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Electronic structure problem from physics, chemistry,

materials science, geology, biology, ...
which can be solved by total-energy calculations.

Starting Point:

Topics of this (i) how to get rid of the "core electrons":

talk: the pseudopotential concept
(i) the plane-wave basis-set and its advantages

(i) supercells, Bloch theorem and Brillouin zone
Integrals



choices we have...

Treatment of electron-electron interaction

and decisions to make...

Hartree-Fock (HF) E,[n] = To[n] + /v(r)n(r)d3r
n(r) n(r 3.1
Configuration-Interaction (ClI) T3 / T r’| r d'r 4+ Excln]

Quantum Monte-Carlo (QMC)

Density-Functional Theory (DFT)

(27" 41 +/|r_r,|dr+vxc £))6i(x) = 2i64(x)

L) = 5EXC [n]
dn(r)

Problem: Approximation to XC functional.



decisions to make...

{ Simulation of Atomic Geometries }

Example: chemisorption site & energy of a particular atom on a surface = ?

How to simulate adsorption geometry?

single molecule or
cluster

periodically repeated
supercell, slab-geometry

true half-space geometry,

Green-function methods

Use Bloch theorem.

Efficient Brillouin zone
integration schemes.




decisions to make...

Basis Set to Expand Wave-Functions

1 kR (at)
dur(k,r) = — e u, '(r—R —171)
linear combination of ' VN zR: g
atomic orbitals (LCAO) Pk, r) = E :Cm(k) b, (K, 1)

"7
1 . . Simple, unbiased,
plane waves (PW) P(k,t) = > c(k+G) ook et independent of
G atomic positions

augmented plane waves
(APW)

etc. eftc.




|. The Pseudopotential Concept




Core-States and Chemical Bonding?

Validity of the Frozen-Core Approximation

U. von Barth, C.D. Gelatt, Phys. Rev. B 21, 2222 (1980).

bcc <-> fcc Mo, transformation energy 0.5 eV/atom
core kinetic energy change of 2.7 eV

but: error of total energy due to frozen-core approximation is small,
less than 2% of structural energy change

reason: frozen-core error of the total energy is of second order

/(Pc o) (Vo — Uoﬂ‘)dgr




Remove Core-States from the Spectrum:
Construct a Pseudo-Hamiltonian

occupation, eigenvalue

3P —- 1 -27eV 2D 1 -27eV
3s —— 2 -78ey (valence g 2 -7.8¢eV
Al 2p —— 6 -69.8¢eV pseudo-
Z _ 13 28 = 2 -108 eV core- AI
states =3
1l =—— 2-1512 eV
1 2 1 S S S
(=5 V" + verr) ¥ = 59 (—§V2 + BN = g0

V. Heine, "The Pseudopotential Concept", in: Solid State Physics 24, pages 1-36,
Ed. Ehrenreich, Seitz, Turnbull (Academic Press, New York, 1970).



Orthogonalized Plane Waves (OPW)

How to construct
, (PS)

In principle ?

(actual proc. -> Martin Fuchs)

-

(&

Al

3p
3s

2p
2s

1s

1 -27eV 2p 1276V

—— 2 -78eV }Va'ence 1s —— 2 -78¢V

6 -69.8eV pseudo

— 2 -108 eV core- AI
States

—— 2.1512eV

1

(—§V2 + vett) Y = €;9;

]' S S S
(—§V2 + vig))lp](p ) sjqp](p )

)

Definition of OPWs:  |IOPW.k+G) = |[PW.k+ G) + > be(k+ G)|¢.)

with be(k+ G) = =(¢[PW. k + G)

Expansion of eigenstate in terms of OPWs: [¥x) = > _a(k+G) [OPW.k + G)

G

Secular equation: det ((OPW,k + G|H — E|OPW,k + G')) =0

Re-interpretation:

Pseudo-wavefunction:

| P

G

det ((PW, k+ G|H™ — E|PW,k + G’>> —0

> a(k+G) |PW,k + G)

OPW-Pseupopotential: [ o POV = 4 1 S (e =€) Jihe) (e }




Pseudopotentials and Pseudo-wavefunctions

® Pseudopotentials are softer > 15121242
than all-electron potentials. os Al T
(Pseudopotentials do not f / created with
have core-eigenstates.) 0.3 | /pseudo fhi9gPP
> | ! wavefunction
> 0.1 lﬁ\| I/’
e Cancellation Theorem: Ny
—0.11 \\\7\ 0.15bohr
If the pseudizing radius is taken 1\ / all-electron wavefunction
as about the core radius, then 03
v (PS) is small in the core region. " (bohr)

EIOTW 15y — o (B) — 57 () (3] B ® Pseudo-wavefunction is node-less.

® Plane-wave basis-set feasible.
V. Heine, Solid State Physics 24, 1 (1970). e Justification of NFE model.



Computation of Total-Energy Differences

Ge atom slab, ~ 50 Ge atoms

all-electron atom: E tota) = -2096 H ~10° H

(Z = 32)

. E - ~ 102

pseudo-atom: total = -3.8H 10~ H

(Z' = 4)
typical structural few 100 meV
total-energy difference: N 10-2 H
(dimer buckling,...)




Il. The Plane-Wave Expansion of the
Total Energy

J. Inm, A. Zunger, M.L. Cohen, J. Phys. C 12, 4409 (1979).
M. Bockstedte, A. Kley, J. Neugebauer, M. Scheffler, CPC 107, 187 (1997).



Plane-Wave Expansion of Kohn-Sham-Wavefunctions

Translationally invariant system (supercell) --> Bloch theorem (k: Blochvector)
ik, +R) =" ;(k, 1)

Plane-wave expansion of Kohn-Sham states (G: reciprocal lattice vectors)

i(k+G)-r

VQ

e

bk, t) =D Pk + G)

Electron density follows from sum over all occupied states:

occC d3k .
n(r) = Z /QBz 14, (k, r)|” o (for semiconductors)
J

Kohn-Sham equation in reciprocal space:

1 / /
Z{_§|k + G|*0g a1 + vei(G, G} ¥ (k + G') = g;(k) ¢(k + G)

G/



Hohenberg-Kohn Functional in Momentum Space

Total-energy functional:
Etotal({T + R}, [w.]k]) — TS + Eps,loc + Eps,non—loc + EH + EXC + EIon—Ion

Obtain individually convergent energy terms by adding or subtracting superposition
of Gaussian charges at the atomic positions:

2,2
nGaUSS(r) . ZT e—|r—R—T| /TGauss T
— 3/2 3 ’
R, Gauss,T

Define valence charge difference wrt. above Gaussian charge density:

7i(r) = n(r) — n®*" (1)

The total energy can thus be written as the sum of individually well defined energies:

Etotal — TS + E~'ps,loc + Eps,non—loc + EH['FL] + EXC + EIon—Ion — Eself




Hohenberg-Kohn Functional in Momentum Space
(continued)

o d’k k + G|?
® kinetic energy: Ts = /Q - > — I+ &)
7 BZ G

* local pseudopotential energy: | Epsjoc = 2> _ S(G) #r.6 na
(only one kind of atoms) G

Gauss,at (’I",)

with 0-(r) = o7 (r) — / e @Y and S(G) =] structure factor

T

e non-local pseudopotential energy
4
|G|?

e Hartree energy: | Euln] = = > ]
G0

[ eXChange-COI'I'e|athn E}IigA[n + ncore] — / d31‘ (’I’L(I‘) + ncore(r)) G;Ocm(n(l‘) + ncore(r))
energy: 0

, , - 1 Z.Z. 7 —R
e lon-lon Coulomb interaction: Euoe-ton=5 > (1_erf (\/ T -7 —R| ))

, , o |T =1 —R|
7,7, R:7#7"4+R

ssssss

2
B 1z
self — §
sV 21 T"Gauss,

e Gaussian self energy: E




Kinetic Energy Cut-Off and Basis-Set Convergence

Size of plane-wave basis-set limited Basis-set convergence of total energy:
by the kinetic-energy cut-off energy: ~2.047

Ek|n 5 Ry
cut

|k+G| S V 2Ecut | }

(Note: Conventionally, cut-off energy
IS given in Ry, then factor "2" is
obsolete.)

Al

-2.057 ~

total energy [H]

Efficient calculation of convolutions:

Yix(G) — (Vioc Y, x)(G)

-2.067 ~

* a mult A e | o7
. 13R
jac(Tn) ——>= Vioc(Tn) Pjx(rn) 15 Ryy&%
20774 e
7.0 7.2 7.4 7.6 7.8 8.0

lattice constant [bohr]

Real space mesh fixed by sampling
theorem.




Advantages of Plane-Wave Basis-Set

(1) basis set is independent of atom positions and species, unbiased

(2) forces acting on atoms are equal to Hellmann-Feynman forces,
no basis-set corrections to the forces (no Pulay forces)

(3) efficient calculation of convolutions,
use FFT to switch between real space mesh and reciprocal space

(4) systematic improvement (decrease) of total energy with increasing
size of the basis set (increasing cut-off energy):
can control basis-set convergence

Remark: When the volume of the supercell is varied, the number of plane-
wave component varies discontinuously. Basis-set corrections are available
(G.P. Francis, M.C. Payne, J. Phys. Cond. Matt. 2, 4395 (1990).)



lll. Brillouin Zone Integration and
Special k-Point Sets

(1) General Considerations
(1) Semiconductors & Insulators
(i) Metals

D.J. Chadi, M.L.Cohen, Phys. Rev. B 8, 5747 (1973).
H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976).
R.A. Evarestov, V.P. Smirnov, phys. stat. sol. (b) 119, 9 (1983).



The Brillouin Zone Integration

Make use of supercells and exploit translational invariance; apply Bloch theorem.
Charge density and other quantities are represented by Brillouin-zone integrals:

occC d3

k
n(r)=>_ 19;(k, )| =—  (for semiconductors / insulators)
— Japy Qpz

Smooth integrand => approximate integral by a weighted sum over special points:

occ Nkpt

n(r) ~ Z Z wn|¢j(kn,1‘)|2

This is the "trick" by which we get rid of the many degrees of freedom from the
crystal electrons!



Special Points for Efficient Brillouin-Zone Integration

. d’k

Calculate integrals of the type [ = / f(k) —  with
Opg pyg

e f(k) periodic in reciprocal space, f(k + G) = f(k) |

e f(k) symmetric with respect to all point group symmetries.

Expand f(k) into a FOURIER series: f(kK) = f 4+ > fm Am(k)
m=1

Z eik-(osz) and A()(k) =1

aEGO

i A, (k) =
with (k) Gl

Choose special points k; (i=1, ..., N) and weights w. such that

N
Zwi An(ki) =6mo for m=0,1,....M —1

=1

for M as large as possible. The real-space vectors R, are assumed to be ordered
according to their length.

N o0 N
Then: S wi fki)=F4 D fu D wi Apm(ks)

V
error of BZ integration scheme



Special k-Points for 2D Square Lattice

Let point group be C4 (not Cygy). Lattice vector a4 = aey , an = aey
Ki Wi N M
(%% 1 1 3
bo) (44 L . |
(00)(£2 £ 2 2 4
s GHEDNES $503 ‘ 12
:9)(63)GGEI)GE3) | §5555 > =
GHEDE ciias | L |
Go20) Go 20 R

R.A. Evarestov, V.P. Smirnov, phys. stat. sol. (b) 119, 9 (1983).



Monkhorst-Pack Special k-Points

Equally spaced k-point mesh in reciprocal space:

k = 'Y af{—I—ug;) a;—I—u(.B) a,, 11 =1, ...,l(l), 19 = 1, ...,l(2), 13 = 1, ...,l(g)

i1,i9,0g i1

and W;
Restrict k-point set to points in the irreducible part of the Brillouin zone.
Weight of each point ~ number of points in the star of the respective wave vector:

Weights: B |star(k)|
eignts: wig = TD12)70)

H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976).



Why Few k-Points Already Work Fine for Semiconductors

Semiconductors and insulators: always integrate over complete bands!

occ ) d3k

n(r) = Z/QBZWJ& DI o=

Introduce Wannier-functions for the j-th band: ¥;(k,r) = \/_Z MR, (r—R)

1
True charge density from the j-th band: 7n;(r) = Ne > lwi(r —R)[*
R

Approximate charge density (from sum over special k-points):

=3 w ( > |vi(aki, )] >=—ZZZw~4R (ki) wj (=R )w; (r=R)

(J’E G() R R/ i=1

nj(r) = n(r)+ Niz > (Zwi AR_R/(k¢)> wi(r—R)w;(r—R)

R R/|R-R/|>C); \i=1

Error of integration scheme = overlap of Wannier functions with distance > Cy,
Even faster convergence (due to the more localized atomic orbitals) for total
charge density.

R.A. Evarestov, V.P. Smirnov, phys. stat. sol. (b) 119, 9 (1983).



. And Why Metals Need Much More k-Points

Metals: partially filled bands; k-points have to sample the shape of the Fermi surface.

=3 [ (202 e mp 2K

BZ

"Smearing" of Fermi surface in order to improve
convergence with number of k-points, e.g. by
choosing an artificially high electron temperature
(0.1 eV).

Extrapolate to zero temperature by averaging the
free energy A and the inner energy E:

1
A(T) = B, — §7T2 + ...

7.657

0]

Al

7.652

kT, =0.5eV =

kT, =0.25 eV

7.647

lattice constant c [bohr]

7.642

Ey~ (A(T)+ E(T))/2 kT, =0.1eV

1 2

® Respective corrections to the forces. ~0 ﬁok_poims e 300
F. Wagner, Th. Laloyaux, M. Scheffler, Phys. Rev. B 57, 2102 (1998).

- _ _ M. Lindenblatt, E.P.
® [or some quantities and materials "smearing" can lead to
serious problems. M.J. Mehl, Phys. Rev. B 61, 1654 (2000).




Summary: The Plane-Wave Pseudopotential Method

(1) Born-Oppenheimer approximation

(2) apply density-functional theory (DFT) to calculate the electronic structure;
® approximation for the exchange-correlation energy-functional (LDA, GGA, ...)
@ approximate treatment of spin effects (LSDA, ...)

(3) construct pseudopotentials: get rid of core electrons
@ frozen-core approximation
@ non-linear core-valence exchange-correlation
® transferability of the pseudopotential

(4) specify atomic geometry, e.g. slab and periodically repeated supercells
@ convergence with cell size (cluster size)

(5) plane-wave basis-set: unbiased, no basis-set corrections to the forces,
switch between real space and reciprocal space via FFT
@ convergence of total-energy differences with kinetic-energy cut-off

(6) Brillouin-zone integrals approximated by sums over special k-points
® check the convergence with number of k-points and Fermi-surface smearing
(different for semiconductors/insulators and metals!)



