Quasiparticle band structures
and the GW approximation

Arno Schindlmayr

Fritz—Haber—-Institut der Max Planck—Gesellscfta
Faradayweg 4-6, 14195 Ban—Dahlem, Germamg

L12

Workshop on Application of Density—Functional Theory in Condensed Matter Bhysic
& Surface Physics, Chemistry, Engineering and &jgl Berlin, 23 July — 1 August 200




Energy (eV)

Electronic structure in Kohn—-Sham theory

GaAs band structe
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Direct band gap dt in LDA

nonrelativistic 1.1¥
scalar—relativistic 0.6¥¢
fully relativistic (SO) 0.5 ¥
core relaxation (AE) 0.2\é

experimental 1.5¢

The band gap is also very
sensitive to small variatian
In the lattice constant (up to
0.5 eV for a 2% error iA).



theoretical band gap

The band—gap problem
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The LDA systematicaf

underestimates the ban
gap of semiconductors
and insulators.

Note that in some case
like Ge, LDA even fas
gualitatively (Eg< 0).



The band width of metals

Free electron gas, = Y& , band width = %.FZ T ;
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The LDA systematically overestimatdet =
occupied band width, which is reduceg b "
correlation compared to the electron gas. E-Eﬂ 7
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Na 3.2eV 2.6 ¥
K 2.3 eV 1.4% Band structure of Bl

J. E. Northrup, M. S. Hybertsen and S. G. leyui
Phys. Rev. Lett59, 819 (1987)



Experimental determination of the band struetu

o Evin Direct photoemission spectrum o&N
B0 F
E in e hy ooo | 8
AR~ ol g
3 nk p |
£ 5000
R AR REEEEY --- vacuum : e 20 | |
S g0 | nk p ‘
Ea 8 | |
CB il A W A
s kj \ /
2000 |- H_‘h- I‘H\J
hv Eg 1000 | e e -
VB =20 A5 10 5 0
E {aV}

direct indirect

F. Aryasetiawan, L. Hedin and Karlsson, Phys. Rev. Left7, 2268 (198)



Definition of the band structure

/T he electronic band structureroesponds to the total—ener@
difference between two systemgh differentparticle numbes.

e =E(N) —E*(N-1) for occupied states
e =E*(N+1) -E(N) for unoccupied states

In order to obtain reliable numeall results, we must find a ywa
@ calculate the band structure directly, becayse< E(N). J

Example: noninteracting systems S

E(N) = 5,00, (N[=¥2T+V, ()]0 ()T = S ¢
AT (1)+V, (N0,1) =£6,(1) «
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Koopmans’ theorem (Hartree—Fock)

E(N) = 3 JoX(N[-0%V, (o () +E N +ENZ5e @

EN) =5, J0 (DY, (6 () o\

E(N) =% [d*(r)V(rr)é(r)dr or / e
[0V (N]d.(r) +V (Ne.(r) + [V (rr) o (r)dr =ed.(r) c

V(1) =30 (r)vr-r)¢.(r) ’r’ GaAs E

VU(rr) = 2.0 5(r)vr=r)¢.(r) HE 9.1e¢/
E(N+1i*) - E(N) = ¢ Expt. 1.5&/

Koopmans’ theorem allows us to identify the Hartree—Foc
eigenvalues with the electronand structure, but the nediec
of correlation grossly overestirtes the fundamental bandpa




The Kohn—-Sham scheme

E(N) =3 o *(r)[=%20°]¢.(r)dr +V_ (r)n(r)d’r +E_[n] + E [n]
E [n] =%n(r)v(r-r)n(r)dr dr

V. (r) =0E [n]/on(r) =[n(r’)v(r—r’) ’r’
V (r) =oE [n]/on(r)=e (r)+Joe (r’)/on(r) n(r’) or’
E(N+1)*) — E(N) # € In general, buE(N) — E(N-1) = p(N) =¢

N
E [n] =Je (r)n(r)d’r
[TV (N)+V (1Y (N]6.(r) =€d.(r) \
/o)

energy differences and the Kohn—-Shamenvalues, hence the latter cain

In density—functional theory there is no simple relationship between total-
be interpreted as excitation energies, except for the highest occupied state




Origin of the band—gap problem

E = [EN+1)-E(N)] - [E(N)-E(N-1)] = u(N+1) —p(N) =€ (N+1) —¢ (N)
But in Kohn—Sham theory we talﬁgKS =g (N) —¢€ (N)

Discontinuity of the exchange—correlation potential:

V. _(N,r) =0E [n]/on(r)0]
V. _(N+1r)=0E [nl/on(r)l, =V (Nr)+A_ N +1

L]e N+1(N+1) :€N+1(N) + AXC _______
_____________________________ e
E=EF+A =E""* +A g{ m
g g XC g N



Green function theory

D Gertrr) = - W ey () |@ Oift >t (electron)

— - H @ [P (rt)pery|W Oif t<t (hole)

Noninteracting system:
e o Gtrt)=-is. ¢ (1 (r)exp{-ig, (-t)} if t>t
HY o (Ne *(r)exp{-ie (t-t)} If t<t

(r, t’) nk,occ’ n

Interacting system:
G(rt,r’t) = G (rt,r't) + [G (rt,r t)X(r t.r t)G (r t r't) dr dtd’r dt +...

11" 272



The GW approximation

(rt,r’t) = iG(rt,r t)YW(rt",r't’)

IG(rt,rt)v(r-r)o(t’=t) =3 W *(r)v(r-riy (r)=V(r,r)

nk,occ

The GW approximation is an extended Hartree—Fock approximatitdm wi
dynamically screened exchange. RogBy, it describes the coupling o
guasiparticles to single plasmons,iafis appropriate for most solids.

For consistency witlthe level of the&GW

W approximation for the self-energW s
s = % constructed in theo—called random-phka
G or time—dependent Hartree approximation
e(rt,r’'t) = 8(r-r’) — [P(rt,r )v(r —r’)d’r




Quasiparticles

[0V (N+V,(O1W (1) +[Z(rr E ) (M) dr =E g (1)

G(rt,r't’) = —i an’occtpnk(r)tpnk*(r’)exp{—iEnk(t—t’)} if t>t
+i an,unoccl'pnk(r)l'pnk*(r,)exp{_iEnk(t_t,)} If t<t,

. . . . Enk _|_
Quasiparticles aregpproximate eigenstate K T e
of the many—-body Hamiltonian with a Ign o+
but finite lifetime. Like particles, they ha PR
awell-defined enaggy and momentum. W
4
Dynamically screene@oulomb interactip: ++° +_|_

W(rt,r't') = v(r—r )e™(r tr't)dr, ST+



What guantities can be calculated fram

Spectral function:
Ak,0) = TTHIM|G(K,w)| noninteracting

Quasiparticle band structure: Interacting
E =¢ +ReX(kE )0

A(k,w)

Spectral weight:
Z = [1-0ReX (k,w)w] b =E

Quasiparticle lifetime:

Ut O =ImZ(k,E, )0



theoretical band gap

Performance of th&W approximation
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Band width of alkali metals

LDA GW  Exp.

Li 35 29 3.0¥

Na 3.2 25 27

K 2.3 16 14¥
The GW approximation

resolves the band—gap
problem of LDA and ac
yields good band width




Crystal geometry and electronic structure

The very small energy difference between
the Si(100) surface with symmetric and
asymmetric dimers makes it difficult to
determine the correct geometry. However
the electronic structure differs qualitatiyel

Energy (eV)
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SuggeSt asymmetnc d|mers M. Rohlfing, P. Kriiger and J. Pollmann, Phys. Re%2B13 753 (199)



PracticalGW calculations

Quasiparticleequations
[0V (N+V, (OIW (1) +[Z(rrE W () dr =E _(r)

Kohn-Sham equations
[0V (N+V, (D] (1) + v.(ie () =€ ¢ (r)

First—order approximation wittp_ (r) = ¢ _(r)
E =€ +[o *(r)[Z(rr;E )-V (Nd(r-r)¢ (r)drdr

The self-energy is calculatavithout self-consistency
2(rt,r't’) =iG (rt,r" t)yW(rt",r't))

Besides, plasmon-pole modeal® frequently employed faw.



The GW space-time method

G (r,r;it) = - an,occq)nk(r)q)nk*(r’)exp{enkT} if t>0
H ¢_(r)o_*(r)exp{e 1} If 1<0

nk,unocc’ nk
P(r.,ri;it) = A6 (rr;im)G (r',r;-it)
FFT

> e (kiw)=3__ -P__ (ki (K)

# FFT WGG’(k’ioo) - VG(k)S_ GG’(k’iw)

2(r,r’;1m) =1G (r,r; I)Wr,r';it)
FFT

> Enk = enk + Réj(b nklZ(Enk)_\/xcM)nkE|

M. M. Rieger, L. Steinbeck, I. D. White, H. Rojas and R. W. Godby, Comput. Phys. Comnidr, 211 (199)



Discretizing the equations

Real space I[maginary tine
F(r,r’) ~|r—r'F F(it) ~ exp€ 1)
IT
o
o

Unit cell
Interaction ck



The plasmon—pole approximation

0.4 ——

Traditional GW implementations used a reciprbea
space representation for all operators.

2 (k,0) = i/(21)* JG (k+K', wr+ey) WK, ') K’ doo o

The frequency integraballd be done analytically -, g

if the mathematical form oV was known. Ansatz + ° ° * ° ° °
-1 — 2 2 O

Ree™__(kw)=0__ +Q__ (K)[w-w__ (k)] 2 L,

This plasmon—pole modebantains two parametgr 0.0

which must be determined by fitting or sum rules. -0z |

The accuracy is good for states near the Fermg ec  -os} S miconen

---= GFP Model ]

and decreases with increasing quasiparticle enerc  -os
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_ hiew (eV)
F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Biy237 (1998)



Summary

* The Kohn—Sham eigenvalues show eysdtic deviationfrom experimerdl
band structures and may occasiongitd qualitatively incorrect results.

* A closer look at the underlying theoryeals that there is in fact no rigoio
foundation for relating the Kohn-Shastmgenvalues to the band structure.

* The Green function properly dedwes electron addition and removal
processes and thus gives accegbhdaelevant excitation spectrum.

 The GW approximation for the electronself-energy contains the domirtan
scattering processes that are expected in systems with delocalized states.

* It resolves the band—gap problem amelds band structures in very good
agreement with experiment.

* In practice, th&sW approximation is applied perbatively after a standard
density—functional calculation.



