

- **Topics:** (i) interplay between the geometric and electronic structure of solid surfaces,
 - (ii) physical properties of surfaces: surface energy, surface stress and their relevance for surface morphology
 - (iii) adsorption and desorption energy barriers, chemical reactivity of surfaces, heterogeneous catalysis
 - (iv) chemisorption dynamics and energy dissipation: electronically non-adiabatic processes

Technological Importance of Surfaces

Solid surfaces are intriguing objects for basic research,

and they are also of high technological utility:

- substrates for homo- or hetero-epitaxial growth of semiconductor thin films used in device technology
- surfaces can act as heterogeneous catalysts, used to induce and steer the desired chemical reactions

Sect. I:

The Geometric and the Electronic Structure of Crystal Surfaces

Surface Crystallography

	2D	3D
number of space groups:	17	230
number of point groups:	10	32
number of Bravais lattices:	5	14

2D- crystal system	symbol	lattice parameters	2D Bravais lattice	space group	point groups
oblique	m (mono- clin)	a, b, γ	mp y b	2	1
rectangular	o (ortho- rhom- bic)	a, b $\gamma = 90^{\circ}$	op b_a oc $b \bullet_a$	7	m 2mm
square	t (tetra- gonal)	a = b $\gamma = 90^{\circ}$	tp a a	3	4 (4mm)
hexagonal	h (hexa- gonal)	a = b $\gamma = 120^{\circ}$	hp a a a a a a a a a a a a a a a a a a a	5	3 6 3m 6mm

Bulk Terminated fcc Crystal Surfaces

Surface Atomic Geometry

K. Brommer et al., Phys. Rev. Lett. 68, 1355 (1992)

Electronic Structure of Surfaces: Shockley States in the Projected Band Structure

The AI(100) Surface State

Figures taken from: M.C. Desjonqueres, D. Spanjaard, "Concepts in Surface Physics", Springer (Berlin, 1993).

Electronic Structure of Semiconductor Surfaces: Dangling Bonds on Si (001)

Interplay of the Atomic and Electronic Structure of Si(001)

Mechanisms for Lowering the Surface Energy

- reduce density of dangling bonds
 - -> by dimerization (Si(100), ~1 eV/db)
 - -> ad-atoms (Si(111), rebonded steps on Si(100) vicinals)
- formation of π bonds between dangling bonds
 -> Pandey's model of Si(111) (2x1)
- Jahn-Teller-like distortions: relaxation and re-hybridization
 -> dimer buckling on Si(100)
- minimization of elastic strain
- unusual atomic configurations
 -> subsurface interstitial on Si(113)

and other mechanisms (e.g. for compound semiconductors)

Sect. II:

Material Properties of Crystal Surfaces:

Surface Energy

Surface Stress Tensor

(3) equilibrium crystal shape (ECS) Surface Energy and the Thermo- $\min_{V=\text{const.}} \oint_{\partial V} \gamma(\mathbf{n}) dA \quad \longrightarrow \quad r(\mathbf{h}) = \min_{\mathbf{n}} \frac{\gamma(\mathbf{n})}{\mathbf{n} \cdot \mathbf{h}}$ dynamic Stability of Facets polar plot of the surface energy h (1) **Definition:** γ = excess free energy of a surface per surface area $r(h) = \frac{1}{2}(n)/n h$ (2) Calculation: total-energy DFT calculations for slab geometries equilibrium crystal shape (ECS) (i) slab with equivalent surfaces: Wulff- $\gamma = \frac{1}{2A} \{ E(N_1, \ldots) - \sum N_i \ \mu_i \}$ construction all species i(4) Application: facet formation thermodynamic stable surface orientations (ii) slab with inequivalent surfaces: derive individual surface energies n_2 from an energy density n A_2 A (N. Chetty, R. Martin, Phys. Rev. B 45, 6074 (1992).) Az n₃ ♦ Α side view (b) top view (a)

Surface Stress Tensor

Definition: surface stress = linear coefficient σ describing the change of surface energy with an applied strain ε :

$$\Delta E_{\text{surf}} = \int_{A} \sum_{i,j=1,2} \sigma_{ij} \varepsilon_{ij} \quad d^2 \mathbf{x}$$

$$\rightarrow \sum_{\Delta E_{\text{Vol}}}^{\text{M}} \epsilon^2$$

($\sigma_{xx} > 0$ tensile: $\epsilon_{xx} < 0 \Rightarrow \Delta E_{surf} < 0$, preference for contraction,

 $\sigma_{xx} < 0$ compressive: $\epsilon_{xx} > 0 \implies \Delta E_{surf} < 0$, preference for expansion)

Relation to surface energy:

$$\sigma_{ij} = \gamma \delta_{ij} + \frac{\partial \gamma}{\partial \varepsilon_{ij}}$$

(different from liquids!)

Application:

Force density on a surface:

$$\mathbf{f}(\mathbf{x}) = \operatorname{div} \, \sigma(\mathbf{x})$$

Consequence: forces acting at stress domain boundaries -> elastic relaxation -> structure formation on mesoscopic length scales.

Surface Stress Variation Induced by Surface Reactions

partially H-covered Si(001)

surface	σ_{\parallel}	σ_{\perp}	$\Delta \sigma$	$\frac{(\sigma_{\parallel}\!+\!\sigma_{\perp})}{2}$	ΔE
Surface		${ m meV}/{ m \AA}^2$			
	84±7	-12±7	$97_{\pm4}$	36	2×90
	$77_{\pm7}$	38±7	$37_{\pm 4}$	58	Ref.
	$72_{\pm 7}$	2 _{±7}	$70_{\pm4}$	37	Ref.
	70±7	-4±7	$78_{\pm4}$	33	60
	60±7	$29_{\pm7}$	$31_{\pm4}$	45	260
	$58_{\pm7}$	22 _{±7}	$39_{\pm4}$	40	460
	60±7	$1_{\pm7}$	$57_{\pm4}$	31	280
	$59_{\pm7}$	-50±7	$107_{\pm4}$	5	290
	66±7	-2±7	$75_{\pm4}$	32	310

Chemisorption on Semiconductor Surfaces

Model System:

Dissociative Adsorption and Recombinative Desorption of Hydrogen Molecules on/from a Si(100) Surface

Surface Reactivity and Heterogeneous Catalysis

The rate of chemical reactions depends on the reaction energy-barriers along the reaction path:

Dissociative adsorption and recombinative desorption of molecules on a solid surface are an essential step of heterogeneous catalysis:

Dissociative Adsorption of a Molecule on a Solid Surface

hydrogen molecule / H-precovered Si(100)(2x2

potential energy along the reaction path electronic mechanism of bond formation and breaking

DFT for Chemisorption: Reaction Path, PES, ...

- chemisorption geometries and energies (equilibrium geometries, reaction energy)
- locate transition state

(automated search for special saddle points in the potential energy surface)

- adsorption and desorption energy barrier
- reaction path

(steepest descent from transition state)

• PES, vibrational frequencies

P. Kratzer, B. Hammer, J.K. Norskov, Phys. Rev. B 51, 13432 (1995).

• strain energy of substrate at the transition geometry, etc. ("computer experiments")

- analyse electronic structure (learn about bond breaking and forming mechanism)
- molecular dynamics, quantum-mech. sticking calc. (high-dimensional PES!)
 A. Groß, Surf. Sci. Rep. 32, 291 (1998).

Calculation of Chemical Reactions: Things to Keep in Mind

(1) Cluster size convergence: at least 3 surface Si-dimers should be used.

E. Penev, P. Kratzer, M. Scheffler, J. Chem. Phys. 110, 3986 (1999). J.A. Steckel, T. Phung, K.D. Jordan, P. Nachtigall, J. Phys. Chem. B 105, 4031 (2001).

Calculation of Chemical Reactions: Things to Keep in Mind

(2) Quantum Monte-Carlo calculations for H ₂/Si(100) clusters: PW91 not sufficiently accurate.

(but still useful, e.g to compare between various reaction paths!)

C. Filippi, S.B. Healy, P. Kratzer, E.P., M. Scheffler, Phys. Rev. Lett. 89, 166102 (2002).

inter-dimer reaction path (H2), PW91-geometry, no ZPE:

QMC-corrected, incl. approx. ZPE:

	chemisorption energy	adsorption energy barrier		chemisorption energy	adsorption energy barrier
PW91 slab	1.95 eV	0.2 eV	intra-dimer H2*	2.20(5) eV	0.75 eV
PW91 cluster	1.99 eV	0.26 eV	inter-dimer H2	= 2.28(9) eV	0.63 eV
QMC cluster	2.5 eV	0.6 eV	expt. (Höfer et al.)	1.95(25) eV	> 0.6 eV

(experimental desorption energy barrier: 2.5 eV)

(3) Correct reaction energies and barriers for zero-point vibrations.

e.g., decrease reaction energy by 0.2 eV (Steckel et al.)

(4) Be aware of different reaction paths! Different reaction paths for dissociative adsorption of hydrogen molecules on Si surfaces. Reaction barriers are influenced by electronic and geometric effects. Dramatic increase of reactivity at steps and on partially H-precovered Si(001) surfaces.

Sect. IV:

Molecular Dynamics of

Electronically Non-Adiabatic Processes

Time-Dependent DFT

Electron-Hole Pair Creation by Chemisorption: Experimental Evidence

- chemo-luminescence
- exo-electron emission
- chemicurrent

Mechanism of Electron-Hole Pair Excitation

direct molecular dynamics simulation of combined motions of electrons and ions

See also: J.R.Trail et al. PRL 88, 166802 (2002).

Simulation of the Combined Motion of Electrons and Ions

 time-dependent electron density from self-consistent solution for a system of non-interacting fermions
 (E. Runge, E.K.U. Gross, W. Kohn):

$$\begin{split} i\frac{\partial}{\partial t}\phi_{j}(\mathbf{r},t) &= -\frac{1}{2}\nabla^{2}\phi_{j}(\mathbf{r},t) + v_{\text{eff}}([n];\mathbf{r},t)\phi_{j}(\mathbf{r},t)\\ n(\mathbf{r},t) &= \sum_{j \text{ occ.}} |\phi_{j}(\mathbf{r},t)|^{2}\\ v_{\text{eff}}([n];\mathbf{r},t) &= v(\mathbf{r},t) + \int \frac{n(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|} d^{3}\mathbf{r}' + \frac{\delta A_{\text{XC}}[n]}{\delta n(\mathbf{r},t)} \end{split}$$

- motion of ions treated classically (Newton's equation of motion) no entangled states

H/AI(111) On-Top Adsorption: Electronic Friction

Dissipate of the order of 36 meV during the first H-oscillation into electron-hole pair excitations.

Simulations computationally rather demanding. Convergence has to be improved.