Surface relaxation and band structures

Atomic Geometry, Energetics & Electronic Structure of GaAs (110) surface

T. Hammerschmidt, L. Lymperakis

Workshop on Application of Density–Functional Theory in Condensed–Matter Physics, Surface Physics, Chemistry, Engineering, and Biology 21-30 July 2003, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany God made solids.....but surfaces were the work of the devil. W. Pauli

Why surfaces?

Why GaAs(110)?

Slab approach

Explore:

- surface energy
- atomic geometry
- electronic structure

GaAs (110) surface unit cell

GaAs (110) input file

GaAs (110) unPassivated – output files

energy convergence

electrostatic potential

GaAs is ionic to a certain extend
Charge–density maximum → towards the anion

passivation with Hydrogen

electron counting rule $Ga := \frac{3}{4}e^{-}$ to a bond \longrightarrow passivated by $= \frac{5}{4}e^{-}$ $As := -\frac{5}{4}e^{-}$ to a bond \longrightarrow passivated by $= \frac{3}{4}e^{-}$ • no charge transfer • use of thinner slab

treatment of slabs with no equivalent sides (i.e. GaN(000

ideal GaAs(110) surface

calculate:

- total energy
- electrostatic potential
- charge density

structure relaxation with quasi Newton scheme

input.sx

surface relaxation – total energy convergence

After an ionic step → charge density doesn't correspond to the new geometry

Born–Oppenheimer surface has to be approximated after each ionic

surface relaxation – atomic geometry

Check the displacement of atoms in each layer.

Compare your calculated structural parameters:

	aLat	x z [Bohr]	ω
DFT-LDA (E _× =8Ry) [1]	[F0:95]	[B.hy] 2.17	28.6
Experiment	10.69	1.30 2.48	31.1

[1] J. L²A. Alves, J. Hebenstreit, and M. Scheffler, Phys. Rev. B <u>44</u>, 6188 (1991). [2] C. B. Duke, S. L. Richardson, A. Paton, and A. Kahn, Surf. Sci. <u>127</u>, L135 (1983).

bulk calculation

Surface energies

	Formation energyeV/1×1
DFT [1]	1.13
DFT [2]	1.12
Experiment [3]	1.17+0.2
Your calculations relaxed	
Your calculations unrelaxed	

[1] N. Moll, A. Kley, E. Pehlke, and M. Scheffler, Phys. Rev. B 54, 8844 (1996).

[2] G. Qian, R.M. Martin, and D.J. Chadi, Phys. Rev. B. <u>37</u>, 1303 (1988).

[3] C. Messmer and J.C. Billelo, J. Appl. Phys. <u>52</u>, 4623 (1981).

surface band structure

projected bulk band structure

band structure alignment

band structure alignment

band structure of the unrelaxed surface band structure of the relaxed surface

Charge densities of the C₃ and A₅ states at M point

Ga-derived empty surface state C₃ As-derived filled surface state A₅ Localized surface states

Optional Exercise

- Explore the nature of other surface states (for example the A3 state in the pocket in the valence band)
- Explore the nature of surface states in the ideal GaAs(110) surface

Optional Exercises

- Optimization of surface relaxation
- Explore the origin of other surface states
- Photoelectric threshold (or ionization potential)
 Minimum energy to knock one electron out from the valence band
- Study the Ga- and As- terminated GaAs(110) surfaces

N. Moll, A. Kley, E. Pehlke, and M. Scheffler, Phys. Rev. B 54, 8844 (1996)