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Goal: Minimizetotal energy

Example:

Step 2.
Solve KS-Eq.
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Questions/Problem

How to find (efficiently) the electronic ground state?
— Solve Kohn-Sham Equations

How to find (efficiently) the self-consistent char ge density?




Outline

How to get to the Born-Oppenheimer surface?

(1) Diagonalize the Hamiltonian
* Direct diagonalization
e |terative diagonalization

(2) Perform self consistency (find ng-¢)
e direct methods
o iterative methods [combine step (1)
and (2)]

How to move on the Bor n-Oppenheimer surface?

e Equilibrium geometry (T=0K)
e Molecular dynamics (= Session L 16)




Basis set representation

Basis set expansion: ‘¢i> - Zcip“'l> <H‘V> =0,, orthogonal
"l

Z\p}@\ =1 complete
U

K S-equations: - D (vH) o) =& (v]d;)

— Solve eigenvalue problem: [ERZEIA%

direct diagonalization: |JTHU =18 [see eg. Numerical recipes

Problems; * N2 scaling
« complete Hamiltonian hasto be saved




Discussion: Plane wave basis

y <
D BE—

5A

Example; cubic cell with a=5A

Realistic systems have basis setswith 10%-6 functions!
= direct diagonalization inefficient/impossible




|ter ative diagonalization

Total energy gradient:

- _ _OE({o)

= Find equation of motion (EOM ) which minimizestotal energy!

First order EOM:  — Fi>: O“¢i> a “friction” parameter

or: (H —¢)o;) =-alo)

inter esting aspect: time dependent Schrédinger equation for O — 17




Scaling of the iterative algorithm

. . _ _ oMY — (M
Equation of motion: (H —g)‘¢i> =—al¢;)=-a -+ n i

= -anp!™

Plane wave basis set: Z<G‘(H —g)‘G’><G’ d;) = —a<G‘A¢i(”)>
=

O(N2M) operations
M number of states (<<N)

Trick: Uselocality of the contributions of the Hamiltonian in real
and reciprocal space!

Hamilton Operator: [RRCkNG VAL (F) real space % reciprocal space
O(N In(N)) oper ations

local in reciprocal space local in real space

e . 0, (Gl) {) -

oG\ o ... ..
O(N) operations O(N) operations




Construction of the initial wave functions

| ter ative schema: "V = F({¢i(n) })

Problem: How to construct {¢i(0)} ? ground state

L|JI2 (F) — ZCE (é) o (G+K)F Hilbert space

é
Solutions: /

* Direct diagonalization (not possible for large systems)
 Random numbers

e Direct diagonalization in PW subset
e Direct diagonalization in LCAQO basis set

J. Neugebauer and C. Van de Walle, Mat. Res. Soc. Symp. Proc. 408, 43-48 (1996).




Diagonalization in LCAO basis set

Expand atomic orbitalsin planewaves. 4 (F) = Z'UIZ (é) gl (G+K)r

U ... atomics, p, d orbitals

Formally fully equivalent to wave functions: L|J ZC (G) g(C+hr

Construct hamiltonian and overlap matrix: ~ H , <,uk H|v

Sy (E): <IUE‘V|Z>

Solve generalized eigenvalue problem: {Hﬂ (k) & S ( } <,Uk‘l//|>

Number of atomic orbitals << Number of plane waves (approx. 1:100)
=) Eigenvalue problem can be easily solved!




Convergence Criteria (I)

iterative solution: ¢ (™Y = ¢(M —(H —g)‘¢(n)>At €= <¢(n) H ‘¢(n)>

exact solution: (H _8)‘Xi > -0

representation of thetrial wave function in the x; set:

)=Falx)  [67)= T}

=) [ =a _(Ei _E)At

Beforeiteration step: After “ideal” iteration step:

€
€

aiA

&1 N




Convergence Criteria(l1)

Beforeiteration step: - EOM: B =q; ‘(g_gi )At

EN

After iteration step:
optimum time step:

0<PBy =ay _(g_eN)Atmax

1

: Emax ~ Emin
After orthogonalization: ey spectral radius

» Orthogonalization essential for each iteration step
« Convergencerate decreases with increasing number of PW




Preconditionin
Residual error: (H —8)‘X+A(|)> = (H —8)‘A¢> :‘A$>

=) | N
we need this we get this

Hamiltonian in PW basis:
Hoo = -G%0ge +V& (G-G')

Kinetic energy dominatesfor high wave numbers!:

Partition Hamiltonian: H=D+L

diagonal matrix all diagonal elementsare zero

N

For high wave numbers: H=D —> ([3 —g)_lA$ = A




Preconditioning: Geometric inter pretation

Without preconditioning:

With preconditioning:




Williams-Soler Algorithm
Equation of motion: (H —€ )‘¢|> = _a‘¢i>

In plane-wave basis set:

— _/
YT

a6(6)=[c* +v(6-6)c(6)- Y v (6-6)q(e)

G'2G e

diagonal part off-diagonal part
: . . — .2
EOM for asinglestate: G (G) =0 G

Assumption: Bg not time dependent

= ¢(G,t=At)= —B—g {ci (G,t= O)+B—(25}exp(— méAt)
We We

| mproves significantly the convergencerate for high PW ener gy cutoffs!

A. Williamsand J. Soler, Bull. Am. Phys. Soc. 32, 562 (1987).




How to obtain mor e efficient schemes?

(1) Use higher order equations of motion:

—

(2) Perform accurate line minimization along the search direction:




Higher order EOM’s

Goal: Find total-energy minimum mor e efficiently

Strategies.
e minimize number of iterations
* minimize computational effort for each step

Two approaches

.

Use higher derivatives Use higher order in time
0°E(0}) ¢ =F(¢;.9;....)

ij — 0b.9b. equi\J/raIent:~ )
9i00; oM = F(¢i(n),¢i(n 1),.“)

high computational effort! no additional computational effort!




Second order eguation of motion

Finite differences: ¢(”+1) = q)(n) - (H —g)‘q)(n) >At1 — (H —8)‘4)(”_1) >At2

Expansion with respect to eigenfunctionsx;:

¢(n_l)>:izai‘>(i> ¢(n)>:ZBi‘Xi> ¢(n+l)>:izyi‘Xi>

=) v, =P B (e—& )t — o (e—g )AL,
TWO possible scenar 10S

(o)) .

| 4

\/:celeration dambing
I}

F. Tassone et al., Phys. Rev. B50, 10561 (1994).




Conjugate Gradient Schemes

Construct the best possible search direction based on the history of gradients:

Thisdirection can be analytically calculated assuming a harmonic total energy surface:

sl A

in praxisreplaced by precondition/e'd gradient!

Properties: + very efficient: number of iterations< dimensionality of problem
+ search directions are completely decoupled (conjugated)
(-) accurate line minimization crucial (i.e., one CCG-step needs at least
two electronic steps

seeeg.. M.C. Payneet al., Phys. Rev. B56, 2656 (1986).



Char ge self-consistency

What did we do so far?

efficient methodsto calculate H \.n(u)Jq)i(aﬂ) = Si(I)i(uﬂ)
one-particle energies and ,\

eigenfunctions
provided

What remainsto be done?

calculate new charge density:

Goal:

self-consistent charge density

output density input density

How to achieve char ge self-consistency?




Indlrect M ethods

Self-consistency is enforced at each iteration step!

Approach worksfor

» Stegpest Descent

» Williams Soler

e Higher order schemes
but not for

« Conjugate gradient

— line minimization not
possible




Occurrence of Instabilities

Behavior for badly converging systems:

| nstabilities may occur = convergencein total energy destroyed




Origin of the Instabilities (1)

Behavior of the electrostatic potential:

v Hartiee () = 4ep(G)

Hartree potential:

Changein Hartree potential: ~ AV ®¢(G) = 41eAp(G)

AV Hartree s i | nstability increases with
i Increasing system size:

1
Gmin H—

Imax

With increasing system size even small perturbations in the charge density
may have a huge effect on the electrostatic potential!




Origin of the Instabilities (11)

Metallic systems:

High electronic temperatures. L ow electronic temperatures;

' ! \‘i > : ; .
gAq Q q+A’q\ focc gAq ( gt+Aq focc

\
Fermi distribution Fermi distribution

>

Stable against charge fluctuations! Unstable against char ge fluctuations!

How to avoid these instabilities?




|nstabilities. Solutions ()

Solution: M ake self-consistency step (dashed line) shorter
« use charge density mixer: n{&* = (1-A)n(®*D + \n(@
» use damping in the occupation numbers
e use smaller time step




|nstabilities. Solutions (1)

Solution:
» Construct a search direction which minimizes energy with respect to
both self-consistency and diagonalization
* Apply a CCG minimizer

Advantages:
e very stable
e monotonous behavior
» fast convergence

Note:
 can be used only
for non-metallic
systems

{4}

X; electronic search direction

S. Ismail-Beigi and T.A. Arias, Comp. Phys. Comm. 128, 1 (2000).




|nstabilities. Solutions (I11)

Solution: Direct Methods
 Fully diagonalize the Hamiltonian
e Perform than an efficient mixing scheme

G. Kresse, J. Furthmiiller, Phys. Rev. B54, 11169 (1996).




Efficient Mixing Schemes
indirect Methods: Nout = T (M 19,
direct Methods: n,, = f(n;,)
Residuum: R=nNg —Niy Self-consistency: (R|R) =0
R=f(n,)

|dea; Assumelinearity of f = Pulay mixing
= use information from previous steps [R(n®)]

Minimizeresiduum: <R(m+1) R(m+1)> ~ min

m
with: RMD = Zai RY) determinesa,
=1

m
Construct optimum new input density: ni(r?‘ﬂ) = Zaini(r?
—

Practical realization: use RM-R™Y rather then R™  (DIIS)
precondition R™ (Kerker mixing)




Comparison of the Different M ethods

charge density # internal steps # steps systems

Steepest Descent single it. it. - all
Williams Soler single it. it. + all \
Damped Joannopoulos single it. it. ++ all \

All band Conj. Grad. single it. ' +++ non metallic
State by State Conj. Grad. full it. ++ all \




Examplel: Metallic Systems

System: Spin-polarized cubic MnAs

1 xVV&V\\\
o e X CPES DESCEN
]
]

0.0
1E-4 Damped Joannopoulos

1E-6 DIIS-CCG
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1E-10 : : : : :
0 200 300

CPU time (s)

DIIS-CCG has fastest convergence rate (but convergence step rather expensive)




Examplell: Non-metallic Systems

System: 3-10 helix (30 atoms, E_,=40 Ry)
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. DIISCCG

| . | . | . | . | . |
2000 4000 6000 8000 10000 12000 14000

CPU time (s)

CCG decreases monotonously and shows much faster convergence speed!




Conclusions

SFHINgS provides a variety of efficient minimization techniques

Conjugate gradient based schemes are most stable ones:
 All band conjugate gradient
= Optimum choice for non-metallic systems
= NO Input parameters
* Band-by-band conjugate gradient:
= Excellent conver gence but significantly slower
= parametersfor preconditioner in density mixing needed (Kerker mixing)

First and second order schemes:;

= may befaster than CG-based methods for ssimple metalssuch ase.g. Al
= require careful choice of convergence parameters such astime step and
damping

To obtain maximum performance (e.g. for large/complex systems) you may
combinethe various methods. This can beeasily set up in the SFIngX input!




