

The FP-LAPW and APW+lo methods

Peter Blaha

Institute of Materials Chemistry TU Wien

Overview of DFT concepts

• APW (J.C.Slater 1937)

- Non-linear eigenvalue problem
- Computationally very demanding
- LAPW (O.K.Anderssen 1975)
 - Generalized eigenvalue problem
 - Full-potential
- Local orbitals (D.J.Singh 1991)
 - treatment of semi-core states (avoids ghostbands)
- APW+lo (E.Sjöstedt, L.Nordstörm, D.J.Singh 2000)
 - Efficience of APW + convenience of LAPW
 - Basis for

K.Schwarz, P.Blaha, G.K.H.Madsen, Comp.Phys.Commun.**147**, 71-76 (2002)

Basisset: **PW:** $e^{i(\vec{k} + \vec{K}).\vec{r}}$

Atomic partial waves

$$\sum_{\ell m} A_{\ell m}^{K} u_{\ell}(r', \varepsilon) Y_{\ell m}(\hat{r}')$$

 $u_{l}(r,\varepsilon)$ are the numerical solutions of the radial Schrödinger equation in a given spherical potential for a particular energy ε A_{lm}^{K} coefficients for matching the PW

Slater's APW (1937)

One had to numerically search for the energy, for which the det[H-ES] vanishes. Computationally very demanding. "Exact" solution for given MT potential!

Linearization of energy dependence

expand u_l at fixed energy E_l and add $\dot{u}_l = \partial u_l / \partial \mathcal{E}$

 A_{lm}^{k} , B_{lm}^{k} : join PWs in value and slope

→additional constraint requires
 more PWs than APW
 →basis flexible enough for single
 diagonalization

WIEN

SrTiO₃

Full potential

Muffin tin approximation

TiO₂ rutile

The potential (and charge density) can be of general form (no shape approximation)

$$V(r) = \begin{cases} \sum_{LM} V_{LM}(r) Y_{LM}(\hat{r}) & r < R_{\alpha} \\ \sum_{K} V_{K} e^{i\vec{K}.\vec{r}} & r \in I \end{cases}$$

Inside each atomic sphere a local coordinate system is used (defining LM)

For example: Ti

- Valences states
 - High in energy
 - Delocalized wavefunctions
- Semi-core states
 - Medium energy
 - Principal QN one less than valence (e.g.in Ti 3p and 4p)
 - not completely confined inside sphere
- Core states
 - Low in energy
 - Reside inside sphere

EFG Calculation for Rutile TiO_2 as a function of the Ti-p linearization energy E_p

P. Blaha, D.J. Singh, P.I. Sorantin and K. Schwarz, Phys. Rev. B 46, 1321 (1992).

	1	_															18
	1			-Aton	nic nui	mber			Motol	1							2
ļ	1.008	2	e l	- 6.000	hal				Semi	metal		13	14	15	16	17	ne 4.003
	3	4	12.01	Sym	DOI				Nonn	notal		5	6	7	8	9	10
2	Li	Be		Atom	nio uno	iabt			nonn	içtai		В	С	N	0	F	Ne
	6.941	9.012		-Aton	liç we	ignt						10.81	12.01	14.01	16.00	19.00	20.18
-												13	14	15 D	16	C1	18
2			1 4	ſ	6	7	s	9	10	11	12	26.98	31 98.09	30.97	32.07		AI 20.05
	19	20		23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Сл	Sc Ti	T	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08	44.96 47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
_	37	38		41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	KD	5T	Y ZI	ND	INO		Ku	ĸn	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
	85,47	87.82	88.91 91.22 74 79	- <u>92.91</u> - 70	95.94 7.4	98,91 75	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
6	Č.	Ra		T _A	TL7	ŔΑ	Oe	Tr.	Dt	Δ.11	Hø	T1	Dh	Ri	Po	Δ+	Rn
	132.9	1 37.3		180.9	183,8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	209.0	210.0	222.0
	87	88	103 104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	Lr Rf	Db	Sg	Βh	Hs	Mt	Uun	Uuu	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
	223.0	226.0	262.1 261.1	262.1	263.1	264.1	265.1	268	269	272	277		289		289		293
L												1 27					
		A			r Nr	i Dn	a Cr	n IC.	1 C/	a mi	i Di			p Tr	n Vi		
		•		€# 1 4 1,1 140.	9 144;	e 14 6.9	ia 1474) 3 150.	4 152.	e ve 0 157.	# 158. 3 158.	9 162	r i 444. 5 i 164.	9 167	1 168. 3 168.	9 173.		
			89 9	0 91	92	93	94	95	96	97	98	99	10				
		7	Ac T	h Pi	ı U		2 Pi	a yan	a Cn	a Bl	K CI	E:	s Fr	n M	d Nc		(-)1999
			227.0 23	2.0 231.	0 238.	0 237.	0 244	.1 243	.1 247	.1 247.	1 251	1 252	.0 257	.1 258	.1 259	Ц Кг	omer Paul

Problems with semi-core states

r (a.u.)

radial function

$$_{LO} = [A_{\ell m} u_{\ell}^{E_{1}} + B_{\ell m} \dot{u}_{\ell}^{E_{1}} + C_{\ell m} u_{\ell}^{E_{2}}]Y_{\ell m}(\hat{r})$$

LO

Φ

- is confined to an atomic sphere
- has zero value and slope at R
- can treat two principal QN n for each azimuthal QN l (3p and 4p)
- corresponding states are strictly orthogonal (no "ghostbands")
- tail of semi-core states can be represented by plane waves
- only slight increase of basis set (matrix size)

D.J.Singh, Phys.Rev. B 43 6388 (1991)

The LAPW+LO Method

LAPW+LO converges like LAPW. The LO add a few basis functions (i.e. 3 per atom for p states). Can also use LO to relax linearization errors, e.g. for a narrow *d* or *f* band.

Suggested settings:

Two "energy" parameters, one for u and u and the other for $u^{(2)}$. Choose one at the semi-core position and the other at the valence.

E.Sjöstedt, L.Nordström, D.J.Singh, *An alternative way of linearizing the augmented plane wave method,* Solid State Commun. 114, 15 (2000)

Use APW, but at fixed *E_I* (superior PW convergence)
Linearize with additional lo (add a few basis functions)

$$\Phi_{k_n} = \sum_{\ell m} A_{\ell m}(k_n) u_{\ell}(E_{\ell}, r) Y_{\ell m}(\hat{r})$$

$$\Phi_{lo} = [A_{\ell m} u_{\ell}^{E_1} + B_{\ell m} \dot{u}_{\ell}^{E_1}] Y_{\ell m}(\hat{r})$$

optimal solution: mixed basis
use APW+lo for states which are difficult to converge: (f or d- states, atoms with small spheres)
use LAPW+LO for all other atoms and angular momenta

E. Sjostedt, L. Nordstrom and D.J. Singh, Solid State Commun. 114, 15 (2000).

Relativistic treatment

For example: Ti Valence states Scalar relativistic mass-velocity 5 4p Darwin s-shift 4s Spin orbit coupling <u>on demand</u> by valence Energy (Ry) 0 3d second variational treatment 3p 3s Semi-core states semi-core -5 Scalar relativistic No spin orbit coupling on demand -10 spin orbit coupling by second core variational treatment 1s,2s,2p Additional local orbital (see Th-6p_{1/2})

- Core states
 - Fully relativistic
 - Dirac equation

Relativistic semi-core states in fcc Th

FIG. 1. The total energy *E* as a function of the second-variation cutoff energy E_{cut} (the approximate size of the second-variationalstep basis, including spin, is marked on the top axis) for two different muffin-tin radii. The standard FLAPW results are marked with circles, the results obtained with the additional $p_{1/2}$ local orbitals are marked with squares (the latter energies were increased by 3 eV in order to show the curves on the same plot).

- additional local orbitals for 6p_{1/2} orbital in Th
- Spin-orbit (2nd variational method)

FIG. 2. Density of states calculated with the scalar relativistic basis (top panel) and with the $p_{1/2}$ local orbitals extended basis (bottom panel). The splitting between the centers of $6p_{1/2}$ and $6p_{3/2}$ bands is shown.

J.Kuneš, P.Novak, R.Schmid, P.Blaha, K.Schwarz, Phys.Rev.B. 64, 153102 (2001)

Total Energy:

- Electrostatic energy
- Kinetic energy
- XC-energy

$$U[\rho] = \frac{1}{2} \int d^{3}\vec{r} \ \rho(\vec{r}) V_{es}(\vec{r}) + \frac{1}{2} \sum_{\alpha} Z_{\alpha} V_{es}^{\alpha}(\vec{r})$$
$$T[\rho] = \sum_{i} n_{i} \varepsilon_{i} - \int d^{3}\vec{r} \ \rho(\vec{r}) V_{eff}(\vec{r})$$
$$E_{xc}[\rho] = \int d^{3}\vec{r} \ \rho(\vec{r}) \varepsilon_{xc}(\vec{r})$$
$$\vec{F}^{\alpha} = \frac{-dE_{tot}}{d\vec{R}_{\alpha}} = F_{HF}^{\alpha} + F_{core}^{\alpha} + F_{val}^{\alpha}$$

- Force on atom α:
 - Hellmann-Feynman-force $F_{HF}^{\alpha} = Z_{\alpha} \sum_{m=-1}^{1} \lim_{r_{\alpha} \to 0} \frac{V_{1m}^{es}(r_{\alpha})}{r_{\alpha}} \nabla_{\alpha} [r_{\alpha} Y_{1m}(\hat{r})]$ • Pulay corrections
 - Core

Valence

$$F_{core}^{\alpha} = -\int \rho_{core}(r) \nabla_{\alpha} V_{eff}(r) \, d\vec{r}$$

 expensive, contains a summation of matrix elements over all occupied states

nation
$$F_{val}^{\alpha} = \int_{\alpha} V_{eff}(r) \nabla_{\alpha} \rho_{val}(r) d\vec{r} + \sum_{k,i} n_i \sum_{K,K'} c_i^*(K') c_i(K) \times [(K^2 - \varepsilon_i) \oint \phi_{K'}^*(r) \phi_K(r) dS_{\alpha} - i(K - K') \langle \phi_{K'} | H - \varepsilon_i | \phi_K \rangle_{\alpha}]$$

WIEN2k software package

WIEN97: ~500 users WIEN2k: ~500 users mailinglist: 800 users An Augmented Plane Wave Plus Local Orbital Program for Calculating Crystal Properties

> Peter Blaha Karlheinz Schwarz Georg Madsen Dieter Kvasnicka Joachim Luitz

November 2001 Vienna, AUSTRIA Vienna University of Technology

http://www.wien2k.at

- Authors of WIEN2k
 - P. Blaha, K. Schwarz, D. Kvasnicka, G. Madsen and J. Luitz
- Other contributions to WIEN2k
 - C. Ambrosch-Draxl (Univ. Graz, Austria), optics
 - D.J.Singh (NRL, Washington D.C.), local oribtals (LO), APW+lo
 - U. Birkenheuer (Dresden), wave function plotting
 - T. Charpin (Paris), elastic constants
 - R. Dohmen und J. Pichlmeier (RZG, Garching), parallelization
 - P. Novák and J. Kunes (Prague), LDA+U, SO
 - C. Persson (Uppsala), irreducible representations
 - M. Scheffler (Fritz Haber Inst., Berlin), forces
 - E. Sjöstedt and L Nordström (Uppsala, Sweden), APW+lo
 - J. Sofo and J. Fuhr (Barriloche), Bader analysis
 - B. Yanchitsky and A. Timoshevskii (Kiev), spacegroup
 - R. Laskowski (Vienna), non-collinear magnetism
 - B. Olejnik (Vienna), non-linear optics

and many others

- More than 500 user groups worldwide
 - Industries (Canon, Eastman, Exxon, Fuji, A.D.Little, Mitsubishi, Motorola, NEC, Norsk Hydro, Osram, Panasonic, Samsung, Sony, Sumitomo).
 - Europe: (EHT Zürich, MPI Stuttgart, Dresden, FHI Berlin, DESY, TH Aachen, ESRF, Prague, Paris, Chalmers, Cambridge, Oxford)
 - America: ARG, BZ, CDN, MX, USA (MIT, NIST, Berkeley, Princeton, Harvard, Argonne NL, Los Alamos Nat.Lab., Penn State, Georgia Tech, Lehigh, Chicago, SUNY, UC St.Barbara, Toronto)
 - far east: AUS, China, India, JPN, Korea, Pakistan, Singapore, Taiwan (Beijing, Tokyo, Osaka, Sendai, Tsukuba, Hong Kong)

Registration at <u>www.wien2k.at</u>

- 400/4000 Euro for Universites/Industries
- code download via www (with password), updates, bug fixes, news
- usersguide, faq-page, mailing-list with help-requests

Idea and realization by *luits at* @ 2001

- WIEN2k runs on any Unix/Linux platform from PCs, workstations, clusters to supercomputers
- Fortran90 (dynamical allocation)
- many individual modules, linked together with C-shell or perl-scripts
- f90 compiler, BLAS-library, perl5, ghostview, gnuplot, Tcl/Tk
 - (Xcrysden), pdf-reader, www-browser
- web-based GUI w2web
 real/complex version (inversion)
 10 atom cells on 128Mb PC
 100 atom cells require 1-2 Gb RAM
 k-point parallel on clusters with common NFS (slow network)
 MPI/Scalapack parallelization for big cases (>50 atoms) and fast network
 installation support for most platforms

w2web

Based on www

- WIEN2k can be managed remotely via w2web
- Secure (Password)
- Important steps:
 - start w2web on all your hosts
 - use your favorite browser and connect to the master host
 - define a session on the desired host

Welcome to w2web							
the fully web–enabled interface to WIEN2k							
Select stored session:	Create new session:						
Image: state of the surface of the surf_0	[Session_name Create on host-node <u>master node</u> http://jupiter:10000 http://homer:10000 http://pauli:10000 http://hal.zserv:10000						
si_goessl test tic_goessl tic_puls tio_puls	edit hosts						
	w2web © luitz.at						

GUI (Graphical user interface)

hu Nou 29 13 23 41 200 STATUS:idle refresh norefresh

Structure generator .

- spacegroup selection
- import cif files
- step by step initialization
 - symmetry detection
 - automatic input generation
- SCF calculations
 - Magnetism (spin-polarization)
 - Spin-orbit coupling
 - Forces (automatic geometry optimization)
- Guided Tasks
 - Energy band structure
 - DOS
 - Electron density
 - X-ray spectra
 - Optics

IE	Session: TiC User: pblaha /susi/pblaha/lapw/TiC
WON	
2k	StructGen™
	You have to click "Sav
Execution >> StructGen ²⁷⁴ initialize calc. run SCF single program command line	Save Structure
<u>Utils. >></u>	Treatment of core:
<u>Tasks >></u> Files >>	Lattice: Type: F
<u>input files</u> output files SCF files	P E B
Session Mgmt.>> <u>change session</u> <u>change directory</u> <u>change info</u>	inequivalent Atom Lattice parameters in
Configuration >>	2- 14 46770050 1
U sersguide html-Version pdf-Version	a= <u>1.46770858</u>
	Atom 1: řri ž
	NPT= 781 RM
	Pos 1: x= 10.0000
	add position
	Atom 2: jc j
	NPT= <u>1781</u> RM
	Pos 1: x= 10.5000
	add position
	<u>add an atom</u>
	Number of symmetry

StructEdit /susi/pblaha/lapw/Ti							
entm							
o click "Save Structure" for changes to take effect!							
acture							
of core: relativistic 🗆							
7							
3							
active Atoms, 2							
ameters in <u>A</u>							
b= <u>¥</u> 4.46770858 c= <u>¥</u> 4.46770858							
000000 b= 10.000000 g= 10.000000							
ri j Z= 122.0 remove atom							
[781 RMT= 2.000 R0= 0.00005 Non-cubic 🗆							
remove							
sition							
Z= 16.0 remove atom							
[781 RMT= [1.900 R0=]0.00010 Non-cubic □							
z= 10.50000000 y= 10.50000000 z= 10.50000000 remove							
sition							
<u> </u>							
symmetry operations: 48 🗆							

Program structure of WIEN2k

init_lapw

- initialization
- symmetry detection (F, I, Ccentering, inversion)
- input generation with recommended defaults
- quality (and computing time) depends on k-mesh and R.Kmax (determines #PW)
- run_lapw
 - scf-cycle
 - optional with SO and/or LDA+U
 - different convergence criteria (energy, charge, forces)

Task for electron density plot

A task consists of

- a series of steps
- that must be executed
- to generate a plot
- For electron density plot
 - select states (e.g. valence e⁻)
 - select plane for plot
 - generate 3D or contour plot with gnuplot or Xcrysden

IEN	Session: TiC User: pblaha /susi/pblaha/lapw/TiC	Thu Nov 29 13 26 30 2001 STATUS idle <u>refresh</u> norefresh
	Electron density plots	
	edit TiC.in2 change EMIN	
Execution >> StructGen ^{IM} initialize calc. run SCF single program	x lapw2 Calculate clmval	
<u>command line</u> Utils.>>	Calculate density with XCrysden	
< <u>< Tasks</u> El Dens. <u>DOS</u> XSPEC ELNES	edit TiC.in5 Edit input-file	
<u>OPTIC</u> Bandstructure	x lapw5 Calculate partial DOS	
<u>Files >></u> <u>struct file(s)</u> <u>input files</u> <u>output files</u> <u>SCF files</u>	Preview density with XCrysden	
Session Mgmt.>> change session change directory change info	rhoplot Plot DOS	
Configuration >>	edit TiC.in2 reset EMIN	
Usersguide <u>html-Version</u> <u>pdf-Version</u>		w2web 31uitz at
		Idea and realization by <u>luits at</u> @2001

TiC electron density

Utils. >>

Files >>

- Valence electrons
- NaCl structure
- (100) plane
- plot in 2 dimensions
- Shows
 - charge distribution
 - covalent bonding
 - between the Ti-3d and C-2p electrons
 - e_g/t_{2g} symmetry

- Energy bands
 - classification of irreducible representations
 - ´character-plot´ (emphasize a certain band-character)
- Density of states
 - including partial DOS with I and m- character (eg. p_x , p_y , p_z)
- Electron density, potential
 - total-, valence-, difference-, spin-densities, ρ of selected states
 - 1-D, 2D- and 3D-plots (Xcrysden)
 - X-ray structure factors
 - Bader 's atom-in-molecule analysis, critical-points, atomic basins and charges ($\nabla \rho.\vec{n} = 0$)
 - spin+orbital magnetic moments (spin-orbit / LDA+U)
- Hyperfine parameters
 - hyperfine fields (contact + dipolar + orbital contribution)
 - Isomer shift
 - Electric field gradients

Total energy and forces

- optimization of internal coordinates, (MD, BROYDEN)
- cell parameter only via E_{tot} (no stress tensor)
- elastic constants for cubic cells
- Phonons via supercells
 - interface to PHONON (K.Parlinski) bands, DOS, thermodynamics, neutrons

Spectroscopy

- core levels (with core holes)
- X-ray emission, absorption, electron-energy-loss (corevalence/conduction bands including matrix elements and angular dep.)
- optical properties (dielectric function, JDOS including momentum matrix elements and Kramers-Kronig)
- fermi surface (2D, 3D)

- New developments (in progress)
 - non-linear optics
 - non-collinear magnetism
 - transport properties (Fermi velocities, Seebeck, conductivity, thermoelectrics, ..)
 - Compton profiles
 - Iinear response (phonons, E-field) (C.Ambrosch-Draxl)
 - stress tensor (C.Ambrosch-Draxl)
 - exact exchange, GW, ... ??
 - grid-computing

- + robust all-electron full-potential method
- + unbiased basisset, one convergence parameter (LDA-limit)
- + all elements of periodic table (equal expensive), metals
- + LDA, GGA, meta-GGA, LDA+U, spin-orbit
- + many properties
- + w2web (for novice users)
- ? speed + memory requirements
 - + very efficient basis for large spheres (2 bohr) (Fe: 12Ry, O: 9Ry)
 - less efficient for small spheres (1 bohr) (O: 25 Ry)
 - large cells (n³, iterative diagonalization not perfect)
 - full H, S matrix stored \rightarrow large memory required
 - + many k-points do not require more memory
- no stress tensor
- no linear response

Thank you for your attention !