Calculations

Jörg Behler
Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin, Germany

Bernard Delley
Paul-Scherrer-Institut, Zürich, Switzerland

Introduction

What is DMol ${ }^{3}$?

- all-electron DFT-code
- basis functions are localized atomic orbitals (LCAO)
- can be applied to:
- free atoms, molecules and clusters
- solids and surfaces (slabs)

Topic of this talk

Characteristics of the DMol ${ }^{3}$ approach to DFT (selected aspects)

History

"DMol" = density functional calculations on molecules

Main author:
 Bernard Delley

Further contributions by:
J. Andzelm
R.D. King-Smith
J. Baker
G. Fitzgerald
D. Ellis
many more...

- first fragments early 1980's (full potential electrostatics, numerical atomic orbitals)
- total energy functional 1983
- electrostatics by partitioning 1986
- first release of DMol by Biosym 1988
- forces 1991
- parallel version 1992
- DSolid 1994
- geometry optimization 1996
- unification of DMol and DSolid \Rightarrow DMol 3 1998
- molecular dynamics 20022002

Localized Basis Sets

Why?

- high accuracy (cusp, asymptotic behaviour)
- high efficiency (few basis functions \Rightarrow small matrix size)

What?

- Gaussian type orbitals
- Slater type orbitals
- numerical atomic orbitals (AO's)

Idea:

Most DFT codes use numerical integration (i.e. for XC-part)
\Rightarrow in DMol 3 : numerical techniques used wherever possible
$\Rightarrow \mathrm{AO}$'s can be used

DMol ${ }^{3}$ Basis Functions

- exact DFT-spherical-atomic orbitals of
- neutral atoms
- ions
- hydrogenic atoms
- radial functions are calculated in the setup (free atom)
- implemented as numerically tabulated functions

Properties:

- maximum of accuracy for a given basis set size
- infinitely separated atoms limit treated exactly
- small number of additional functions needed for polarization
- square integrability, cusp singularities at the nuclei

Basis Set Example: Al

Atomic energy
minimal:
9 AOs
dn:
13 AOs
dnd:
18 AOs
dnp:
28 AOs

Al 1s, 2s, 2p, 3s, 3p $\Rightarrow \mathrm{E}=-\mathbf{2 4 2 . 2 3 4 8 0 6 ~ Н а ~}$
$\mathrm{Al}^{2+} 3 \mathrm{~s}, 3 \mathrm{p}$
$\mathrm{z}=53 \mathrm{~d}$
$z=43 p, z=7.54 f \quad \Rightarrow E=-242.235649 \mathrm{Ha}$

Ouality test:

lowering of total energy by adding basis functions (variational principle)

Basis Set Example: Al
 Radial Basis Functions

Basis Set Convergence

Atomic orbitals

quality $\quad \Rightarrow$ basis set extension
\[\begin{aligned} \& \Rightarrow basis set
\& \Rightarrow \mathbf{r}^{cut} \end{aligned} \]

Plane waves

Basis test for the oxygen molecule

BSSE

Basis Set Superposition Error

Definition:

BSSE is a lowering of the energy when the electrons of each atom spread into the basis functions provided by the other atoms due to an incomplete basis set.

Plane waves: BSSE does not appear
GTO/STO Codes: BSSE can be a serious problem
DMol³: very small BSSE because of nearly perfect basis set for the separated atoms limit
=> excellent description of weak bonds (but DFT limitation)

Summary Basis Functions

Advantages

- very efficient (small) basis \Rightarrow fast calculations
- allows for calculations without periodic boundary conditions or less dense systems (slabs with large vacuum)
- easy physical interpretation of basis functions
- (almost) no basis set superposition error
- different basis sets for different elements possible

Disadvantages

- no systematic way to improve basis set quality
- careful tests required to construct a basis set

Numerical Integration

3 Step approach

1. Decomposition of the total integral in 3D into a sum of independent integrals for atomic contributions
\Rightarrow partitioning
2. Decomposition of each atomic integral into a radial and an angular part \Rightarrow spherical polar coordinates
3. Integration of the angular part on a sphere or decomposition into separate integrations for ϑ and ϕ

Partition Functions

1. Step: Decomposition into atomic contributions

Partition functions p_{α} are used to rewrite integrals over all space:

$$
\int f(\mathbf{r}) d \mathbf{r}=\int \sum_{\alpha} f_{\alpha}\left(\mathbf{r}_{\alpha}\right) d \mathbf{r}=\int \sum_{\alpha} f(\mathbf{r}) p_{\alpha}(\mathbf{r}) d \mathbf{r}
$$

\Rightarrow Sum of atomic integrals

$$
\int f(r) d r=\sum_{\alpha} \int f_{\alpha}\left(\mathbf{r}_{\alpha}\right) d r
$$

Enables integration using spherical polar coordinates!

Partition Functions Definition:

The partition function for a center α :

$$
p_{\alpha}(r)=\frac{g_{\alpha}(r)}{\sum_{\beta} g_{\beta}(r)}
$$

Normalization:

$$
\sum_{\alpha} p_{\alpha}=1
$$

- choose one peaked function \boldsymbol{g}_{α} for each center α
- calculate the partition function for each center α
Example: $g_{\alpha}=\left(\frac{\rho_{\alpha}}{r_{\alpha}}\right)^{2}$
Example:

Partition Functions

Total function:

Partition functions:

Peaked functions g_{A} and g_{B} :

Decomposed functions:

Numerical Integration Example: O atom

Radial Integration Meshes

Number of radial shells

$$
n=s \cdot 14 \cdot(z+2)^{\frac{1}{3}}=30
$$

$z=$ atomic number
$s=$ scaling factor

Numerical Integration

Example: \mathbf{O} atom

Angular Integration Meshes

- integration is done on Lebedev Spheres
- integration scheme with octahedral symmetry

(projections of points on sphere into plane)

Numerical Integration

Example: 0 atom (cutoff 10 bohr)

Total Grid:

Remarks:

- user defined grids
- higher order angular schemes are possible
- symmetry is used to reduce number of points
- a weight is assigned to each point
- in a molecule or solid a superposition of atomic meshes is used

3287 points

Numerical Integration

Effect of mesh quality: total energy of the Al atom

Electrostatics

Classical electrostatic contribution in Hamiltonian

$$
J[\rho]=\frac{1}{2} \iint \frac{\rho\left(\mathbf{r}_{1}\right) \rho\left(\mathbf{r}_{2}\right)}{r_{12}} d \mathbf{r}_{1} d \mathbf{r}_{2}
$$

Matrix elements
Hartee-Fock

$$
J_{\mu \nu}=\sum_{\lambda=1}^{L} \sum_{\sigma=1}^{L} P_{\lambda \sigma} \iint \frac{\chi_{\mu}\left(\mathbf{r}_{1}\right) \chi_{v}\left(\mathbf{r}_{1}\right) \chi_{\lambda}\left(\mathbf{r}_{2}\right) \chi_{\sigma}\left(\mathbf{r}_{2}\right)}{r_{12}} d \mathbf{r}_{1} d \mathbf{r}_{2}
$$

DFT

$$
J_{\mu v}=\iint \frac{\chi_{\mu}\left(\mathbf{r}_{1}\right) \chi_{v}\left(\mathbf{r}_{1}\right) \rho\left(\mathbf{r}_{2}\right)}{r_{12}} d \mathbf{r}_{1} d \mathbf{r}_{2}
$$

Electrostatics

Common procedure in DFT using localized basis functions: Density-fitting using an auxiliary basis set $\left\{\omega_{k}\right\}$ auxiliary density constraint

$$
\rho(\mathbf{r}) \approx \widetilde{\rho}(\mathbf{r})=\sum_{k} c_{k} \omega_{k}(\mathbf{r}) \quad \int \tilde{\rho}(\mathbf{r}) d \mathbf{r}=N
$$

The basis functions $\left\{\omega_{k}\right\}$ are of the same type as for the wavefunction expansion.

Matrix elements $\mathrm{O}\left(N^{3}\right)$

$$
J_{\mu v}=\sum_{k} c_{k} \iint \frac{\chi_{\mu}\left(\mathbf{r}_{1}\right) \chi_{v}\left(\mathbf{r}_{1}\right) \omega\left(\mathbf{r}_{2}\right)}{r_{12}} d \mathbf{r}_{1} d \mathbf{r}_{2}
$$

Electrostatics

Approach to electrostatics in DMol ${ }^{3}$: Overview

Step 1
Partitioning: decompose the electron density into atomic components

Step 2
Projection onto $\boldsymbol{Y}_{\mathrm{lm}}$ functions yields multipoles attached to the atoms

Step 3
Solve Poisson's equation for each multipole (only 1-dimensional problem)

Step 4
Assemble electrostatic potential from all multipoles and atoms
DMol^{3} : No basis set required for density expansion!

Electrostatics

1. Step: Partitioning of total density ρ into atomic densities ρ_{α} \Rightarrow like numerical integration
2. Step: Multipole expansion of each ρ_{α}

$$
\rho_{\alpha l m}(r)=\frac{1}{\sqrt{4 \pi}} \frac{1}{\sqrt{2 l+1}} \int Y_{\alpha / m}(\vartheta, \phi) \rho_{\alpha}(r, \vartheta, \phi) d \vartheta d \phi
$$

$$
\rho_{\alpha}(r, \vartheta, \phi) \approx \sqrt{4 \pi} \sum_{l m}^{l_{m a}} \sqrt{2 l+1} \rho_{\alpha l m}(r) Y_{\alpha l m}(\vartheta, \phi)
$$

- truncation of expansion at $l_{\text {max }}$
- reduction to 1-dimensional radial density $\rho_{\text {olm }}(r)$

Electrostatics

3. Step: Calculation of the potential contributions

Single center Poisson's equation

$$
\nabla^{2}=\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} \frac{1}{r}-\frac{l^{2}}{r^{2}}
$$

spherical Laplacian
density decomposition

$$
\rho_{\alpha}=\sum \rho_{\alpha l m}
$$

$$
V_{\alpha}(r, \vartheta, \phi)=\sum_{l m}^{l_{\text {max }}} \frac{1}{r} V_{\alpha l m}(r) Y_{l m}(\vartheta, \phi)
$$

potential expansion
\Rightarrow set of equations for numerical evaluation of all $V_{\text {clm }}(r)$

Electrostatics

4. Step: Construction of the total potential from atomic contributions

$$
\begin{aligned}
V_{\alpha}(r, \vartheta, \phi) & \Rightarrow V(\mathbf{r}) \\
\text { atomic mesh } & \Rightarrow \text { full mesh }
\end{aligned}
$$

Calculation of the electrostatic potential: $\mathrm{O}\left(N^{2}\right)$

For periodic boundary conditions an Ewald summation is included.

Ewald Summation for Monopoles

Real space:
Reciprocal space:
point charges + negative Gaussians
background charge + positive Gaussians

Extensions to

 Ewald Summation1. Generalization for lattices with multipoles

DMol ${ }^{3}$ contains an extension to lattices of point multipoles located at the atomic sites:

- applied to the $\rho_{\alpha l m}$
- computationally as demanding as for point charge lattices

2. Extension to monopoles and multipoles of finite extent Assumption: multipoles are located inside a radius $r^{\text {cut }}$

Ewald terms with $r<r^{\text {cut }}$ have to be modified in the real space part, because explicit calculation of the radial details of the extended charge distribution is required.

Electrostatics

Scaling (localized basis sets)

Hartree Fock

DFT in general

DMol ${ }^{3}$ molecular case
DMol ${ }^{3}$ solid case

$$
\left.\begin{array}{l}
\mathrm{O}\left(N^{4}\right) \\
\mathrm{O}\left(N^{3}\right)
\end{array}\right\} \begin{aligned}
& \text { Real systems: } \\
& \rightarrow \mathbf{O}\left(N^{2}\right)
\end{aligned}
$$

Electrostatics in DMol ${ }^{3}$ scale almost linearly with system size for large systems

The Harris Functional

J. Harris, Phys. Rev B 31 (1985) 1770.
B. Delley et al., Phys. Rev B 27 (1983) 2132.

Kohn Sham energy functional

$$
E_{K S}[\rho]=T[\rho]+E_{H}[\rho]+E_{X C}[\rho]+E_{e x t}[\rho]+E_{n n}
$$

Harris energy functional

$$
E_{\text {Harris }}[\rho]=\sum_{i=1}^{N} f_{i} \varepsilon_{i}-E_{H}[\rho]+E_{X C}[\rho]-\int \mu_{X C}[\rho] \rho d^{3} r+E_{n n}
$$

Original idea of the Harris functional:

- approximate DFT calculations for very large systems
- non-selfconsistent energy calculation (1 iteration only)
- approximated density = superposition of fragment densities (i.e. atomic densities)

Total Energy in DMol ${ }^{3}$

DMol ${ }^{3}$ uses the Harris functional (scf densities)

- the Harris functional is stationary at the same density as the Kohn-Sham functional and the two are equal in value at this point
- the curvature of $E_{\text {Harris }}$ about the stationary point is smaller than the curvature of E_{KS}
- the density in the Harris functional does not have to be V-representable

Reduction of numerical noise

Realization: subtraction of atomic densities from total densities in integrands

More features ...

- forces
- geometry optimization
- ab initio molecular dynamics and simulated annealing
- COSMO (COnductor-like Screening MOdel)
- transition state search
- vibrational frequencies
- Pulay (DIIS) charge density mixing
- pseudopotentials (optional)

Conclusion

- Fast
- very small basis sets, matrix diagonalization $\mathrm{O}\left(N^{3}\right)$
- no costs for large vacuum or atom / molecules
- efficient calculation of electrostatics
- $O(N)$ calculation of Hamilton and overlap matrix
- Universal
- atom, molecule and cluster calculations
- solids and slabs with periodic boundary conditions
- Accurate results
- comparable to LAPW \Rightarrow next talk
- Easy to use
- atoms are given in Cartesian coordinates

References

Introduction:

- B. Delley, J. Chem. Phys. 92 (1990) 508
- B. Delley in "Modern Density Functional Theory: A Tool for Chemistry", Theoretical and Computational Chemistry Vol. 2, Ed. by J. M. Seminario and P. Politzer, Elsevier 1995
- B. Delley, J. Chem. Phys. 113 (2000) 7756

Further Details:

- B. Delley, Comp. Mat. Sci. 17 (2000) 122
- J. Baker, J. Andzelm, A. Scheiner, B. Delley, J. Chem. Phys. 101 (1994) 8894
- B. Delley, J. Chem. Phys. 94 (1991) 7245
- B. Delley, J. Comp. Chem. 17 (1996) 1152
- B. Delley, Int. J. Quant. Chem. 69 (1998) 423
- B. Delley, J. Phys. Chem. 100 (1996) 6107
- B. Delley, M. Wrinn, H. P. Lüthi, J. Chem. Phys. 100 (1994) 5785

