Session 5

Molecular Dynamics Lars Ismer, FHI Berlin

System: Malonaldehyde

Output files and tools

New output files in this session:

"relaxHist.dat"

output and control file of the structure optimization contains the evolution of structure, forces, total energy etc.

"moldynHist.dat"

output and control file of the molecular dynamics run contains trajectory, velocities, forces, total energy etc.

"modes.molf"

output file of the frozen phonon calculation

contains harmonic eigenfrequencies and eigenvelocities.

New add-ons in this session:

"sxhist2corr"

calculates the generalized frequency spectrum out of the file "moldynHist.dat"

"sxhist2molf"

converts the file "moldynHist.dat" respectively "relaxHist.dat" to MOLDEN-format (readable by 'molekel' for visualisation)

Session: Overview

- Preparation: Setting up supercell, electronic basis and DFT-Functional
- Excercise 01: Structure optimization of the hydrogen bonded equilibrium structure
- Excercise 02: Structure optimization of the transition structure of proton transfer
- Excercise 03: Harmonic vibrational analysis of equilibrium and transition state
- Excercise 04: Molecular dynamics simulation of a induced proton transfer process

Directory tree

Preparation \Rightarrow ,,HExcercise 01 \Rightarrow ,,HExcercise 02 \Rightarrow ,,HExcercise 03 \Rightarrow ,,HExcercise 04 \Rightarrow ,,H

"E5/preparation"

- "E5/01-relax-Equ-Struc"
- "E5/02-relax-Tr-Struc"
- "E5/03-vibrations"
- "E5/04-MD"

Session-handout

⇒ "E5/doc/session.ps"

Preparation: Setting up supercell, electronic basis and DFT-Functional

describing the Born-Oppenheimer surface

The excercises deal with methods that explore the Born-Oppenheimer surface

Preparation: Setting up supercell, electronic basis and DFT-Functional

File: ,,preparation/header.sx"

```
format sfhingx;
include <parameters.sx>;
//--- Malonaldehyde contains
   3 Carbon, 2 Oxygen and 4 Hydrogen ion cores
11
species 1 = <species/o-pbe-tm.sx>;
species 2 = <species/c-pbe-tm.sx>;
species 3 = <species/h-coulomb.sx>;
//--- Setup the orthorombic supercell here
xExt = xxxx;
yExt = xxxx;
zExt = xxxx;
structure {
 include "tau equ init.sx";
  cell = [ [xExt, 0, 0],
              0, yExt, 0],
           [ 0, 0, zExt] ];
  symmetry {
    operator {S = [[1,0,0], [0,1,0], [0,0,1]]; }
}
```

```
basis {
    //--- Setup the cutoff energy here to define
    // the size of the electronic basisset
    eCut = xxxx;
    //--- k-Point setting to optimize convergence
    // behaviour with respect to supercell size
    kUnits = [ 1, 1, 1];
    kPoint { coords = [0.25, 0.25, 0.];
        weight = 1; relative; }
    folding = [ 1, 1, 1];
```

```
}
Hamiltonian {
    // --- fully isolating (artificial) crystal
    // of molecules: electronic temperature is 0
    ekt = 0;
    // --- setup XC-Functional here
    xc = xxxx;
}
// --- LCAO-initialisation for electronic loop
initialGuess {
```

```
waves { lcao { maxSteps = 1; rhoMixing = 0.05; } }
rho { atomicOrbitals; }
```

Preparation:

⇒ Setup size of basisset, supercell size and XC-Functional in this file

}

Preparation: Setting up supercell, electronic basis and DFT-Functional

Recommended supercell size for this session:12x4x12 BohrRecommended plane wave cutoff:43 RdRecommended XC-Functional:PBE

Results are not fully converged with respect to these parameters

Aim of this session: qualitative analysis first step in a convergence process

At home (if interested):

check convergence with respect to supercell and basisset try other XC-functional (PBE-LDA)

Exercise 01: Structure optimization of hydrogen bonded equilibrium structure

Exercise 01: Structure optimization of hydrogen bonded equilibrium structure Tasks:

- a structure optimization always needs an initial guess
 ⇒ setup an initial guess for the hydrogen bonded equilibrium structure
- to improve the performance, the structure optimization is performed in a 2-stage scheme
 - \Rightarrow define the intersection between the two stages
- after the structure optimization:
 - \Rightarrow check performance
 - \Rightarrow analyse outcoming structure and total energy

Exercise 01: Structure optimization of hydrogen bonded equilibrium structure

(Task: set up an initial guess for the hydrogen bonded equilibrium structure)

Initial guess based on simple geometric considerations provided in "E5/01-relax-Equ-Struc/tau_equ_init.sx"

The optimized structure looks like this

- initial guess is allready provided in the file "tau_equ_init.sx", if you want to improve the provided initial guess modify this file
- keep planarity! (all y coords must stay 0)

Note: the movemement is constrained to the molecules plain for the structure optimization and the MD run

Exercise 01: Structure optimization of hydrogen bonded equilibrium structure

Tasks: ⇒ set up the electronic accuracy for the pre-relaxation loop
 ⇒ define intersection of the two structure optimization loops

Exercise 02: Structure optimization of transition structure of proton transfer

- Tasks: \Rightarrow symmetrize the relaxed equilibrium structure or take the provided file
 - ⇒ load in the symmetrized structure as initial guess for the structure optimization
 - ⇒analyse converged structure and total energy, calculate proton barrier

Exercise 03: Harmonic vibrational analysis

Born-Oppenheimer surface in harmonic approximation

$$H^{ion} \approx \sum_{I=1}^{N^{ions}} \frac{1}{2M_I} \frac{\partial^2}{\partial \mathbf{X}_I^2} + \frac{1}{2} \Delta \mathbf{X}^{tr} \underline{\mathbf{H}} \Delta \mathbf{X}; \quad \mathbf{X} = \{\mathbf{X}_I\}; \quad H_{ij} = \frac{\partial^2 E^{\text{BOS}}}{\partial X_i \partial X_j} \Big|_{\mathbf{X}_0}$$

⇒ describes movement of 3N coupled oscillators

Unitary transformation on eigenbasis of dynamical matrix $D_{ij} = \frac{1}{\sqrt{M_i M_j}} H_{ij}$ $H^{ion} = \sum_{k=1}^{3N} H_k^{vib}$

$$H_k^{vib} = \frac{1}{2}p_k^2 + \frac{1}{2}w_k^2 q_k^2$$

 \Rightarrow movement is decoupled

⇒ decomposes into 3N independent oscillators with vibration with frequencies

rightarrow Full description of the systems dynamics in harmonic approximation

 \Rightarrow partition function is fully determined by vibrational frequencies

Exercise 03: Harmonic vibrational analysis

Finite differences should be as small as possible to avoid anharmonic contributions and to increase performance !

On the other hand they must be large enough to avoid influence of numerical noise on the forces!

Gauss:
$$\Delta X_j \ge \frac{\Delta F_j}{\Delta H_{ij}}$$

Tasks : ⇒ Set up finite differences and range of degrees of freedom
 ⇒ Analyse outcoming eigenfrequencies and eigenvelocities

Exercise 04: Molecular Dynamics

glance beyond the harmonic approximation by analysing an induced proton transfer process

Tasks: \Rightarrow displace proton-donor oxygen out of its equilibrium position by a
distance that corresponds to a potential energy of 10-13 times the
proton barrier

- ➡ visualize the outcoming trajectory and observe the system's behaviour
- calculate the generalized frequency spectrum (sxhist2corr)
 identify harmonic and anharmonic contributions to the spectrum
 determine red-shift in the proton-donor stretching frequency
 find peaks in the spectrum which indicate proton-jump process

Exercise 04: Molecular Dynamics

Task: \Rightarrow determine resolution in frequency space for given simulation time

Exercise 04: Molecular Dynamics

Comparison of the frequency spectra for a MD run without proton jump (red dotted line) an a MD run with proton jumps (black straight line)

- Task:
 → determine red-shift for proton-donor stretching frequency compared to the harmonic frequency
 - identify peaks which indicate the proton-jump process
 - watch the animation of the trajectory

Exercise 04: Molecular Dynamics Drift in total energy due to rather large time step

Drift for the simulation time of the exercise ≈ 5-15% Ok for the session, problematic for longer simulation times

At home (if interested):

for longer simulation times and initial displacements of the proton-donor outside the recommended range use smaller time step (0.5 fs) !