Algorithms for Total Energy Minimization

Jörg Neugebauer Fritz-Haber-Institut, Berlin

Algorithms for Total Energy Minimization

Jörg Neugebauer Fritz-Haber-Institut, Berlin

Goal: Minimize total energy

$$E_{tot}^{BO}\left(\left\{\vec{R}_{i}\right\}\right) = \min_{\left\{\varphi_{i}\right\}} E_{tot}\left[\left\{\vec{R}_{I}\right\},\left\{\varphi_{i}\right\}\right]$$

Example:

Step 1: provide H

Step 2: Solve KS-Eq.

www.fhi-berlin.mpg.de/th/JG

Questions/Problem

How to find (efficiently) the electronic ground state? ⇒ Solve Kohn-Sham Equations

$$H[n]\phi_i = \varepsilon_i\phi_i$$
 with $n(\vec{r}) = \sum_i |\phi_i(\vec{r})|^2$

How to find (efficiently) the self-consistent charge density?

Outline

How to get to the Born-Oppenheimer surface?

- (1) **Diagonalize the Hamiltonian**
 - Direct diagonalization
 - Iterative diagonalization

$$H[n]\varphi_i = \varepsilon_i \varphi_i$$

- (2) Perform self consistency (find n_{SCF})
 - direct methods
 - iterative methods [combine step (1) and (2)]

How to move on the Born-Oppenheimer surface?

- Equilibrium geometry (T=0K)
- Molecular dynamics $(\Rightarrow$ Session L16)

Basis set representation

Basis set expansion:
$$|\varphi_i\rangle = \sum_{\mu} c_{i\mu} |\mu\rangle$$
 $\langle \mu |\nu\rangle = \delta_{\mu\nu}$ orthogonal $\sum_{\mu} |\mu\rangle\langle\mu| = \hat{1}$ completeKS-equations: $H \varphi_i = \varepsilon_i \varphi_i \longrightarrow \sum_{\mu} \langle \nu |H| \mu\rangle \langle \mu |\varphi_i\rangle = \varepsilon_i \langle \nu |\varphi_i\rangle$ \Rightarrow Solve eigenvalue problem: $\hat{H} \vec{Y} = \varepsilon \vec{Y}$ direct diagonalization: $\hat{U}^T \hat{H} \hat{U} = \hat{1} \vec{\varepsilon}$ [see e.g. Numerical recipes] $\begin{pmatrix} U_{11} & \cdots & U_{N1} \\ \vdots & \ddots & \vdots \\ U_{1N} & \cdots & U_{NN} \end{pmatrix} \begin{pmatrix} H_{11} & \cdots & H_{1N} \\ \vdots & \ddots & \vdots \\ H_{N1} & \cdots & H_{NN} \end{pmatrix} \begin{pmatrix} U_{11} & \cdots & U_{1N} \\ \vdots & \ddots & \vdots \\ U_{N1} & \cdots & U_{NN} \end{pmatrix} = \begin{pmatrix} \varepsilon_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \varepsilon_{NN} \end{pmatrix}$

Problems:• N³ scaling• complete Hamiltonian has to be saved

Discussion: Plane wave basis

Example: cubic cell with a=5Å

Realistic systems have basis sets with $10^{4...6}$ functions! \Rightarrow direct diagonalization inefficient/impossible

Iterative diagonalization

Basic idea:

Total energy gradient:

$$F_{i} = -\frac{\delta E(\{\varphi_{i}\})}{\delta \varphi_{i}} \quad \text{with} \quad \left\langle \varphi_{i} \middle| \varphi_{j} \right\rangle = \delta_{ij}$$

Residuum:
$$|F_i\rangle = (H - \varepsilon_i)|\phi_i\rangle$$

⇒ Find equation of motion (EOM) which minimizes total energy!

First order EOM:
$$-|F_i\rangle = \alpha |\dot{\varphi}_i\rangle$$

or:
$$(H-\varepsilon)|\phi_i\rangle = -\alpha |\dot{\phi}_i\rangle$$

interesting aspect: time dependent Schrödinger equation for $\alpha \rightarrow i\hbar$

Scaling of the iterative algorithm

Equation of motion: $(H - \varepsilon) |\phi_i\rangle = -\alpha |\dot{\phi}_i\rangle = -\alpha \frac{\phi_i^{(n+1)} - \phi_i^{(n)}}{\Delta t} = -\tilde{\alpha} \Delta \phi_i^{(n)}$

Plane wave basis set:

$$\sum_{G'} \langle G | (H - \varepsilon) | G' \rangle \langle G' | \varphi_i \rangle = -\widetilde{\alpha} \langle G | \Delta \varphi_i^{(n)} \rangle$$

 $O(N^2M)$ operations M number of states (<<N)

O(N ln(N)) operations

real space **FFT** reciprocal space

Trick: Use locality of the contributions of the Hamiltonian in real and reciprocal space!

 $H = -\nabla^2 + V^{eff}(\vec{r})$

Hamilton Operator:

local in reciprocal space $\begin{pmatrix} -G_1^2 & \cdots & \cdots & 0 \\ \vdots & \ddots & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & \cdots & -G_N^2 \end{pmatrix} \begin{pmatrix} \varphi_i(G_1) \\ \vdots \\ \varphi_i(G_N) \end{pmatrix} \qquad \begin{pmatrix} V^{eff}(\vec{r}_1) & \cdots & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & V^{eff}(\vec{r}_N) \end{pmatrix} \begin{pmatrix} \varphi_i(\vec{r}_1) \\ \vdots \\ \varphi_i(\vec{r}_N) \end{pmatrix}$

O(N) operations

Construction of the initial wave functions

J. Neugebauer and C. Van de Walle, Mat. Res. Soc. Symp. Proc. 408, 43-48 (1996).

Diagonalization in LCAO basis set

$$\mu_{\vec{k}}(\vec{r}) = \sum_{\vec{G}} \mu_{\vec{k}}(\vec{G}) e^{i(\vec{G}+\vec{k})\vec{r}}$$

 μ ... atomic s, p, d orbitals

Formally fully equivalent to wave functions: $\Psi_{\vec{k}}(\vec{r}) = \sum_{\vec{k}} c_{\vec{k}}(\vec{G}) e^{i(\vec{G}+\vec{k})\vec{r}}$

Construct hamiltonian and overlap matrix:

 $H_{\mu\nu}\left(\vec{k}\right) = \left\langle \mu_{\vec{k}} \left| \hat{H} \right| \nu_{\vec{k}} \right\rangle$ $S_{\mu\nu}\left(\vec{k}\right) = \left\langle \mu_{\vec{k}} \left| \nu_{\vec{k}} \right\rangle$

Solve generalized eigenvalue problem: $\left\{H_{\mu\nu}\left(\vec{k}\right) - \varepsilon_{i} S_{\mu\nu}\left(\vec{k}\right)\right\} \left\langle\mu_{\vec{k}} | \psi_{i} \right\rangle = 0$

Number of atomic orbitals << Number of plane waves (approx. 1:100) Eigenvalue problem can be easily solved!

Convergence Criteria (I)

terative solution:
$$\varphi^{(n+1)} = \varphi^{(n)} - (H - \varepsilon) |\varphi^{(n)}\rangle \Delta t$$

exact solution:

i

$$(H-\varepsilon)|\chi_i\rangle=0$$

representation of the trial wave function in the χ_i set:

$$\left| \boldsymbol{\varphi}^{(n)} \right\rangle = \sum_{i} \alpha_{i} \left| \boldsymbol{\chi}_{i} \right\rangle$$

$$\left| \boldsymbol{\varphi}^{(n+1)} \right\rangle = \sum_{i} \beta_{i} \left| \boldsymbol{\chi}_{i} \right\rangle$$
$$\implies \boldsymbol{\beta}_{i} = \boldsymbol{\alpha}_{i} - (\boldsymbol{\varepsilon}_{i} - \boldsymbol{\varepsilon}) \Delta t$$

 $\mathbf{\varepsilon} = \left\langle \boldsymbol{\varphi}^{(n)} \left| H \right| \boldsymbol{\varphi}^{(n)} \right\rangle$

Before iteration step:

Convergence Criteria (II)

Preconditioning:Geometric interpretation

Without preconditioning:

With preconditioning:

Williams-Soler Algorithm

Equation of motion:

$$(H-\varepsilon_i)|\phi_i\rangle = -\alpha|\dot{\phi}_i\rangle$$

In plane-wave basis set:

$$\alpha \dot{c}_i(G) = \underbrace{\left[G^2 + V^{eff}(G - G)\right]}_{G' \neq G} c_i(G) - \sum_{\substack{G' \\ G' \neq G}} V^{eff}(G - G') c_i(G')$$

diagonal part

off-diagonal part

EOM for a single state:

$$\dot{c}_i(G) = \omega_G^2 c_i(G) - B_G$$

Assumption: B_G not time dependent

$$\Rightarrow c_i(G, t = \Delta t) = -\frac{B_G}{\omega_G^2} + \left[c_i(G, t = 0) + \frac{B_G}{\omega_G^2}\right] \exp\left(-\omega_G^2 \Delta t\right)$$

Improves significantly the convergence rate for high PW energy cutoffs!

A. Williams and J. Soler, Bull. Am. Phys. Soc. 32, 562 (1987).

How to obtain more efficient schemes?

(1) Use higher order equations of motion:

(2) Perform accurate line minimization along the search direction:

Higher order EOM's

high computational effort!

no additional computational effort!

Second order equation of motion

Conjugate Gradient Schemes

Construct the best possible search direction based on the history of gradients:

This direction can be analytically calculated assuming a harmonic total energy surface:

$$\left|X_{i+1}\right\rangle = \left|g_{i}\right\rangle + \lambda_{i}\left|X_{i}\right\rangle$$

 $\lambda_{i} = \frac{\langle g_{i+1} | g_{i+1} \rangle}{\langle g_{i} | g_{i} \rangle}$

in praxis replaced by preconditioned gradient!

Properties:

+ very efficient: number of iterations ≤ dimensionality of problem
+ search directions are completely decoupled (conjugated)
(-) accurate line minimization crucial (i.e., one CCG-step needs at least

two electronic steps)

see e.g.: M.C. Payne et al., Phys. Rev. B56, 2656 (1986).

Charge self-consistency

What did we do so far?

efficient methods to calculate one-particle energies and eigenfunctions

$$H\left[n^{(\alpha)}\right]\phi_i^{(\alpha+1)} = \varepsilon_i \phi_i^{(\alpha+1)}$$
provided

What remains to be done?

calculate new charge density:

$$n^{(\alpha+1)}(\vec{r}) = \sum_{i} \left| \varphi_{i}^{(\alpha+1)}(\vec{r}) \right|^{2}$$

Goal:

Indirect Methods

 $\Rightarrow \phi_i^{(\alpha+1)}$

 $:= E_{\alpha,\alpha+1}$

 $E(n^{(\alpha)}, \mathcal{C})$

 $:= E_{\alpha,\alpha}$

but not for

Approach works for

• Steepest Descent

• Higher order schemes

 \rightarrow line minimization not

• Conjugate gradient

possible

Williams Soler

 $\{\varphi_i^{(\alpha+1)}\}$

Update after each electronic step:

Self-consistency is enforced at each iteration step!

Occurrence of Instabilities

Behavior for badly converging systems:

Instabilities may occur \Rightarrow convergence in total energy destroyed

Origin of the Instabilities (I)

Behavior of the electrostatic potential:

With increasing system size even small perturbations in the charge density may have a huge effect on the electrostatic potential!

Origin of the Instabilities (II)

Metallic systems:

How to avoid these instabilities?

Fermi distribution

Unstable against charge fluctuations!

Instabilities: Solutions (I)

Solution: Make self-consistency step (dashed line) shorter

- use charge density mixer: $n_{mix}^{(\alpha+1)} = (1-\lambda)n^{(\alpha+1)} + \lambda n^{(\alpha)}$
- use damping in the occupation numbers
- use smaller time step

Instabilities: Solutions (II)

Solution:

- Construct a search direction which minimizes energy with respect to both self-consistency and diagonalization
- Apply a CCG minimizer

Advantages:

- very stable
- monotonous behavior
- fast convergence

Note:

 can be used only for non-metallic systems

S. Ismail-Beigi and T.A. Arias, Comp. Phys. Comm. 128, 1 (2000).

Instabilities: Solutions (III)

Solution: Direct Methods

- Fully diagonalize the Hamiltonian
- Perform than an efficient mixing scheme

G. Kresse, J. Furthmüller, Phys. Rev. B54, 11169 (1996).

Efficient Mixing Schemes

Comparison of the Different Methods

Method	diag.	charge density	# internal steps	# steps	systems
Steepest Descent	single it.	it.	1	-	all
Williams Soler	single it.	it.	1	+	all
Damped Joannopoulos	single it.	it.	1	++	all
All band Conj. Grad.	single it.	it.	2	+++	non metallic
State by State Conj. Grad.	full it.	DIIS	210	++	all

Example I: Metallic Systems

System: Spin-polarized cubic MnAs

DIIS-CCG has fastest convergence rate (but convergence step rather expensive)

Example II: Non-metallic Systems

CCG decreases monotonously and shows much faster convergence speed!

Conclusions

SFHIngS provides a variety of efficient minimization techniques

Conjugate gradient based schemes are most stable ones:

- All band conjugate gradient
 - \Rightarrow Optimum choice for non-metallic systems
 - \Rightarrow no input parameters
- Band-by-band conjugate gradient:
 - \Rightarrow Excellent convergence but significantly slower
 - ⇒ parameters for preconditioner in density mixing needed (Kerker mixing)

First and second order schemes:

- \Rightarrow may be faster than CG-based methods for simple metals such as e.g. Al
- ⇒ require careful choice of convergence parameters such as time step and damping

To obtain maximum performance (e.g. for large/complex systems) you may combine the various methods. This can be easily set up in the SFIngX input!