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What is DMol3?

Introduction

• all-electron DFT-code
• basis functions are localized atomic orbitals (LCAO) 
• can be applied to:

• free atoms, molecules and clusters
• solids and surfaces (slabs)

Topic of this talk

Characteristics of the DMol3 approach to DFT (selected aspects)
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“DMol” = density functional calculations on molecules

History

• first fragments early 1980’s
(full potential electrostatics,
numerical atomic orbitals)

• total energy functional 1983
• electrostatics by partitioning 1986
• first release of DMol by Biosym 1988
• forces 1991
• parallel version 1992
• DSolid 1994
• geometry optimization 1996
• unification of DMol and DSolid

⇒ DMol3 1998
• molecular dynamics 2002

Main author:
Bernard Delley

Further contributions by:
J. Andzelm R.D. King-Smith
J. Baker      D. Ellis
G. Fitzgerald many more...
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• Gaussian type orbitals (GTO’s)
• Slater type orbitals (STO’s)
• numerical atomic orbitals (AO’s)

Localized Basis Sets

Most DFT codes use numerical integration (i.e. for XC-part)
⇒ in DMol3:  numerical techniques used wherever possible
⇒ AO‘s can be used

• high accuracy (cusp, asymptotic behaviour)
• high efficiency (few basis functions ⇒ small matrix size)

Why?

What?

Idea:
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• exact DFT-spherical-atomic orbitals of
• neutral atoms
• ions
• hydrogenic atoms

• radial functions are calculated in the setup (free atom) 
• implemented as numerically tabulated functions

Properties:
• maximum of accuracy for a given basis set size
• infinitely separated atoms limit treated exactly
• small number of additional functions needed for  
polarization

• square integrability, cusp singularities at the nuclei

DMol3 Basis Functions
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minimal: Al 1s, 2s, 2p, 3s, 3p ⇒ E = -242.234806 Ha

Basis Set Example: Al

dn: Al2+ 3s, 3p ⇒ E = -242.234845 Ha

dnd: z = 5 3d ⇒ E = -242.235603 Ha

dnp: z = 4 3p, z = 7.5 4f ⇒ E = -242.235649 Ha

9 AOs

13 AOs

18 AOs

28 AOs

Atomic energy

Quality test:
lowering of total energy by adding basis functions 

(variational principle)
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Basis Set Example: Al
Radial Basis Functions
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Atomic orbitals

Basis Set Convergence
Plane waves

quality ⇒ basis set 
extension ⇒ rcut

quality ⇒ Ecut

extension ⇒ infinte

Basis test for the oxygen molecule

O basis functions
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O 2s
O 2p    
O2+ 2s
O2+ 2p
z = 3 3d
z = 5 3d
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BSSE

DMol3: very small BSSE because of nearly perfect basis set 
for the separated atoms limit
=> excellent description of weak bonds (but DFT limitation)

Basis Set Superposition Error

Definition:
BSSE is a lowering of the energy when the electrons of 
each atom spread into the basis functions provided by 
the other atoms due to an incomplete basis set.

GTO/STO Codes: BSSE can be a serious problem

Plane waves: BSSE does not appear
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• no systematic way to improve basis set quality
• careful tests required to construct a basis set

Summary Basis Functions

• very efficient (small) basis ⇒ fast calculations
• allows for calculations without periodic boundary 
conditions or less dense systems (slabs with large vacuum)

• easy physical interpretation of basis functions
• (almost) no basis set superposition error
• different basis sets for different elements possible

Advantages

Disadvantages
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Numerical Integration
3 Step approach

1. Decomposition of the total integral in 3D into a sum of 
independent integrals for atomic contributions 
⇒ partitioning 

2. Decomposition of each atomic integral into a radial 
and an angular part ⇒ spherical polar coordinates

3. Integration of the angular part on a sphere or 
decomposition into separate integrations for ϑ and φ
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Partition Functions

Partition functions pα are used to rewrite integrals over 
all space:

( ) ( ) ( ) ( )∫ ∫∑∫∑ == rrrrrrr dpfdfdf
α

α
α

αα

1. Step: Decomposition into atomic contributions 

Enables integration using spherical polar coordinates!

( ) ( )∫ ∑∫=
α

αα rrrr dfdf⇒ Sum of atomic integrals
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Partition Functions

Example:

Definition: 
The partition function for a center α:

( ) ( )
( )∑

=

β
β

α
α rg

rgrp ∑ =
α

α 1p

• choose one peaked function gα for each center α

• calculate the partition function for each 
center α

Normalization:

αg
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Partition Functions
Total function:

Partition functions: Decomposed functions:

Ap Af Bf

Peaked functions gAand gB:

A B 
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Numerical Integration
Example: O atom 

points per shell

0
1
2
3
4
5
6
7
8

0 10 20 30
shell number

r /
 b

oh
r

26
50
110
194
1

( ) 30214 3
1

=+⋅⋅= zsn

Number of radial shells

Radial Integration Meshes

z = atomic number
s = scaling factor
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Numerical Integration
Example: O atom 

Order 17
110 points 

Order 23
194 points 

Order 7
26 points 

Order 11
50 points 

Angular Integration Meshes

(projections of points on sphere into plane) 

• integration is done on Lebedev Spheres
• integration scheme with octahedral symmetry
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Numerical Integration
Example: O atom (cutoff 10 bohr) 

Total Grid: Remarks: 
• user defined grids
• higher order angular 

schemes are possible 
• symmetry is used to reduce 

number of points 
• a weight is assigned to each

point 
• in a molecule or solid a 

superposition of atomic
meshes is used

3287 points 
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Numerical Integration
Effect of mesh quality: total energy of the Al atom
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Electrostatics
Classical electrostatic contribution in Hamiltonian

[ ] ( ) ( )
21
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21

2
1 rrrr dd

r
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Hartee-Fock

DFT
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Electrostatics

Density-fitting using an auxiliary basis set { }kω

( ) ( ) ( )∑=≈
k

kkc rrr ωρρ ~ ( ) Nd =∫ rrρ~

constraint 

The basis functions        are of the same type as for the 
wavefunction expansion. 

{ }kω

( ) ( ) ( )
21

12

211 rr
rrr

dd
r

cJ
k

k ∫ ∫∑=
ωχχ νµ

µν

auxiliary density 

Matrix elements 

Common procedure in DFT using localized basis functions:

O(N3) 
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Approach to electrostatics in DMol3: Overview

Electrostatics

Partitioning: decompose the electron density into 
atomic componentsStep 1

Step 2
Projection onto Ylm functions yields multipoles 
attached to the atoms

Step 3 Solve Poisson’s equation for each multipole
(only 1-dimensional problem)

Step 4 Assemble electrostatic potential from all multipoles 
and atoms

DMol3: No basis set required for density expansion!
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Electrostatics

2. Step: Multipole expansion of each ρα

( )rlmαρ
• truncation of expansion at lmax
• reduction to 1-dimensional radial density

1. Step: Partitioning of total density ρ into atomic densities ρα

⇒ like numerical integration

( ) ( ) ( ) φϑφϑρφϑ
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Electrostatics

Single center Poisson’s equation

( ) ( )φϑπρφϑ αα ,,4,,2 rrV −=∇

2

2

2

2
2 11

r
l

rrr
−

∂
∂

=∇

( ) ( ) ( )∑=
max

,1,,
l

lm
lmlm YrV

r
rV φϑφϑ ααspherical Laplacian

potential expansion

∑= lmαα ρρ

⇒ set of equations for numerical evaluation of all 

density 
decomposition

( )rV lmα

3. Step: Calculation of the potential contributions
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Electrostatics

For periodic boundary conditions an 
Ewald summation is included.

( )φϑα ,,rV ⇒ ( )rV
atomic mesh ⇒ full mesh

4. Step: Construction of the total potential from
atomic contributions

O(N2)Calculation of the electrostatic potential:
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Real space:

Ewald Summation for 
Monopoles

Reciprocal space:

Point charges

Background 
charge

Negative Gaussians

Positive Gaussians

0

q

background charge + positive Gaussians

point charges + negative Gaussians

r
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1. Generalization for lattices with multipoles

Extensions to 
Ewald Summation

2. Extension to monopoles and multipoles of finite extent

DMol3 contains an extension to lattices of point multipoles located at 
the atomic sites:
• applied to the ραlm
• computationally as demanding as for point charge lattices

Assumption: multipoles are located inside a radius rcut

Ewald terms with r < rcut have to be modified in the real space part,
because explicit calculation of the radial details of the extended 
charge distribution is required.
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Scaling (localized basis sets)

Electrostatics

O(N4)Hartree Fock

DFT in general O(N3)

DMol3 molecular case O(N2)
DMol3 solid case O(N3/2)

Electrostatics in DMol3 scale almost 
linearly with system size for large systems











→ O(N2)
Real systems:
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The Harris Functional

• approximate DFT calculations for very large systems
• non-selfconsistent energy calculation (1 iteration only)
• approximated density = superposition of fragment  densities (i.e. atomic 

densities)

J. Harris, Phys. Rev B 31 (1985) 1770.
B. Delley et al., Phys. Rev B 27 (1983) 2132.

Original idea of the Harris functional:

Harris energy functional

[ ] [ ] [ ] [ ] nn

N

i
XCXCHiiHarris ErdEEfE +−+−= ∑ ∫

=1

3ρρµρρερ

Kohn Sham energy functional

[ ] [ ] [ ] [ ] [ ] nnextXCHKS EEEETE ++++= ρρρρρ
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Total Energy in DMol3

• the Harris functional is stationary at the same density as the 
Kohn-Sham functional and the two are equal in value at this 
point

• the curvature of EHarris about the stationary point is smaller 
than the curvature of EKS

• the density in the Harris functional does not have to be 
V-representable

Reduction of numerical noise

∑−= ref
atomtotbind EEE

DMol3 uses the Harris functional (scf densities)

Realization: subtraction of atomic densities from total densities in 
integrands 
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• forces
• geometry optimization
• ab initio molecular dynamics and simulated annealing
• COSMO (COnductor-like Screening MOdel ) 
• transition state search
• vibrational frequencies
• Pulay (DIIS) charge density mixing
• pseudopotentials (optional)

More features ...
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Conclusion
• Fast

• very small basis sets, matrix diagonalization O(N3)
• no costs for large vacuum or atom / molecules 
• efficient calculation of electrostatics
• O(N) calculation of Hamilton and overlap matrix

• Universal
• atom, molecule and cluster calculations
• solids and slabs with periodic boundary conditions 

• Accurate results
• comparable to LAPW ⇒ next talk

• Easy to use
• atoms are given in Cartesian coordinates
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