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Outline of this talk

I. From the many-particle problem to the
Kohn-Sham functional

II. How to perform a total energy calculation
→ more in L3 – L7

III. From the total energy to materials science
→ more in L8 – L21
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General ’condensed-matter’ Hamiltonian

(T̂e + T̂ion + V̂e−e + V̂e−ion + V̂ion−ion)Ψ = EΨ

wavefunction Ψ(r1, · · · rN; RI, · · · RM)

electronic coordinates rk, k = 1, · · · N
ionic coordinates RI, I = 1, · · · M

T̂e =
N

∑
k=1

p2
k

2m
T̂ion =

M

∑
I=1

P2
I

2MI

V̂e−e =
1
2

1
4πε0

N,N

∑
k 6=k′

e2

|rk − rk′ |

V̂ion−ion =
1
2

1
4πε0

M,M

∑
I 6=I ′

ZI ZI′

|RI − RI′ |

V̂e−ion(rk, RI) =
N

∑
k=1

M

∑
I=1

vion
I (|RI − rk|)
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Born-Oppenheimer approximation

convenient, frequently made approximation (but not compulsary)
separation of variables → parametric dependence on set of coord. {RI}

Ψ(r1, · · · rN; R1, · · · RM) = ∑
ν

Λν({RI})Φν,{RI}(rk)

electronic Schrödinger equation

He
{RI}Φν,{RI}(rk) = Ee

ν,{RI}Φν,{RI}(rk)

He = Te + Ve−e + Ve−ion

frequently made approximations:
• neglect of non-adiabatic couplings (terms of order m/MI)
• only one Λν 6= 0 (in a solid, this means neglect of electron-phonon

couplings)
→ electronic and nuclear degrees of freedom decouple !
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Limitations of Born-Oppenheimer
• doesn’t account for correlated dynamics of ionic and electronic

coordinates
Example:
suprafluid He3, polaron-induced superconductivity

• breakdown of the restriction to a single ground-state
Born-Oppenheimer surface
Example:
chemoluminescence

• breakdown of the adiabatic approximation
Example:
excitation of surface plasmons during scattering of an ion from a
metal surface → time-dependent density functional theory
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electronic many-particle Hamiltonian

[

N

∑
k=1

∇2
k

2m
+ v(0)(rk) +

N,N

∑
k 6=k′

1
2

W(rk, r′k)

]

Φ(r1, · · · rN) = EΦ(r1, · · · rN)

W(r, r′) =
e2

4πε0|r − r′|

v(0)(r) =
M

∑
I=1

vion
I (|RI − r|)

still many (for a typical solid: 1023) degrees of freedom
The many-particle problem can be solved only for small systems (atoms,
molecules and clusters).
→ wavefunction-based methods

• Configuration-interaction, Coupled Cluster method
• Quantum Monte Carlo method



■ ■ ■ ■ ■ ■ ■ FHI ■ Theory DepartmentNATO ARW • Quantum Dots: Fundamentals, Applications and Frontiers

Density Functional Theory
Hohenberg-Kohn theorem:
For any given external potential v(0), the wavefunctions can be considered

as functionals in the space of ground state densities, n:

Ev(0) [n] = 〈 Φ[n]|T̂e +
1
2

Ŵ + v̂(0)|Φ[n] 〉
The energy functional is stationary at the ground state energy, and the

true ground state density n0 coincides with n at the stationary point.

Therefore a universal functional F exists with the property

Ev(0) [n] = F [n] +

∫

dr v(0)(r)n(r)

Proof:
‘Φ[n] 7→ n’: trivial

‘n 7→ Φ[n]’: Note that vext → n
Raleigh−Ritz7→ Φ[n]

Also: vext 7→ Φ[n]. Thus, Ev(0) [n] is uniquely defined.
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Kohn-Sham theorem

idea: decompose F [n] into its major contributions

F [n] = T0[n] +
1
2

∫ ∫

dr dr′ n(r)W(r, r′)n(r′) + EXC[n]

T0: kinetic energy of a system

of non-interacting particles

EXC[n] exchange-correlation energy

defined as ’the rest’ → approximations

VXC[n](r) := δEXC [n]
δn(r) : exchange-correlation potential

popular approximations for EXC[n]:
• local-density approximation (LDA)
• generalized gradient approximations (GGAs)
• exact exchange formalism (EXX)

...
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Kohn-Sham Hamiltonian
To find the stationary point, we do variations at fixed N =

∫

dr n(r), which
leads to

δEv(0)

δn(r)
= µ (Lagrange parameter)

If we write the density as a sum over single-particle functions,

n(r) =
N

∑
j=1

∑
k∈BZ

|’j,k(r)|2,

the variational principle δEv(0) [ϕ∗]/δϕ∗(r) = 0 leads to the Kohn-Sham
equations

(

−∇2

2m
+ Veff[n](r)

)

ϕj,k(r) = εj,k ϕj,k(r)

with the effective potential

Veff[n](r) = v(0)
RI

(r) +

∫

dr′
e2n(r′)

4πε0|r − r′| +
δEXC[n]

δn
(r).
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How can we specify EXC ?
At this point, we need to make approximations to get further.
Example: local density approximation (LDA)

EXC[n(r)] =

∫

dr eXC[n(r)] n(r)

≈
∫

dr [ehom
X (n(r)) + ehom

C (n(r))] n(r)

ehom
X (n) = −(81/64π)1/3n1/3(r)

ehom
C (n) =



























−0.1423(1 + 1.0529
√

rs + 0.3334rs)
−1 if rs ≥ 1,

−0.0480 + 0.0311 lnrs − 0.0116rs + 0.002 rs lnrs

if rs < 1.

rs := (4πn(r)/3)−1/3 Wigner-Seitz radius
[see, e.g. J. Perdew & A. Zunger, Phys. Rev. B 23 5048 (1981)]
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The total energy (for static ions)

two equivalent definitions:

Etot[n] = T0[n] +

∫

dr v(0)
Ri

(r)n(r) +
1

4πε0

∫

dr
∫

dr′
e2n(r)n(r′)

2|r − r′|
+EXC[n] + Vion−ion

RI

Etot[n] =
N

∑
j=1

∑
k∈BZ

ε j,k + ∆Ee−e[n] + ∆EXC[n] + Vion−ion
RI

∆Ee−e[n] = − 1
4πε0

∫

dr
∫

dr′
e2n(r)n(r′)

2|r − r′| = −Ee−e[n]

∆EXC[n] = EXC[n] −
∫

dr VXC[n](r)n(r)

Etot is stationary with resp. to variations of n around n0, but the
individual terms are not !
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Periodic systems
crystal structure =

Bravais lattice & basis

translational symmetry symmetries of the basis compatible

with the Bravais lattice

group T point group P
Example: twodimensional honeycomb lattice
(Bravais lattice if a basis of two atoms is used)

����
����

Brillouin zone (BZ)

���	
�

��	



lattice vectors~a1,~a2,~a3 reciprocal lattice vectors~b1,~b2,~b3

~bi = 2π/Ω (~aj ×~ak)

( {ijk}={123} & cyclic permutations of indices)
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Bloch functions

Since H commutes with the elements of T , the wave functions must be of
the form

ϕj,k(r + R) = eikR ϕj,k(r), (Bloch’s theorem)

for any R = n1~a1 + n2~a2 + n3~a3.
The wavevector k is an index specified by a point in the first Brillouin
zone (elementary cell of the reciprocal lattice), and the number of such
points is equal to the number of lattice sites in the crystal.
Due to Bloch’s theorem, it suffices to calculate ϕ in just one elementary
cell,

ϕj,k(r) = eikruj,k(r)

where u is a lattice-periodic function.
In practice, sums over k are evaluated by summing over a discrete set of
(special) k-points.
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Brillouin zone sampling
Problem: Calculate the BZ average of the Fourier transform ũ of a
lattice-periodic function u

∑
k∈BZ

ũ(k) ≈
imax

∑
ki

wiũ(ki) (1)

accurately using a small set of sampling points and weights, ki and wi.
{R}s is a set of lattice vectors invariant under the nP operations in P .
For this purpose, define symmetrized plane waves (’stars’)

As(k) =
1

nP
∑
{R}s

eikR as basis set expansion for ũ(k).

Idea: If the ki and wi are such that
imax

∑
i=1

wi As(ki) = 0 for all s=1,M

then Eq. 1 holds except (small) contributions from ’stars’ of order > M.
Caution: statement only holds for continuously differentiable function
ũ(k).
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Basic steps in an electronic structure calculation

1. guess a starting charge density
(e.g. superposition of atomic densities)

2. set up the Hamiltonian for this charge density (usually done in a
small, preliminary basis set)

3. diagonalize this approximative Hamiltonian

4. use the eigenvalues and wavefunctions to set up a new charge
density

5. try to improve the wavefunctions using the variational principle for
Etot, thereby simultaneously approaching self-consistency

n(i−1) → V(i−1)
e f f → ε

(i−1)
j,k , ϕ

(i−1)
j,k → n(i) → V(i)

e f f → ε
(i)
j,k, ϕ

(i)
j,k, · · ·
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Variational properties
At the stationary point, the Kohn-Sham equations lead us to

T0[n] =
N

∑
j=1

∑
k∈BZ

ε j,k −
∫

dr n(r)Veff[n](r)

For the non-consistent case, we may introduce the generalization

T0[n, Veff] =
N

∑
j=1

∑
k∈BZ

ε j,k[Veff] −
∫

dr n(r)Veff(r)

This can be used to define the ’double’ functional

ED
tot[n, Veff] = T0[n, Veff] + Ee−e[n] + EXC[n] + Vion−ion

RI

with the variational properties

ED
tot[n0 + δn, Veff[n0]] − ED

tot[n0, Veff[n0]] = c1(δn)2

ED
tot[n0, Veff[n0] + δv] − ED

tot[n0, Veff[n0]] = c2(δv)2.

Normally, one has c1 > 0, c2 < 0. Then, ED
tot
[

n(i−1), Veff[n
(i−1)]

]

is a lower
bound for the (coverged) total energy.
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Total-energy and thermodynamics

The thermodynamic ground state is determined by the global minimum of
— the free energy of the system (for fixed volume)

F(T, V) = Etot(T, V) − TSe(T, V)

+Eion
kin(T) − TSion(T, V)

Structural relaxation:
Minimize F(T, V) (in practice: Etot)
Caution: ionic contribution to the free energy important if,

e.g.,anharmonic effects come into play

—or by the Gibbs free energy (for fixed pressure)

G(T, p) = F(T, V) + pV

Examples:
– equilibrium between two structurally different crystalline phases
– equilibrium between a solid and its vapor
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Thermal decay of GaAs

GaAs ↔ Gametal +
1
2

As2

GGaAs bulk
Ga (p, T) = GGaAs(T) − GAs(p, T).

GAs(p, T) from ideal two-atomic gas, Sion
GaAs and Sion

Ga from Debye model of
the solid.

500 600 700 800 900 1000
temperature [K]

−3.3

−3.1

−2.9

g G
a [

eV
/p

ar
tic

le
]

µGa(GaAs, p(As2)=10
−3

Pa)
µGa(GaAs, p(As2)=10

−4
Pa)

µGa(bulk Ga)

Free enthalpy per Ga atom in bulk GaAs in thermodynamic equilibrium
with As2 vapor at two pressures, compared to the free enthalpy per Ga
atom in elemental Ga.
[P. K., C.G. Morgan and M. Scheffler, Phys. Rev. B 59, 15246 (1999)]



■ ■ ■ ■ ■ ■ ■ FHI ■ Theory DepartmentNATO ARW • Quantum Dots: Fundamentals, Applications and Frontiers

Finite electronic temperature

occupation numbers from Fermi distribution
f j,k = [exp((ε j,k − εF)/kT) − 1]−1

→ Computer codes actually calculate the free energy F !
entropy of the electronic system

Se = 2kB

nB

∑
j=1

∑
k∈BZ

[ f j,kln f j,k + (1 − f j,k)ln(1 − f j,k)]

For a (free-electron-like) metal, we have

F(T) = E(T = 0) − γ

2
T2 + O(T3)

E(T) = E(T = 0) +
γ

2
T2 + O(T3)

extrapolation to zero electronic temperature

E(T = 0) ≈ [F(T) + E(T)]/2 = E(T) − SeT/2

[see M. J. Gillan, J. Phys. Cond. Mat. 1, 689 (1989)]
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How to compute observables

A) energy differences
between different structures, formation energy of defects, heat of
adsorption, . . .
B) derivatives of the thermodynamic potentials Etot, F or G
For simplicity’s sake, we consider a system with constant volume at
T = 0 : F(T = 0, V) = Etot(V)

• pressure p = − ∂Etot(V)
∂V

• bulk modulus B = V ∂2Etot(V)
∂V2

• forces ~FI on atom I (in electronic ground state)

~FI = −∂Etot

∂~RI
= −

N

∑
j
〈 ϕj,k|∂H/∂~RI |ϕj,k 〉

due to the Hellmann-Feynman theorem
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How to compute observables
C) second derivatives
Examples:

1. force constant matrix
∂Etot

∂~Ri∂~Rj

→ calculation of phonon spectrum, vibrational entropy, . . .

2. particle number fluctuations
→ chemical softness and hardness

s(r) =

(

∂n(r)
∂µ

)∣

∣

∣

∣

v,T
=

∫
(

δ2Etot

δn(r)δn(r′)

)−1

dr′

h(r) =
1
2

(

∂µ

∂n(r)

)∣

∣

∣

∣

v,T
=

∫

δ2Etot

δn(r)δn(r′)
n(r′)
2N

dr′

Note: When calculating second derivatives, the response of the
density to the perturbation must be taken into account.
→ Density Functional Perturbation Theory
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What materials properties are accessible to calculation?

• structural properties
Examples: structural phase transitions, surface reconstructions yes

• elastic properties
Examples: bulk modulus, C11, C12, C44, . . . yes

• chemical properties
Examples: thermochemical stability of compounds, reactivity of
surfaces yes

• transport properties
Examples: conductance of nanowires, magneto-resistence

developing field

• optical/spectroscopic properties
Examples: photoemission spectra, cross sections for light absorption
topic beyond Kohn-Sham theory → time-dependent DFT

...

many other applications
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Electronic properties of materials
From the Kohn-Sham variational principle, we have

δEtot

δn(r)
= µ = εF in a metal

However, one cannot proof that the Fermi surface is represented correctly
in DFT. Further, in a Kohn-Sham theory, there is no straightforward
relationship between εj,k and the excitation energy of quasiparticles and
quasiholes. One can only show Janak’s theorem

∂Etot

∂ f j,k
= εj,k.

[supposing that EXC is a continuously differentiable function of particle
number, which is not true in a finite system]
As a first approximation to the effective mass tensor, one may use

(

∂εj,k

∂kn∂km

)∣

∣

∣

∣

ε=εF

= (M−1)nm

For a better treatment, use time-dependent DFT !
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Simulation techniques
Challenges:

• length scales much larger than the atomic scale (e.g. in phase
transitions, line defects, plastic deformation, . . . ).

• dynamic properties, evolution on time scales as long as seconds
(e.g. melting, crystal growth)

→ combine the reliability of the first-principles approach with
molecular dynamics

• to follow dynamical processes in time, e.g. chemical reactions
scale: several hundred atoms, pico-seconds

• for calculation of time correlation functions and phonons
(using Fourier transformations)

• as a way to calculate the free energy (as a time average)
statistical physics
kinetic modelling
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Equilibrium statistical physics
To treat phenomena on large scales, map your problem to a model ’spin’
Hamiltonian, with parameters determined from DFT calculations.
Examples:

order-disorder transition in alloys
ordered ad-layers on surfaces

→

1. Calculate ∆EDFT(σ, V) at T = 0 for many structures

2. Construct ∆ECE(σ, V) = ∑k,m dk,mΠk,m(σ)Jk,m(V)

Πk,m(σ) lattice-averaged spin product in k-atom-motif of type m
Jk,m(V) interaction parameters, fitted to DFT energies

3. Calculate partition function Z = 〈exp(−∆ECE(σ, V)/kBT)〉



■ ■ ■ ■ ■ ■ ■ FHI ■ Theory DepartmentNATO ARW • Quantum Dots: Fundamentals, Applications and Frontiers

Kinetic Modeling of ’rare’ events

Typical time interval τ between activated processes is too long to be
covered by a Molecular Dynamics simulation.
Transition State Theory:

τ−1 = Γ = Γ0 exp(−∆E/kBT) Γ0 =
∏

N ν
(i)
k

∏
N−1 ν

(TS)
k

Calculate these quantities using input from DFT calculations !

ν
(i)
k : normal mode frequencies at energy minimum

ν
(TS)
k : normal mode frequencies at transition state

∆E: energy barrier
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THE END

Enjoy the workshop !


	Outline of this talk
	small General 'condensed-matter' Hamiltonian
	Born-Oppenheimer approximation
	Limitations of Born-Oppenheimer
	small electronic many-particle Hamiltonian
	Density Functional Theory
	Kohn-Sham theorem
	Kohn-Sham Hamiltonian
	How can we specify $E_{XC}$ ?
	The total energy (for static ions)
	Periodic systems
	Bloch functions
	Brillouin zone sampling
	small Basic steps in an electronic structure calculation
	Variational properties
	 Total-energy and thermodynamics
	Thermal decay of GaAs
	Finite electronic temperature
	How to compute observables
	How to compute observables
	small What materials properties are accessible to calculation?
	Electronic properties of materials
	Simulation techniques
	Equilibrium statistical physics
	Kinetic Modeling of 'rare' events

