



### A Standard Tool for Density-Functional Calculations

DMol<sup>3</sup>

Jörg Behler Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin, Germany

> Bernard Delley Paul-Scherrer-Institut, Zürich, Switzerland

> > FHI Workshop 2003



## Introduction

### What is DMol<sup>3</sup>?

- all-electron DFT-code
- basis functions are localized atomic orbitals (LCAO)
- can be applied to:
  - free atoms, molecules and clusters
  - solids and surfaces (slabs)

### **Topic of this talk**

Characteristics of the DMol<sup>3</sup> approach to DFT (*selected* aspects)



### History

#### **"DMol"** = <u>*d*</u>ensity functional calculations on <u>*mol*</u>ecules

#### Main author: Bernard Delley



Further contributions by:J. AndzelmR.D. King-SmithJ. BakerD. EllisG. Fitzgeraldmany more...

| • first fragments                           | early 1980's |
|---------------------------------------------|--------------|
| (full potential electrostatics,             |              |
| numerical atomic orbitals)                  |              |
| <ul> <li>total energy functional</li> </ul> | <b>1983</b>  |
| • electrostatics by partitioning            | g 1986       |
| • first release of DMol by Bio              | sym 1988     |
| • forces                                    | 1991         |
| <ul> <li>parallel version</li> </ul>        | <b>1992</b>  |
| • DSolid                                    | 1994         |
| <ul> <li>geometry optimization</li> </ul>   | 1996         |
| • unification of DMol and DS                | olid         |
| Þ DMol <sup>3</sup>                         | 1998         |
| • molecular dynamics                        | 2002         |
|                                             |              |



## **Localized Basis Sets**

#### Why?

- high accuracy (cusp, asymptotic behaviour)
- high efficiency (few basis functions > small matrix size)

#### What?

(GTO's)

(STO's)

- Gaussian type orbitals
- Slater type orbitals
- numerical atomic orbitals (AO's)

#### Idea:

Most DFT codes use numerical integration (i.e. for XC-part) ▷ in DMol<sup>3</sup>: numerical techniques used wherever possible ▷ AO's can be used



# **DMol<sup>3</sup> Basis Functions**

### • exact DFT-spherical-atomic orbitals of

- neutral atoms
- ions
- hydrogenic atoms
- radial functions are calculated in the setup (free atom)
- implemented as numerically tabulated functions

### **Properties:**

- maximum of accuracy for a given basis set size
- infinitely separated atoms limit treated *exactly*
- small number of additional functions needed for polarization
- square integrability, cusp singularities at the nuclei

|                | <b>Basis Set Example: Al</b> |                                                                    |  |
|----------------|------------------------------|--------------------------------------------------------------------|--|
|                |                              | <b>Atomic energy</b>                                               |  |
| minimal:       | Al 1s, 2s, 2p, 3s, 3p        | Þ E = -242.234806 Ha                                               |  |
| dn:<br>13 AOs  | Al <sup>2+</sup> 3s, 3p      | Þ E − 242.234845 Ha                                                |  |
| dnd:<br>18 AOs | z = 5 3d                     | $\triangleright E = -242.235603 Ha$                                |  |
| dnp:<br>28 AOs | z = 4 3p, z = 7.5 4f         | $\triangleright E \stackrel{\checkmark}{=} -242.235649 \text{ Ha}$ |  |
|                | <b>Quality test:</b>         |                                                                    |  |

lowering of total energy by adding basis functions (variational principle)

FHI Workshop 2003



## **Basis Set Example: Al**

**Radial Basis Functions** 



FHI Workshop 2003



## **Basis Set Convergence**

#### **Atomic orbitals**

quality extension

▷ basis set
▷ r<sup>cut</sup>

**Plane waves** 

quality extension Þ E<sup>cut</sup> Þ infinte

#### **Basis test for the oxygen molecule**





FHI Workshop 2003





### **Basis Set Superposition Error**

#### **Definition**:

BSSE is a lowering of the energy when the electrons of each atom spread into the basis functions provided by the other atoms due to an incomplete basis set.

**Plane waves: BSSE does not appear** 

**GTO/STO Codes: BSSE can be a serious problem** 

**DMol<sup>3</sup>: very small BSSE because of nearly perfect basis set** for the separated atoms limit => excellent description of weak bonds (but DFT limitation)

FHI Workshop 2003

# **Summary Basis Functions**

### **Advantages**

- very efficient (small) basis Þ fast calculations
- allows for calculations without periodic boundary conditions or less dense systems (slabs with large vacuum)
- easy physical interpretation of basis functions
- (almost) no basis set superposition error
- different basis sets for different elements possible

### <u>Disadvantages</u>

- no systematic way to improve basis set quality
- careful tests required to construct a basis set



# **Numerical Integration** <u>3 Step approach</u>

- 1. Decomposition of the total integral in 3D into a sum of independent integrals for atomic contributions
   P partitioning
- 2. Decomposition of each atomic integral into a radial and an angular part ▷ spherical polar coordinates
- **3. Integration of the angular part on a sphere or decomposition into separate integrations for J and f**



## **Partition Functions**

### **1. Step: Decomposition into atomic contributions**

Partition functions  $p_a$  are used to rewrite integrals over all space:

$$\int f(\mathbf{r}) d\mathbf{r} = \int \sum_{a} f_{a}(\mathbf{r}_{a}) d\mathbf{r} = \int \sum_{a} f(\mathbf{r}) p_{a}(\mathbf{r}) d\mathbf{r}$$

**b** Sum of atomic integrals

$$\int f(\mathbf{r}) d\mathbf{r} = \sum_{a} \int f_{a}(\mathbf{r}_{a}) d\mathbf{r}$$

**Enables integration using** *spherical polar coordinates*!



## **Partition Functions**

### **Definition:**

The partition function for a center a:

$$p_{\rm a}(r) = \frac{g_{\rm a}(r)}{\sum_{\rm b} g_{\rm b}(r)}$$

Normalization:

$$\sum_{a} p_{a} = 1$$

 $\cdot$  choose one peaked function  $g_a$  for each center a

 calculate the partition function for each center a

**Example:** 
$$g_a = \left(\frac{r_a}{r_a}\right)^2$$

g<sub>a</sub> R<sub>a</sub>

**Example:** 



**Total function:** 







#### **Partition functions:**

**Decomposed functions:** 



FHI Workshop 2003



## **Numerical Integration**

#### **Example: O atom**

#### **Radial Integration Meshes**

#### Number of radial shells

$$n = s \cdot 14 \cdot (z+2)^{\frac{1}{3}} = 30$$

*z* = atomic number *s* = scaling factor





## **Numerical Integration**

**Example: O atom Angular Integration Meshes** 

- integration is done on *Lebedev Spheres*
- integration scheme with octahedral symmetry



(projections of points on sphere into plane) FHI Workshop 2003



### **Numerical Integration** Example: O atom (cutoff 10 bohr)

#### **Total Grid:**



#### **Remarks:**

- user defined grids
- higher order angular schemes are possible
- symmetry is used to reduce number of points
- a weight is assigned to each point
- in a molecule or solid a superposition of atomic meshes is used

### 3287 points



## **Numerical Integration**

#### Effect of mesh quality: total energy of the Al atom





**Classical electrostatic contribution in Hamiltonian** 

$$J[\mathbf{r}] = \frac{1}{2} \int \int \frac{\mathbf{r}(\mathbf{r}_1) \mathbf{r}(\mathbf{r}_2)}{r_{12}} d\mathbf{r}_1 d\mathbf{r}_2$$

#### **Matrix elements**

**Hartee-Fock** 

DFT

$$J_{mn} = \sum_{l=1}^{L} \sum_{s=1}^{L} P_{ls} \int \int \frac{C_m(\mathbf{r}_1)C_n(\mathbf{r}_1)C_l(\mathbf{r}_2)C_s(\mathbf{r}_2)}{r_{12}} d\mathbf{r}_1 d\mathbf{r}_2$$
$$J_{mn} = \int \int \frac{C_m(\mathbf{r}_1)C_n(\mathbf{r}_1)r(\mathbf{r}_2)}{r_{12}} d\mathbf{r}_1 d\mathbf{r}_2$$



**Common procedure in DFT using localized basis functions: Density-fitting using an auxiliary basis set**  $\{W_k\}$ 

auxiliary density

constraint

$$r(\mathbf{r}) \approx \widetilde{r}(\mathbf{r}) = \sum_{k} c_{k} W_{k}(\mathbf{r}) \qquad \int \widetilde{r}(\mathbf{r}) d\mathbf{r} = N$$

The basis functions  $\{W_k\}$  are of the same type as for the wavefunction expansion.

Matrix elements O(N<sup>3</sup>)

$$J_{\mathrm{mn}} = \sum_{k} c_{k} \int \int \frac{C_{\mathrm{m}}(\mathbf{r}_{1})C_{\mathrm{n}}(\mathbf{r}_{1})W(\mathbf{r}_{2})}{r_{12}} d\mathbf{r}_{1} d\mathbf{r}_{2}$$



#### **Approach to electrostatics in DMol<sup>3</sup>: Overview**

| Step 1 | Partitioning: decompose the electron density into atomic components               |
|--------|-----------------------------------------------------------------------------------|
| Step 2 | <b>Projection onto</b> $Y_{lm}$ functions yields multipoles attached to the atoms |
| Step 3 | Solve Poisson's equation for each multipole<br>(only 1-dimensional problem)       |
| Step 4 | Assemble electrostatic potential from all multipoles and atoms                    |
|        | DMol <sup>3</sup> : No basis set required for density expansion!                  |



**<u>1. Step:</u>** Partitioning of total density r into atomic densities  $r_a$ 

**b** like numerical integration

**<u>2. Step:</u>** Multipole expansion of each  $r_a$ 

$$\mathbf{r}_{alm}(r) = \frac{1}{\sqrt{4p}} \frac{1}{\sqrt{2l+1}} \int Y_{alm}(\mathsf{J},\mathsf{f}) \mathbf{r}_{a}(r,\mathsf{J},\mathsf{f}) d\mathsf{J} d\mathsf{f}$$

$$r_{a}(r,J,f) \approx \sqrt{4p} \sum_{lm}^{l_{max}} \sqrt{2l+1} r_{alm}(r) Y_{alm}(J,f)$$

• truncation of expansion at  $l_{\max}$ • reduction to 1-dimensional radial density  $\Gamma_{alm}(r)$ 



### **<u>3. Step:</u>** Calculation of the potential contributions

**Single center Poisson's equation** 

$$\nabla^2 V_a(r,J,f) = -4pr_a(r,J,f)$$

density decomposition

 $r_a = \sum r_{alm}$ 

$$\nabla^2 = \frac{1}{r} \frac{\partial^2}{\partial r^2} \frac{1}{r} - \frac{l^2}{r^2}$$

spherical Laplacian

$$V_{\mathrm{a}}(r,\mathsf{J},\mathsf{f}) = \sum_{lm}^{l_{\mathrm{max}}} \frac{1}{r} V_{\mathrm{a}lm}(r) Y_{lm}(\mathsf{J},\mathsf{f})$$

#### potential expansion

 $\triangleright$  set of equations for numerical evaluation of all  $V_{alm}(r)$ 



**<u>4. Step:</u>** Construction of the total potential from atomic contributions

$$V_{a}(r,J,f) \models V(\mathbf{r})$$

#### atomic mesh Þ full mesh

Calculation of the electrostatic potential:  $O(N^2)$ 

For periodic boundary conditions an *Ewald summation* is included.



# **Ewald Summation for Monopoles**



FHI Workshop 2003



## **Extensions to Ewald Summation**

- **1. Generalization for lattices with multipoles** 
  - DMol<sup>3</sup> contains an extension to lattices of point multipoles located at the atomic sites:
  - $\cdot$  applied to the  $\Gamma_{alm}$
  - computationally as demanding as for point charge lattices
- **2. Extension to monopoles and multipoles of finite extent** Assumption: multipoles are located inside a radius *r*<sup>cut</sup>

Ewald terms with  $r < r^{cut}$  have to be modified in the real space part, because explicit calculation of the radial details of the extended charge distribution is required.



### **Scaling (localized basis sets)**

| Hartree Fock          | $O(N^4)$                           |                |
|-----------------------|------------------------------------|----------------|
|                       |                                    | Real systems:  |
| <b>DFT in general</b> | <b>O</b> ( <i>N</i> <sup>3</sup> ) | <b>℗ Օ(№2)</b> |

DMol<sup>3</sup> molecular case $O(N^2)$ DMol<sup>3</sup> solid case $O(N^{3/2})$ 

Electrostatics in DMol<sup>3</sup> scale almost *linearly with system size for large systems* 



## **The Harris Functional**

J. Harris, *Phys. Rev B* <u>31</u> (1985) 1770. B. Delley *et al., Phys. Rev B* <u>27</u> (1983) 2132.

Kohn Sham energy functional

$$E_{KS}[r] = T[r] + E_H[r] + E_{XC}[r] + E_{ext}[r] + E_{nn}$$

#### **Harris energy functional**

$$E_{Harris}[r] = \sum_{i=1}^{N} f_i e_i - E_H[r] + E_{XC}[r] - \int m_{XC}[r] r d^3 r + E_{nn}$$

#### **Original idea of the Harris functional:**

- approximate DFT calculations for very large systems
- non-selfconsistent energy calculation (1 iteration only)
- approximated density = superposition of fragment densities (i.e. atomic densities)



# **Total Energy in DMol<sup>3</sup>**

### **DMol<sup>3</sup> uses the Harris functional (scf densities)**

- the Harris functional is stationary at the same density as the Kohn-Sham functional and the two are equal in value at this point
- the curvature of  $E_{\text{Harris}}$  about the stationary point is smaller than the curvature of  $E_{\text{KS}}$
- the density in the Harris functional does not have to be V-representable

#### **Reduction of numerical noise**

$$E_{bind} = E_{tot} - \sum E_{atom}^{ref}$$

**Realization:** 

subtraction of atomic densities from total densities in integrands

FHI Workshop 2003



## More features ...

- forces
- geometry optimization
- *ab initio* molecular dynamics and simulated annealing
- · COSMO (COnductor-like Screening MOdel )
- transition state search
- vibrational frequencies
- Pulay (DIIS) charge density mixing
- pseudopotentials (optional)



## Conclusion

- very small basis sets, matrix diagonalization  $O(N^3)$
- no costs for large vacuum or atom / molecules
- efficient calculation of electrostatics
- **O(N)** calculation of Hamilton and overlap matrix
- Universal
  - atom, molecule and cluster calculations
  - solids and slabs with periodic boundary conditions
- Accurate results
  - comparable to LAPW ▷ next talk
- Easy to use
  - atoms are given in Cartesian coordinates



### References

Introduction:

- B. Delley, J. Chem. Phys. <u>92</u> (1990) 508
- B. Delley in "Modern Density Functional Theory: A Tool for Chemistry", *Theoretical and Computational Chemistry Vol. 2*, Ed. by J. M. Seminario and P. Politzer, Elsevier 1995
- B. Delley, J. Chem. Phys. <u>113</u> (2000) 7756

#### **Further Details:**

- B. Delley, *Comp. Mat. Sci.* <u>17</u> (2000) 122
- J. Baker, J. Andzelm, A. Scheiner, B. Delley, J. Chem. Phys. <u>101</u> (1994) 8894
- B. Delley, J. Chem. Phys. <u>94</u> (1991) 7245
- B. Delley, J. Comp. Chem. <u>17</u> (1996) 1152
- B. Delley, Int. J. Quant. Chem. <u>69</u> (1998) 423
- B. Delley, J. Phys. Chem. <u>100</u> (1996) 6107
- B. Delley, M. Wrinn, H. P. Lüthi, J. Chem. Phys. <u>100</u> (1994) 5785