy [,
(G . -

a) DFT calculations b) Thermodynamics

Ep (GaN : V(ga) = Ey (GaN : V(ga)+ Hca ¥ 9L permi




Chemical Potentials

Specific value of the chemical potentials depends on the environment!
[1 variables, which can be experimentally controlled
(via T, p, fluxes and flux ratio)
But: Boundary conditions are well defined and can be calculated

Example: Ga vacancy in GaN

A UGa
Boundary conditions: ¢, <Hcamu) I - Garich
T MGa(bulk) aric

UN<MN(molecule)

_ "~ HGapuy2H; <> Nrich
Hgat N THGaN(ulk)

HGabuiky™ Hnmotecutey =HGaneuny TAH¢

‘ HGamuixy ~ AH¢ < Hga< Hgapuik)

Interpretation: . .
Incorporation at a Kink (Kg,=Ugapun~- AHy)
Ga droplets (KG,=Hgagbulk) @
h [ ]
bulk bulk bulk

Ga rich N rich



Example: H in GaN

Formation energy: E,(GaN:H?) = E,, (GaN ; H")—pH + qE cormi

E0/+

---- [1 p-type:
S 4  H* is stable charge state
L * low formation energy
3 3 _. high H solubility
a«:j _
UCJ 2 [0 n-type:
o | * H™ is stable charge state
g 1 * low formation energy
L% | . high H solubility

[1 neutral charge state is unstable
— acceptor state is above donor
state
— negative U center

Fermi Energy (eV)

J. Neugebauer and C. Van de Walle, Phys. Rev. Lett. 75, 4452 (1995)



Example: Point defects in GaN
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e [dentification of the dominant native defects
e Identification of compensating centers
[] defect concentrations?



Defect concentrations: Charge neutrality

Is the Fermi level indeed a free variable?

—> No, it is controlled/fixed by charge neutrality condition!

Number of ionized donors

Special cases:

Only donors

L | iz

D +h=A"+n

AN

number of ionized acceptors

donors
acceptors

compensation

_ ECB _EFermi
n=Ne K
KT [
N, = 2KT
(21" [
donors
>>acceptors
A/
Ferml_ i dainieii
00
D*=A"+n

partial compensation



Defect concentrations

E
Thermodynamic equilibrium:  7pepi = N gires eXpE—ﬁg

N
O1
]

= = N
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Concentration (log,, cm®)
o1

o
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e Defect/impurity concentration directly accessible:
e All relevant effects included (compensation, doping efficiency, solubility)



Example: Alloys

Free energy of an alloy A, B C:

1-xx

Q00000

F(x,T):AHO(x)—TS(x) 9(.)(3(.)9(.)

/V \ 00000®

mainly configurational entropy
AHo(X) — HAl—xBxC - (1_ x)HAC - XHBC S = _k[X|nx + (1_ X)ln(l_ .X)]

drives segregation

Total energy difference (>0)

drives alloying
Alloys are thermodynamically unstable at T=0K (phase segregation)!

Assumption: AH(x) = Qx(1-x)

interaction parameter



Solubility

Free Energy

0.2 T=0

/ ﬂ

0.1 I

02— 0.4 0.6 —0-8 1 5
T=3/4T, X
-0.1
T=Tyc
0.2 above this
e T=4/3T,, temperature

fully miscible



Discussion

Free Energy T eneray || energy
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InGaN alloys: Phase stability and solubility

Calculated formation enthalpy: Phase diagram:
(Assumption: regular solution model)
superlattices
N 120 g
T A T T . .
c - | spinodal . blnodai
.‘g 150 \ oL.—).100 g - N P4 -
ki O = 800 \/ S :
>100; : - = '
: gooq /) L\
Fsof 'ttoootTTNteeL g 4°°/ 2 ) \
o |7 £ J00l oo Miscibility gap *
£ ok’”  regular solution model, = , >,
< , , L L ' ' L
L 0 20 40 60 80 100 0 20 40 60 80 100
In Concentration % In Concentration %
Critical temperature:
Fit to the regular solution model: T, =1030 °C

AH =Qx(1-x)
[1 Interaction parameter Q =242 meV 0 Solubility at typical growth
temperatures below 10 %!

F. Grosse and J. Neugebauer, ICPS24 Conference Proceedings, 1999.



Convergence aspects for defect calculations

Periodic boundary conditions

[] interaction across cell boundaries:

elastic:
- strain fields

electronic:
- overlap of

wave functions
- dispersion of
defect states

electrostatic:
- monopoles
- multipoles

long ranged

1/R®

- all physical quantities converge with increasing cell size
- error estimation and reduction for 'small' cells is highly desirable



Electronic effects (I)

Example: Neutral GaP P-Vacancy:

ideal P-vac. [1] 32-atom bcc cell 64-atom sc cell

4.0 ' ' 1 4.0

2.0 1 i 2.0-_
YT

—OO0@0-00— =
t = 2
2 =
0.0 - & - 0.0 4
-2.0 T -2.0
I P H N r R I

- large dispersion due to defect-defect interaction
- unphysical splitting of degenerate t2 defect state

G. Schwarz, PhD thesis



Electronic effects (II)

Convergence Tests: Cell Size and k-Points
Example: Neutral Ideal GaP P-Vacancy

cell 32 64 216 256 5.0 32 64 216
' 1 G1
465 ——pp————p———————
>
© 4.0 | G
k-points 1
3.0
convergence of t, state convergence of

formation energy Ef

- slow convergence of defect state and energy at the [ point
- average over special k-points converges significantly faster (error < (.02¢V)

G. Schwarz, PhD thesis



Relative CPU Time Consumption

Example: Neutral GaP P-Vacancy

O 4 6
10 :
E 2199_,_.,2.‘? §
5 10° - '
o 64.-~ N2In(N)
O 100 L 7 scaling
TS /
o . © 32
10° L———

0.0 1000 2000 300.0
System Size (Nb. atoms)

By a proper treatment of defects in supercells more than two orders
of magnitude in CPU time can be saved!



Calculating charged defects

Charged defect in an infinite cell Charged defect in a supercell

¥ electron q q q
/ reservoir @ @) @)

q

@) o @) o
q q q
@) @) @)

electrostatic potential

asymptotic behavior:
VHartree [] p(G)

01 2
g G
screened Coulomb potential p(G = O) = Ip(? )d?
Q

For non-neutral systems the G=0 component of the potential diverges

(VHartree j]] defined!)
[1 supercell must be always charge neutral!



Charge compensation

How to realize a charge neutral supercell?
[1 Look at nature!

Example: Donor

g w2 99 ]
EFermi ____ == """""" —— q g
EFermi _______________ . (bq. q.

D727 EEE;%EEEA © -9@
D*=n D*=A"

Transfer electron from donor Transfer electron from donor

level to bottom of conduction band acceptor level
delocalized state statistically homogeneous distribution

first approximation: constant background [set VHartree(G=() = (]



Compensation by constant background

Problem: Slow convergence with supercell size

total charge of background: -q
A
q
@ ‘a0
AE = —1°
2el,
a = 2.8
< >
L
Electrostatic interaction between charged defects in neighboring supercells:
q2
E [ ) € bulk dielectric constant

Defect-defect interaction vanishes asymptotically like 1/L!

Suggestion (Ref. [1]): Correct explicitly for this error
[ subtract it from total energy

[1] G. Makov and M. C. Payne, Phys. Rev. B 51, 4014 (1995).



Example: First ionization energy of an atom

System: Ga Atom in Cubic Cells

20 256 216 64 32 256 216 64 32
. | s¢ 1 | bee .
exp.- - EEE—E‘EM'E 1T EEEI‘Ei”E*"EI .
"'>""‘ i with correction | | with correction |
250 1t :
5 | B 1 EE"S‘E |
w 4,0 | B 1t B -
i I | ]
3.0 without correction without correction
] 56 911 56 911
1/Lattice (102 A-) 1/Lattice (102 A-)

Makov/Payne correction significantly improves convergence with
respect to supercell size for this system!



Example: Positively Charged Vacancy

Charge Transfer Level ETL for 1+ and 3+

1.6
1.5

E., (eV)

1.4
1.3

atoms: 256 216 64 32
| q=1+ - o
_ 59
| @Q”
__ with correction
i He__ ]
- £€=8.6 : HEL“E
0.05 0.06 0.09 0.11
1/Lattice (A1)

1.0

10.5

10.0

Makov/Payne correction overestimates the error!
Problem: bulk dielectric constant not appropriate

[1 enhanced screening around defect

atoms: 256 216 64 32
q _ 3+ 1 ] 1 L]
_&-©
I el ]
with correction
FH-—_
L £
8 - 8.6 | 1 1 \$
0.05 0.06 0.09 0.11
1/Lattice (A1)



Example: Positively Charged Vacancy

Charge Transfer Level ETL for 1+ and 3+

atoms: 256 216 64 32

1-7 I I T T
q=1+ .

_O
~ 1.6 - 0 -

C o9
= 15 with correction

w 9 S B
F1€=17.2 1
1.4 0.05 0.06 0.09 0.11
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4=

3+

with correction i
£

- €=17.2

0.05 0.06 0.09 0.11

1/Lattice (A1)

Assumption of enhanced screening leads to faster convergence!
Problem: How to determine “effective” dielectric constant?
[1 better approaches needed!



Alternative compensation schemes

Idea: Use localized compensation charge
[] electrostatic interaction of neutral objects between supercells

constant background Gauss sphere “virtual” donors “real” donor/acceptor
@
q. -q/N q. -q/N q.
e E -q -q/‘N @ -g/N q@

Create new pseudopotential
with Z; ...=Z+q/N
replace N original atoms by

the new pseudopotenial

S !
—

fastest convergence!

More localized compensation charges lead to a better convergence with
supercell size!



