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Electronic structure in Kohn−Sham theory
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GaAs band structure

Direct band gap at Γ in LDA

nonrelativistic 1.1 eV
scalar−relativistic 0.6 eV
fully relativistic (SO) 0.5 eV
core relaxation (AE) 0.2 eV

experimental 1.5 eV

The band gap is also very
sensitive to small variations
in the lattice constant (up to
0.5 eV for a 2% error in a).



The band−gap problem

The LDA systematically
underestimates the band
gap of semiconductors
and insulators.

Note that in some cases, 
like Ge, LDA even fails 
qualitatively (E

g
< 0).
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The band width of metals

Free electron gas: ε
k
 = ½k2 , band width = ½k

F

2

The LDA systematically overestimates the
occupied band width, which is reduced by
correlation compared to the electron gas.

Band width  LDA  Expt.

  Li 3.5 eV 3.0 eV
  Na 3.2 eV 2.6 eV
  K 2.3 eV 1.4 eV Band structure of Na

J. E. Northrup, M. S. Hybertsen and S. G. Louie,
Phys. Rev. Lett. 59, 819 (1987)



Experimental determination of the band structure
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F. Aryasetiawan, L. Hedin and K. Karlsson, Phys. Rev. Lett. 77, 2268 (1996)



 Definition of the band structure

The electronic band structure corresponds to the total−energy
difference between two systems with different particle numbers.

ε
nk

 = E(N) − E*(N−1) for occupied states

ε
nk

 = E*(N+1) − E(N) for unoccupied states

In order to obtain reliable numerical results, we must find a way
to calculate the band structure directly, because ε

nk
 << E(N).

Example: noninteracting systems
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Koopmans’ theorem (Hartree−Fock)

E(N) = ∑
i 
∫ϕ

i
*( r )[−½∇ 2+V

ext
(r )]ϕ

i
(r )d3r + E

H
(N) + E

F
(N) ≠ ∑

i
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i
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H
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V
H
(r )  = ∑

j 
∫ϕ

j
*( r ’)v(r−r ’)ϕ

j
(r ’)d3r’

V
F
(r ,r ’) = ∑

j
ϕ

j
*( r ’)v(r−r ’)ϕ

j
(r )

E(N+1,i*) − E(N) ≈ ε
i*

GaAs    E
g

HF 9.1 eV
Expt. 1.5 eV

Koopmans’ theorem allows us to identify the Hartree−Fock
eigenvalues with the electronic band structure, but the neglect
of correlation grossly overestimates the fundamental band gap.
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The Kohn−Sham scheme

E(N) = ∑
i 
∫ϕ

i
*( r )[−½∇ 2]ϕ

i
(r )d3r + ∫V

ext
(r )n(r )d3r + E

H
[n] + E

xc
[n]

E
H
[n] = ½∫n(r ’)v(r−r ’)n(r )d3r d3r’

E
xc
[n] = ∫e
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(r )n(r )d3r
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H
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(r )]ϕ
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i
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(r )

V
H
(r ) = δE

H
[n]/δn(r ) = ∫n(r ’)v(r−r ’)d3r’

V
xc
(r ) = δE

xc
[n]/δn(r ) = e

xc
(r ) + ∫δe

xc
(r ’)/δn(r ) n(r ’)d3r’

E(N+1,i*) − E(N) ≠ ε
i*
 in general, but E(N) − E(N−1) ≡ µ(N) = ε

N

In density−functional theory there is no simple relationship between total−
energy differences and the Kohn−Sham eigenvalues, hence the latter cannot
be interpreted as excitation energies, except for the highest occupied state.
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Origin of the band−gap problem

E
g
 = [E(N+1)−E(N)] − [E(N)−E(N−1)] ≡ µ(N+1) − µ(N) = ε

N+1
(N+1) − ε

N
(N)

But in Kohn−Sham theory we take E
g

KS = ε
N+1

(N) − ε
N
(N)

Discontinuity of the exchange−correlation potential:
V
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Green function theory

G(r t,r ’ t’) = −i 〈Ψ
N
|ψ(r t)ψ+(r ’ t’) |Ψ

N
〉  if t > t’  (electron)

 +i 〈Ψ
N
|ψ+(r ’ t’)ψ(r t)|Ψ

N
〉  if t < t’  (hole)

Noninteracting system:
G

0
(r t,r ’ t’) = −i ∑

nk,unocc 
ϕ
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(r )ϕ
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ϕ
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(r )ϕ
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*( r ’)exp{−iε
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(t−t’)}   if t < t’

Interacting system:
G(r t,r ’ t’) = G

0
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0
(r t,r
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The GW approximation

Σ(r t,r ’ t’) = iG(r t,r ’ t’)W(r t+,r ’ t’)

Σ(r t,r ’ t’) = iG(r t,r ’ t’)v(r−r ’)δ(t+−t’) = ∑
nk,occ

ψ
nk

*( r ’)v(r−r ’)ψ
nk

(r ) = V
F
(r ,r ’)

The GW approximation is an extended Hartree−Fock approximation with
dynamically screened exchange. Physically, it describes the coupling of
quasiparticles to single plasmons, which is appropriate for most solids.

Σ =
G

W
For consistency with the level of the GW
approximation for the self−energy, W is
constructed in the so−called random−phase
or time−dependent Hartree approximation.
ε(r t,r ’ t’) = δ(r−r ’) − ∫P(r t,r

1
t’)v(r

1
−r ’)d3r

1



Quasiparticles

[−½∇ 2+V
ext

(r )+V
H
(r )]ψ

nk
(r ) + ∫Σ(r ,r ’;E

nk
)ψ

nk
(r ’)d3r’ = E

nk
ψ

nk
(r )

G(r t,r ’ t’) = −i ∑
nk,occ 

ψ
nk

(r )ψ
nk

*( r ’)exp{−iE
nk

(t−t’)}  if t > t’

 +i ∑
nk,unocc

ψ
nk

(r )ψ
nk

*( r ’)exp{−iE
nk

(t−t’)}  if t < t’

Quasiparticles are approximate eigenstates
of the many−body Hamiltonian with a long
but finite lifetime. Like particles, they have
a well−defined energy and momentum.

Dynamically screened Coulomb interaction:
W(r t,r ’ t’) = ∫v(r−r

1
)ε−1(r

1
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What quantities can be calculated from Σ?

Spectral function:
A(k,ω) = π−1Im|G(k,ω)|

Quasiparticle band structure:
E

nk
 = ε

nk
 + Re〈Σ(k,E

nk
)〉

Spectral weight:
Z

nk
 = [1−∂Re〈Σ(k,ω)〉/∂ω]−1ω =E

nk

Quasiparticle lifetime:
1/τ

nk
 ∝  Γ

nk
 = Im〈Σ(k,E

nk
)〉

A
(k

,ω
)

εnk Enk µ

Γ
Z
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interacting

ω



Performance of the GW approximation
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Band width of alkali metals

 LDA GW  Expt.

Li   3.5  2.9 3.0 eV
Na   3.2  2.5 2.7 eV
K   2.3  1.6 1.4 eV

The GW approximation
resolves the band−gap
problem of LDA and also
yields good band widths.



Crystal geometry and electronic structure

Asymmetric

Symmetric

M. Rohlfing, P. Krüger and J. Pollmann, Phys. Rev. B 52, 13 753 (1995)

The very small energy difference between
the Si(100) surface with symmetric and
asymmetric dimers makes it difficult to
determine the correct geometry. However,
the electronic structure differs qualitatively.

As experiments show a nonmetallic surface,
GW band−structure calculations strongly
suggest asymmetric dimers.

symmetric

metallic nonmetallic

asymmetric



Practical GW calculations

Quasiparticle equations
[−½∇ 2+V

ext
(r )+V

H
(r )]ψ

nk
(r ) + ∫Σ(r ,r ’;E

nk
)ψ

nk
(r ’)d3r’ = E
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Kohn−Sham equations
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(r )ϕ

nk
(r )        = ε

nk
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First−order approximation with ψ
nk
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nk

(r )

E
nk

 = ε
nk

 + ∫ϕ
nk

*( r )[Σ(r ,r ’;E
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)−V
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(r )δ(r−r ’)] ϕ
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(r ’)d3r d3r’

The self−energy is calculated without self−consistency
Σ(r t,r ’ t’) = iG

0
(r t,r ’ t’)W(r t+,r ’ t’)

Besides, plasmon−pole models are frequently employed for W.



The GW space−time method

G
0
(r ,r ’; iτ) = −i ∑
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ϕ
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(r )ϕ
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  +i ∑
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ϕ
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(r )ϕ
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P(r ,r ’; iτ) = −iG
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0
(r ’,r ;−iτ)

ε
GG’
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GG’

 − P
GG’

(k,iω)v
G’

(k)

W
GG’
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FFT

FFT

FFT

M. M. Rieger, L. Steinbeck, I. D. White, H. N. Rojas and R. W. Godby, Comput. Phys. Commun. 117, 211 (1999)



Discretizing the equations

τ

τi

Real space

F(r ,r ’) ~ |r−r ’ |2
Imaginary time

F(iτ) ~ exp(ε
nk

τ)

Unit cell
Interaction cell



The plasmon−pole approximation

Traditional GW implementations used a reciprocal−
space representation for all operators.
Σ(k,ω) = i/(2π)4 ∫G

0
(k+k’,ω+ω’)W(k’,ω’)d3k’dω’

The frequency integral could be done analytically
if the mathematical form of W was known. Ansatz:
Re ε−1

GG’
(k,ω) = δ

GG’
 + Ω

GG’
(k)/[ω2−ω

GG’
(k)2]

This plasmon−pole model contains two parameters,
which must be determined by fitting or sum rules.
The accuracy is good for states near the Fermi edge
and decreases with increasing quasiparticle energy.

F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998)



Summary

" The Kohn−Sham eigenvalues show systematic deviations from experimental 
band structures and may occasionally yield qualitatively incorrect results.

" A closer look at the underlying theory reveals that there is in fact no rigorous 
foundation for relating the Kohn−Sham eigenvalues to the band structure.

" The Green function properly describes electron addition and removal 
processes and thus gives access to the relevant excitation spectrum.

" The GW approximation for the electronic self−energy contains the dominant 
scattering processes that are expected in systems with delocalized states.

" It resolves the band−gap problem and yields band structures in very good 
agreement with experiment.

" In practice, the GW approximation is applied perturbatively after a standard 
density−functional calculation.


