Calculating bulk properties with SFHIngX

- Session E2 -

Franziska Grzegorzewski

Fritz-Haber-Institut der Max-Planck-Gesellschaft

July 23th, 2003

Outline

- Introduction to SFHIngX
 - The program package and file structure
 - Set up the parameters for this calculation
 - Compute the total energy
 - Example run
- Determination of bulk properties
 - Theoretical lattice constant
 - The Murnaghan Equation of State
 - Convergence tests with respect to cutoff energy and k-point mesh
- Introduction to Session E2

Motivation

- How to calculate the bulk properties of a system
 - optimize cutoff energy and k-point mesh
- How to influence the convergence speed & accuracy and the memory demand
 - → use different electronic minimization schemes
- How to influence the accuracy of a calculation
 - → use of LDA and GGA functional

Tasks of session E2:

- Theoretical lattice constant
 - Example calculation for GaAs with aLat =10.68Bohr
 - Calculations for 9.6 11.6
 Bohr, Murnaghan Fit
- Convergence test for Ecut = 6-35 Ry and LDA/PBE
 - For theoretical lattice constant
 - For several lattice constants, Murnghan fit
- Convergence for k-point sampling for LDA and PBE
 - At theoretical lattice constant and for best cutoff value

- Electronic minimization schemes
 - Steepest Descent
 - Williams-Soler algorithm
 - Damped Joannopoulos
 - All-state-conjugategradient
 - State-by-state-conjugategradient
- Initialization of trial wave functions and charge density
 - LCAO Ansatz
 - Random numbers

SFHIngX

- Program Package -

Set up of calculation - the input file -

- The geometry
 - The lattice constant
 - The structure
 - The species
- The Basis
 - The cutoff energy
 - The k-point set
- The Hamiltonian
 - The exchange-correlation functional
- The trial wave functions and the initial charge density
- The main loop
 - Different minimization schemes

The Crystal Structure of GaAs

- Structure = Lattice + Basis
- Zincblend crystal structure
- Two interpenetrating fcc lattices with 2-atom basis
- 2nd fcc displaced by (¼ ¼
 ¼) along body diagonal
- III-IV semiconductor
- 8 atoms per cubic cell in conventional cell :

$$(0,0,0), (0, \frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, 0, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}, 0), (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}), (\frac{1}{4}, \frac{3}{4}, \frac{3}{4}), (\frac{3}{4}, \frac{3}{4}, \frac{1}{4})$$

Performing a calculation

- the Structure and Basis of GaAs -

- The header
- The lattice constant
- The pseudopotentials
- zinc blende crystal structure
- fcc Bravais lattice
- **Ga:** [0, 0, 0]
- As: [¼, ¼, ¼]
- pw basis
- k-point set

```
format sfhingx;
include <parameters.sx>;
aLat = 10.68;
species_1 = <species/ga-lda-ham.sx>;
species 2 = <species/as-lda-ham.sx>;
structure
  include <structures/zincblend.sx>;
basis
  eCut = 8 ; // Ry
 kPoint \{coords = [1/2, 1/2, 1/2];
         weight = 1; relative;}
  folding = [4, 4, 4];
```

Performing a calculation

Exchange-correlation:LDA

- Initialization of Ψ: LCAO
- Initialization of ρ: atomic orbitals
- Electronic minimization

```
Hamiltonian
  ekt
             = 0:
             = LDA;
   XC
initialGuess
  waves {lcao{maxIt=1;rhoMixing=0.05;}}
   rho {atomicOrbitals;}
}
main {
  CCG
                  = 50;
     maxSteps
     dEnergy
                  = 1e-06; // Hartree
     printSteps
                   = 5;
```

Performing a calculation

- the output files -

Determination of Theoretical Lattice constant

- Compute a series of E_{tot} for several lattice constants
- Murnaghan Equation

$$E_{tot}(V) - E_0(V_0) = \frac{B_0 V}{B_0'(B_0'-1)} \left[B_0' \left(1 - \frac{V_0}{V} \right) + \left(\frac{V_0}{V} \right)^{B_0'} - 1 \right] \Rightarrow \text{sxmurn}$$

Convergence test for cutoff energy for GaAs (LDA)

- aLat=10.42 Bohr, LDA
- 4x4x4 mesh

eCut [Ry]	∆E [%]
8	0.07
10	0.04
16	0.007
26	0.001
30	0

Convergence tests for GaAs bulk

LDA, 4x4x4 mesh CCG minimizer

E _{cut} (Ryd)	a ₀ (Bohr)	B ₀ (GPa)
6	10.40	80.50
8	10.44	73.22
10	10.46	71.03
16	10.46	72.54
20	10.46	72.79
Exp. [1]	10.68	74.8

^[4] Handbook of Chemistry and Physics, ed. By David R. Lide, 76th edition, 1995-1996, CRC Press, Inc. (1996)

The k-point mesh for GaAs - (LDA, eCut=10 Ry) -

#of k-points	Δ E [%]
1	0.098
2	0.0061
6	0.0007
10	0.0002
19	0.0001
28	0

Minimization Methods

Iterative Diagonalization

Direct Set Methods

- Steepest Descent
- •Williams-Soler
- DampedJoannopoulos

Conjugate Gradient Approach

- •All-state conjugate gradient
- •State-by-state conjugate gradient

Session E2

- Calculation of E_{tot} of a GaAs bulk within LDA
 - Setting up the input file
 - Execution of SFHIngX
 - Analyze of the output files
- Calculation of theoretical lattice constant
 - Calculating a series of E_{tot}
 - Performing a Murnaghan Fit
- Convergence tests for eCut and k-point mesh
- Controlling electronic minimization
- GGA versus LDA
- Initialization of Ψ and ρ