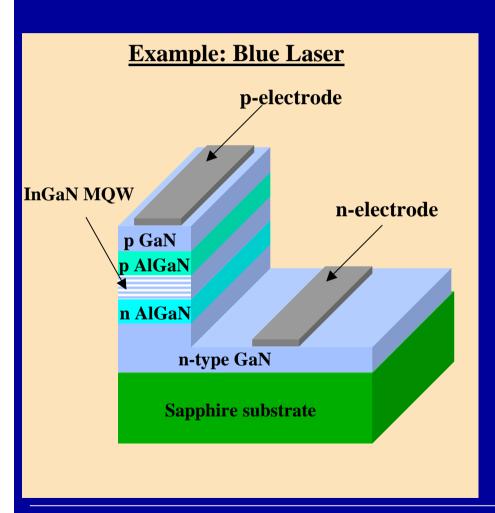
Ab initio based Multiscale Methods

Jörg Neugebauer Fritz-Haber-Institut der MPG, Berlin



Challenges:

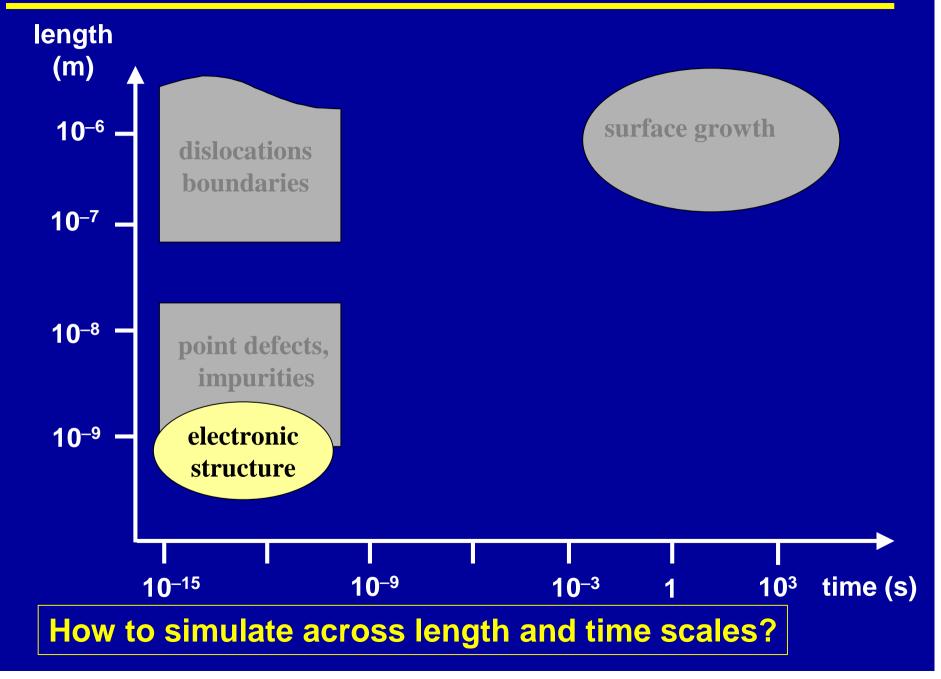
- Interfaces
- Dislocations/Grain Boundaries
- Alloys
- Formation of nanostructures (intentional/unintentional)
- Growth optimization

Simulations:

- compute properties of above structures
- compute synthesis (crystal growth)

S. Nakamura et al., Jpn. J. Appl. Phys. 35, L217 (1996).

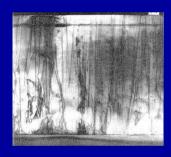
Scaling Problem in Modeling



Outline

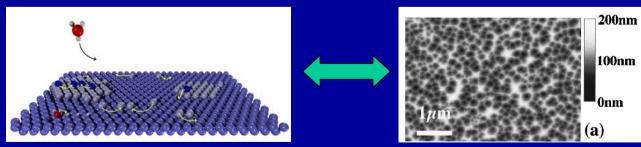
- Motivation: Multi-scale simulation methods
- Point Defects: Impurities

- charge states
- atomic geometry
- formation energy/concentrations
- Extended defects: Dislocations



- electronic structure
- atomic geometry/stoichiometry
- energetics/stability

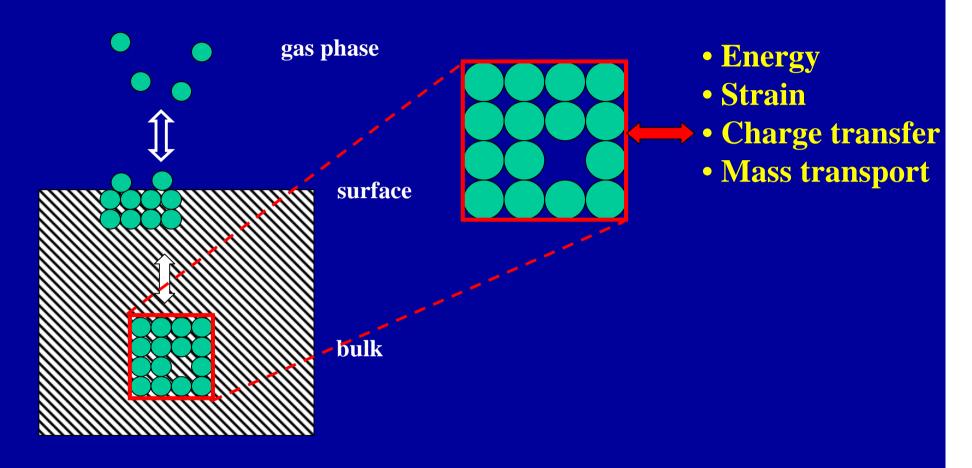
Crystal growth



atomic scale

mesoscopic scale

Key Concepts of Multiscale Methods



Idea:

- 1. Partition total system into regions containing the relevant microscopic structures
- 2. Calculate all relevant properties + interaction parameters for these regions (DFT)
- 3. Connect the regions based on the calculated interaction parameters

How to Describe the Different Types of Interactions

Energy

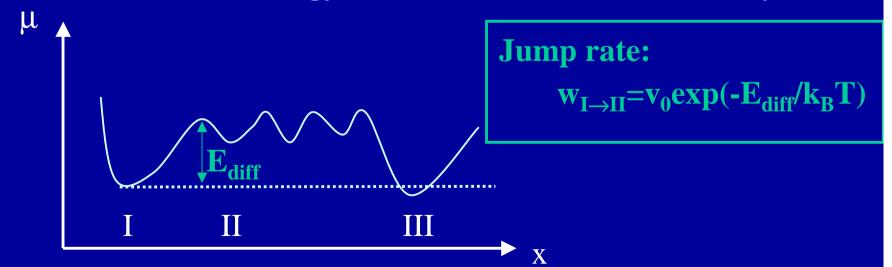
⇒Thermostats (Lars Ismer)

Strain

⇒ Approximated microscopic models/continuum theory

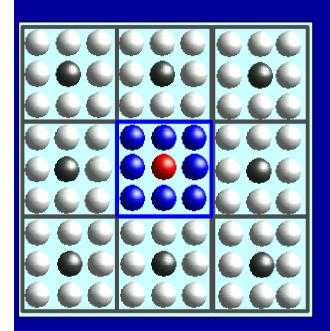
Particle transfer (electrons, atoms, defects)

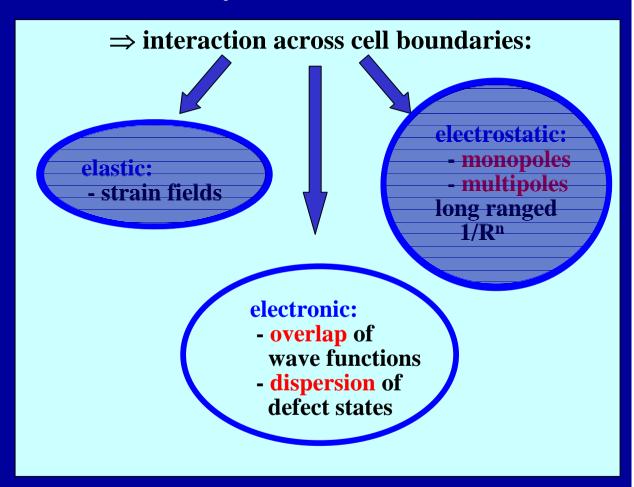
- \Rightarrow Thermodynamic equilibrium (\rightarrow chemical potentials)
- \Rightarrow Kinetics (\rightarrow energy barriers, transition state theory)



Convergence aspects for defect calculations

Periodic boundary conditions

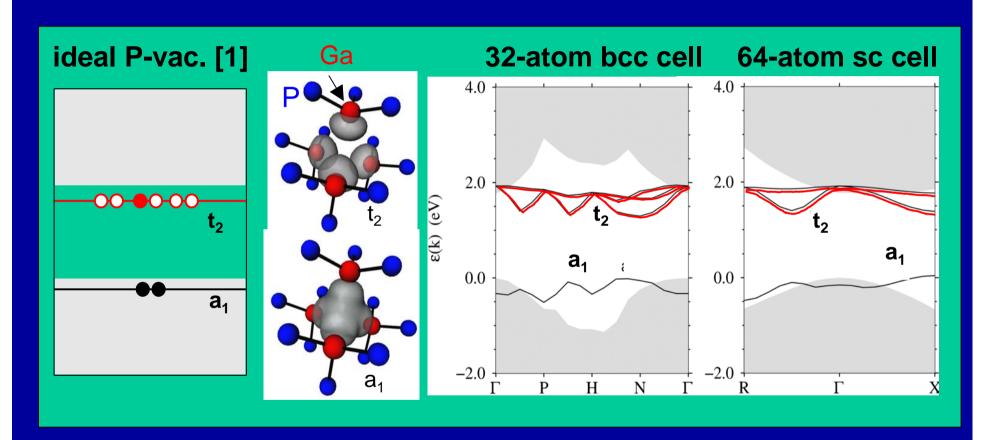




- Artificial interaction across cell boundaries \rightarrow have to be removed
- Increase cell size \rightarrow all physical quantities converge
- Error estimation and reduction for 'small' cells is crucial!

Electronic effects (I)

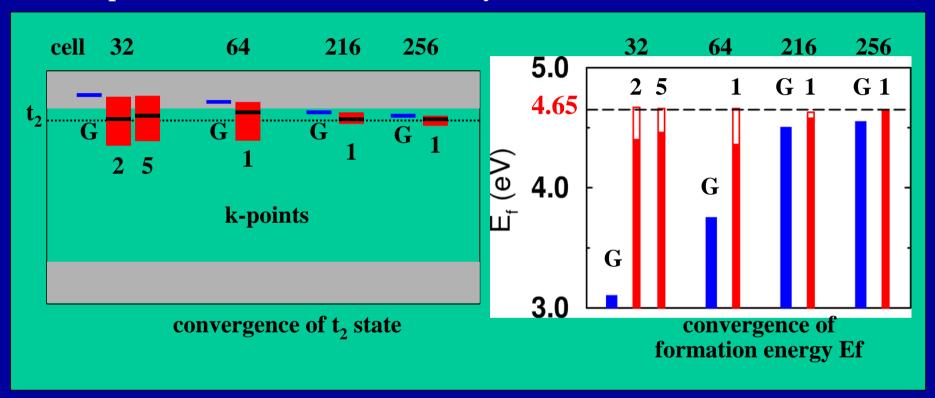
Example: Neutral GaP P-Vacancy:



- large dispersion due to defect-defect interaction
- unphysical splitting of degenerate t₂ defect state

Electronic effects (II)

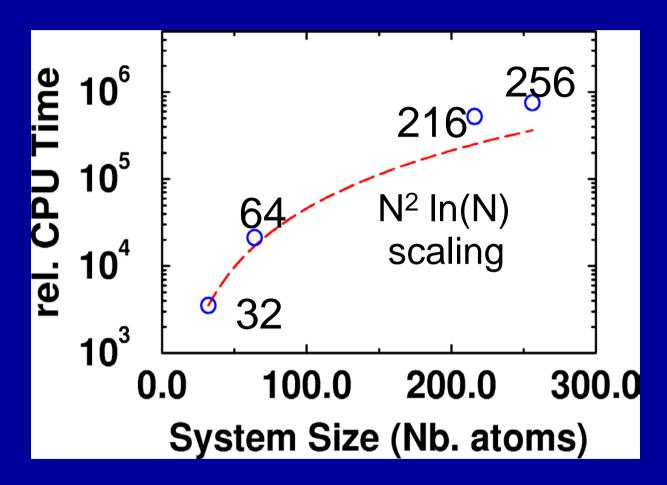
Convergence Tests: Cell Size and k-Points Example: Neutral Ideal GaP P-Vacancy



- slow convergence of defect state and energy at the Γ point
- average over special k-points converges significantly faster (error < 0.02eV)

Relative CPU Time Consumption

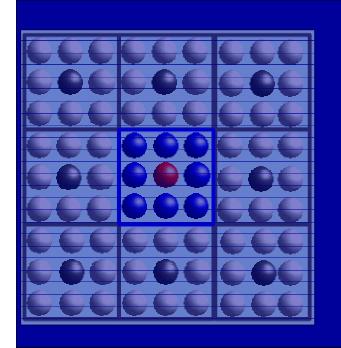
Example: Neutral GaP P-Vacancy

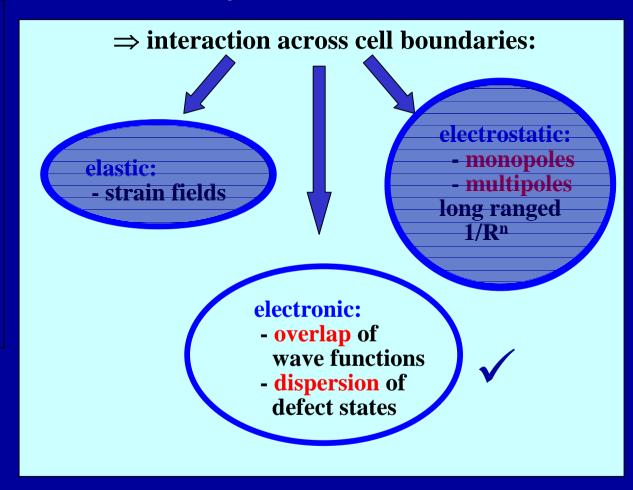


By a proper treatment of defects in supercells more than two orders of magnitude in CPU time can be saved!

Convergence aspects for defect calculations

Periodic boundary conditions



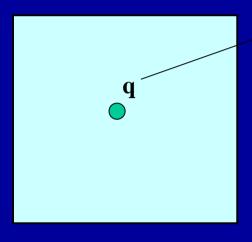


- Artificial interaction across cell boundaries \rightarrow have to be removed
- Increase cell size \rightarrow all physical quantities converge
- Error estimation and reduction for 'small' cells is crucial!

Calculating charged defects

Charged defect in an infinite cell

Charged defect in a supercell



q	q	q
q	q	q
q	q	q

asymptotic behavior:

$$V \propto \frac{q}{\varepsilon \varepsilon_0 r}$$

screened Coulomb potential

electrostatic potential

$$V^{Hartree} \propto \frac{\rho(G)}{|G|^2}$$

$$\rho(G=0) = \int_{\Omega} \rho(\vec{r}) d\vec{r}$$

For non-neutral systems the G=0 component of the potential diverges (V^{Hartree} ill defined!)

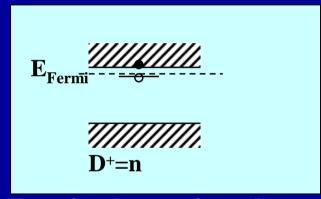
⇒ supercell must be always charge neutral!

Charge compensation

How to realize a charge neutral supercell?

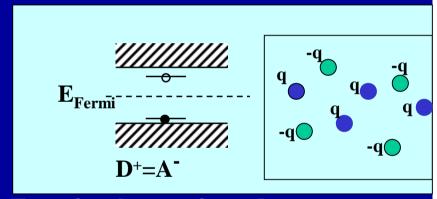
 \Rightarrow Look at nature!

Example: Donor



Transfer electron from donor level to bottom of conduction band

delocalized state



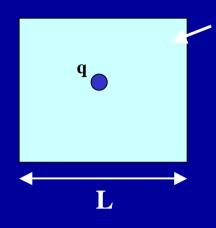
Transfer electron from donor to acceptor level

statistically homogeneous distribution

First approximation: constant background [set $V^{Hartree}(G=0) = 0$]

Compensation by constant background

Problem: Slow convergence with supercell size



total charge of background: -q

$$\Delta E = -\frac{q^2 \alpha}{2\epsilon L}$$

$$\alpha = 2.84$$

Electrostatic interaction between charged defects in neighboring supercells:

$$E \propto \frac{q^2}{\varepsilon L}$$

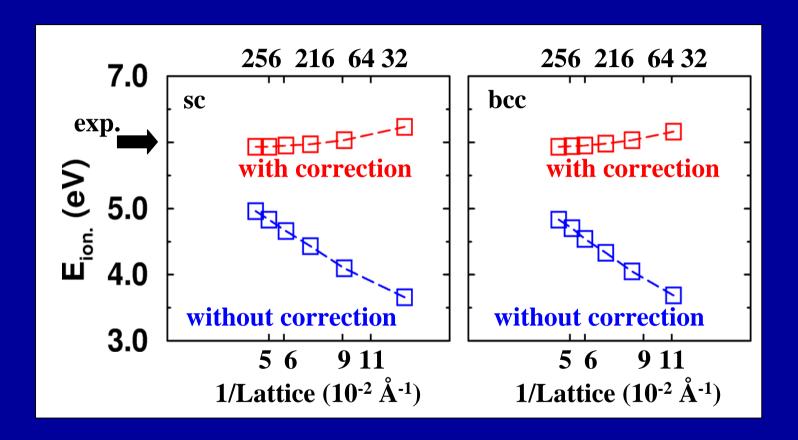
ε bulk dielectric constant

Defect-defect interaction vanishes asymptotically like 1/L!

Suggestion (Ref. [1]): Correct explicitly for this error ⇒ subtract it from total energy

Example: First ionization energy of an atom

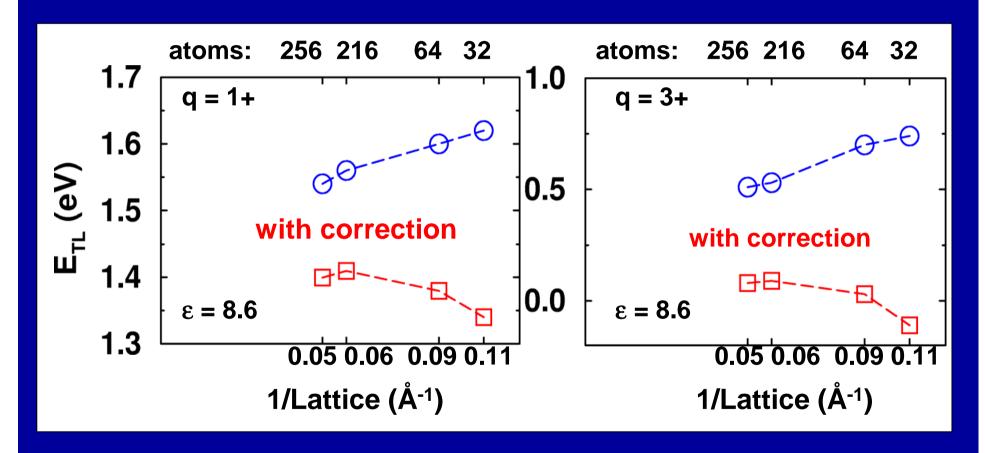
System: Ga Atom in Cubic Cells



Makov/Payne correction significantly improves convergence with respect to supercell size for this system!

Example: Positively Charged Vacancy

Charge Transfer Level ETL for 1+ and 3+



Makov/Payne correction overestimates the error!

Problem: bulk dielectric constant not appropriate

⇒ enhanced screening around defect

Thermodynamic potentials

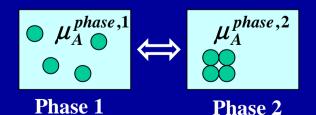
Key quantity:

Partition function:
$$Z(V,T) = \sum_{i} e^{-E_i/k_B T}$$

Free energy*:
$$F(V,T) = -k_B T \ln \{Z(V,T)\}$$

Gibbs Free energy:
$$G(p,T) = F(V,T) + pV$$

Chemical potential:
$$\mu_A = \left(\frac{\partial G(A^n)}{\partial n}\right)_{T,p}$$



Example: Point defects

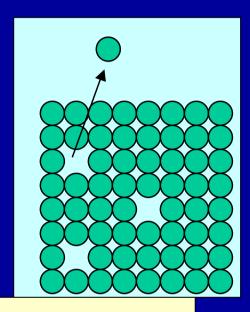
Free energy: F = U - TS

For isolated defects:

$$U = nE_D$$

number of defects

formation energy of an isolated defect



Configurational entropy:

$$S^{config} = k_B \ln W$$

$$S^{config} = k_B \ln W$$
 with $W = \frac{N(N-1)...(N-n-1)}{n!} = \frac{N!}{(N-n)!n!}$

$$\left(\frac{\partial F}{\partial n}\right)_T = E_S - k_B T \ln \frac{N - n}{n} = 0$$

Defect concentration:
$$n = N \exp\left(-\frac{E_D}{kT}\right)$$

Defect Formation energy

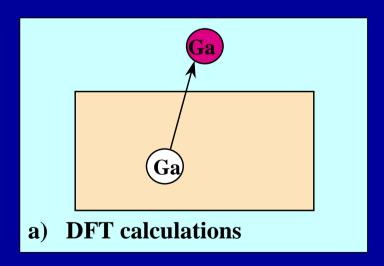
Defect concentration:

$$n_{Defekt} = N_{sites} \exp\left(-\frac{E_D}{kT}\right)$$

How can we calculate formation energy E_D ?

Note: To create a defect the number of atoms in the system may change!

Example: Creation of a vacancy in GaN (two steps)



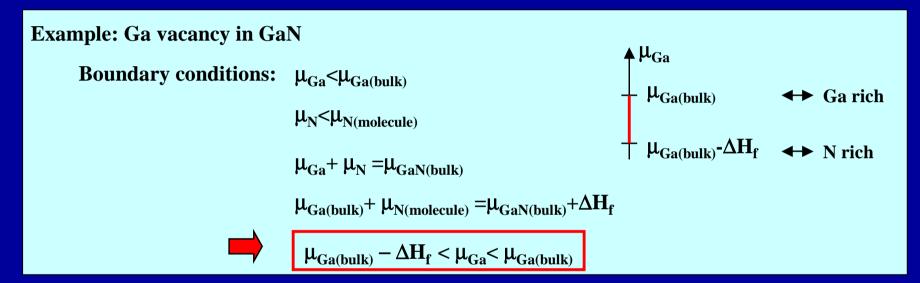
$$E_D(GaN:V_{Ga}^q) = E_{tot}(GaN:V_{Ga}^q) + \mu_{Ga} + qE_{Fermi}$$

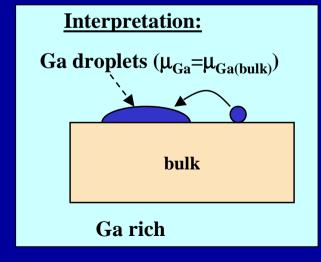
Chemical Potentials

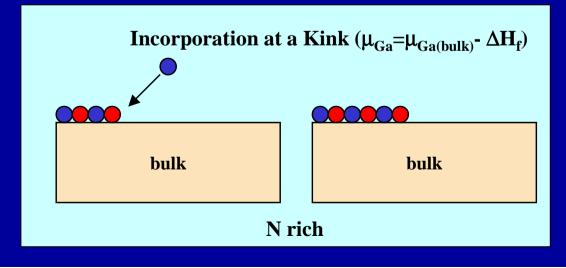
Specific value of the chemical potentials depends on the environment!

⇒ variables, which can be experimentally controlled (via T, p, fluxes and flux ratio)

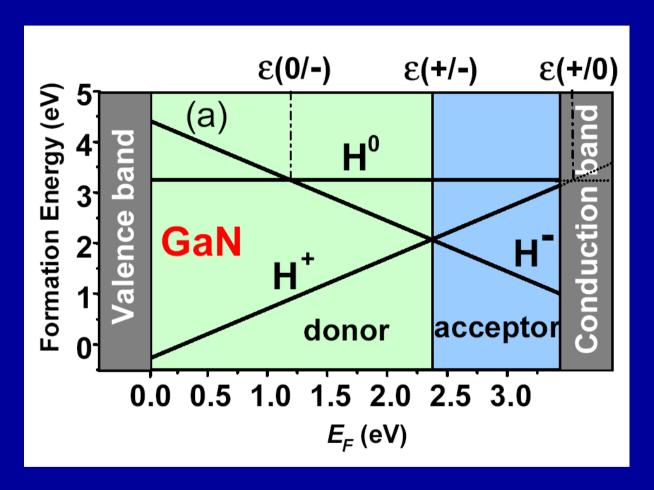
But: Boundary conditions are well defined and can be calculated







Example: H in GaN



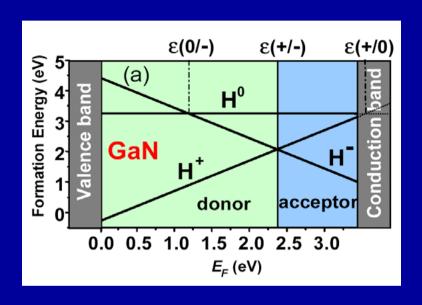
 $E_f(GaN:H^q) = E_{tot}(GaN:H^q) - \mu_H + qE_F$

Electric behavior of hydrogen in GaN can be identified!

J. Neugebauer and C. Van de Walle, Phys. Rev. Lett. 75, 4452 (1995)

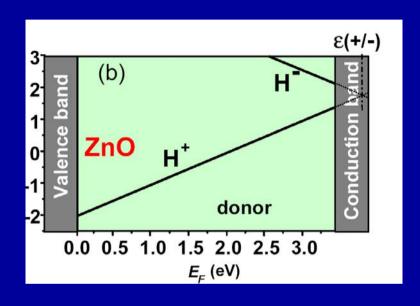
Explore Chemical Trends

GaN



compensating center

ZnO

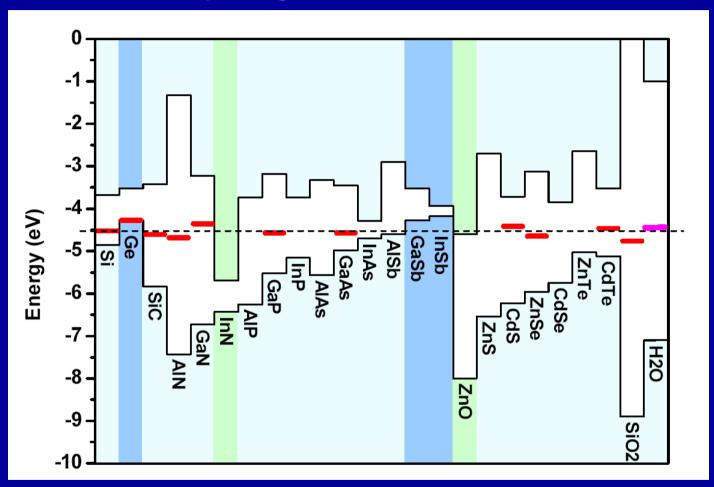


donor impurity

Hydrogen exhibits very different behavior!

Identification of an Universal Alignment

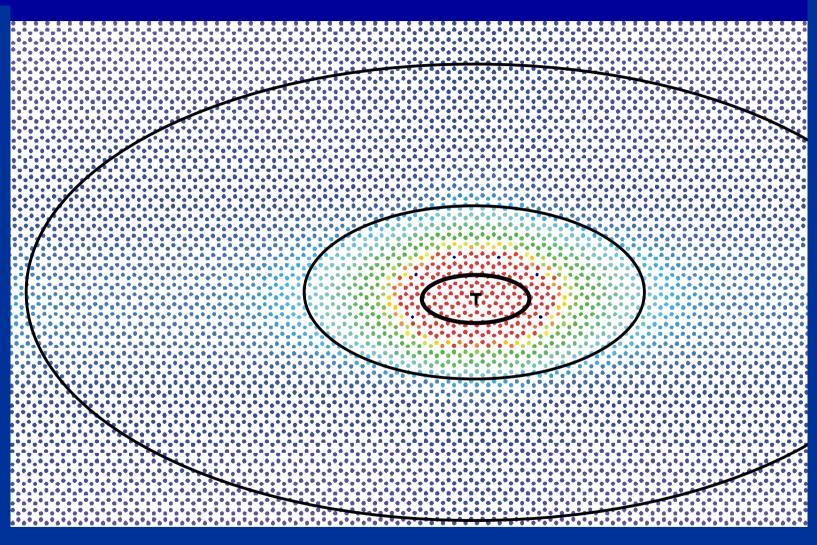
Position of the Hydrogen level:



Multiscale methods allow identification of hidden rules!

C.G. Van de Walle and J. Neugebauer, Nature 423, 626 (2003).

Scaling Problem



Zone I: broken bonds & large displacements
Zone II: large displacements

Zone III: small displacements

 \Rightarrow ab initio methods

⇒ empirical potentials

Step I: Linear Elastic Theory

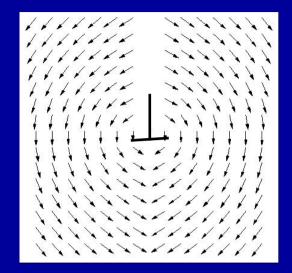
Displacement Field:1,2

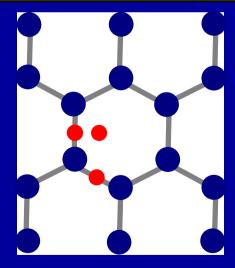
$$u_{x}(x,y) = \frac{b}{2\pi} \left(\tan^{-1} \left(\frac{y}{x} \right) + \frac{xy}{2(1-v)(x^{2}+y^{2})} \right)$$

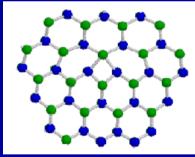
$$u_{y}(x,y) = -\frac{b}{2\pi} \left(\frac{1-2v}{4(1-v)} \ln(x^{2}+y^{2}) + \frac{x^{2}-y^{2}}{4(1-v)(x^{2}+y^{2})} \right)$$

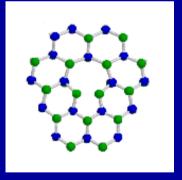
b: burger's vector

v: Poisson's ratio

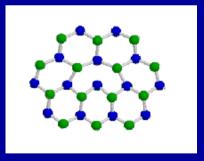








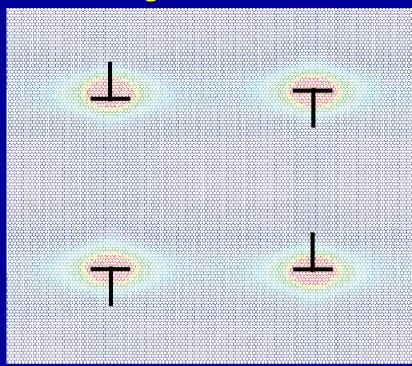
open core



full core

Step II: Empirical Potentials

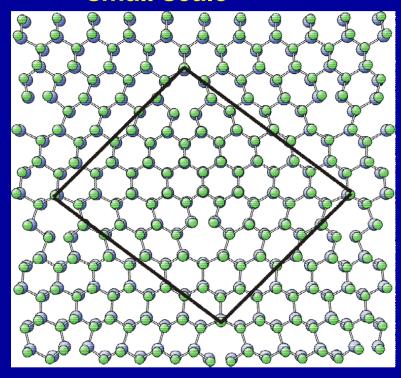
large scale



supercells with more than 10⁵ atoms

⇒ Connect to continuum theory

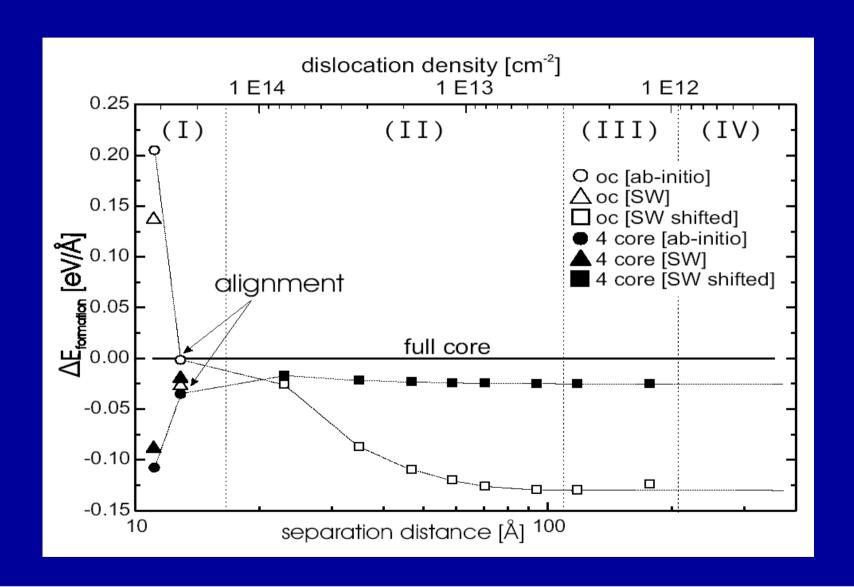
small scale



supercells with ~10² atoms

⇒ Connect to ab initio calculations

Application: Energetics



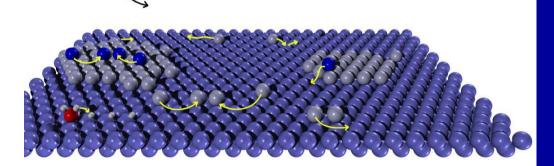
Example: Crystal Growth

Length: 10⁻¹⁰ -10⁻⁹ m

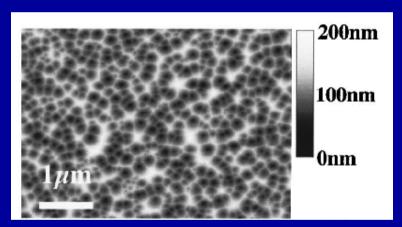
Time: ~10⁻¹⁵ s

Length: 10⁻⁶ m

Time: 10⁰ s



Mesoscopic/macroscopic scale



Hierarchical Approach:

Electronic many particle system ✓

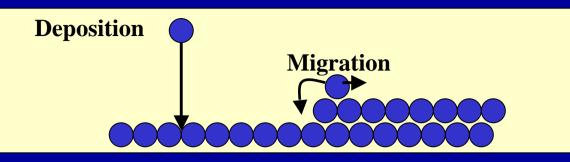
Atomic Interaction ✓

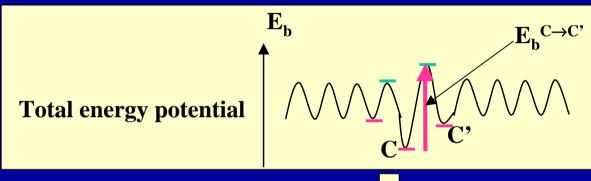
Atomic many particle system?

▼ Identify stable surfaces

Identify kinetic pathways

The Master Equation





Transition probability:

$$W_{C \to C'} = \Gamma_C e^{-E_b^{C \to C'}/K_B T}$$

Master Equation:
$$\partial P(C, t)/\partial t = -\sum_{C'} W(C \to C') P(C, t) + \sum_{C'} W(C' \to C) P(C', t)$$

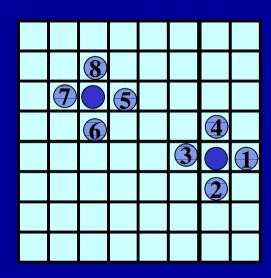
Flux out

Flux in

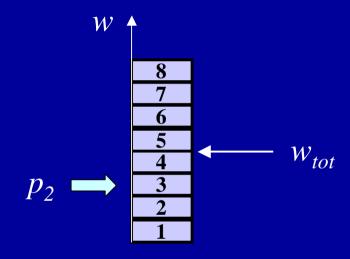
Solving the Master Equation: Kinetic Monte Carlo

Master Equation: $\partial P(C, t)/\partial t = -\sum_{C'} W(C \rightarrow C') P(C, t) + \sum_{C'} W(C' \rightarrow C) P(C', t)$

Example: Lattice gas



1. Build up probability vector:



2. Get time step:

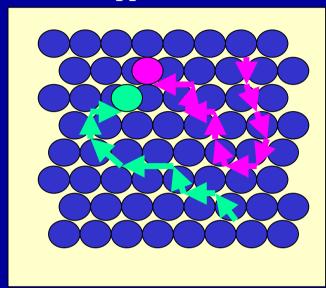
$$\Delta t = -\frac{\ln p_1}{w_{tot}}$$

3. Get event:

$$\frac{\ln w_i}{w_{tot}} \le p_2 < \frac{\ln w_{i+1}}{w_{tot}}$$

Kinetic Monte Carlo Simulations

Conventional approach: Simulation of the process by KMC.



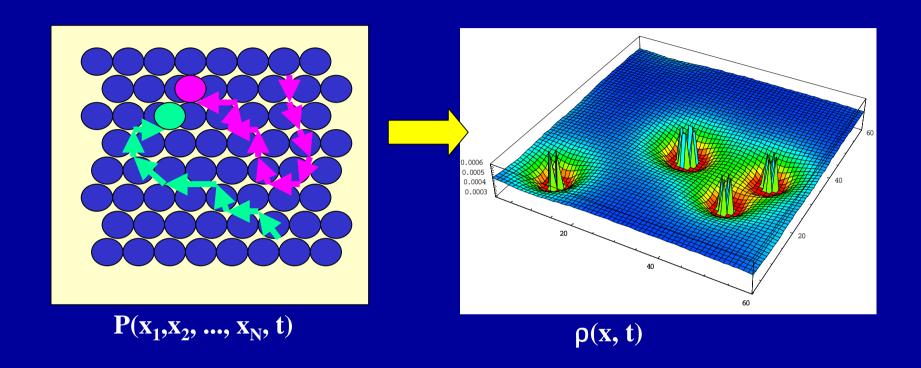
Temp. (K)	_	$\Delta t_{diff}(s)$
500	path 30	3.3*10 ⁻⁵
750	470	$2.1*10^{-6}$
1000	1800	5.6*10 ⁻⁷
1150	60000	1.7*10 ⁻⁸

PROBLEM: Number of diffusion events is order of magnitudes larger than number of growth events!

 Δt_s = average time for a change in the surface (nucleation, attachment) Δt_{ad} = average time for an adatom position change

$$\frac{\Delta t_s}{\Delta t_{ad}} \sim 10^3 10^5$$

From Adatom Trajectories to Density

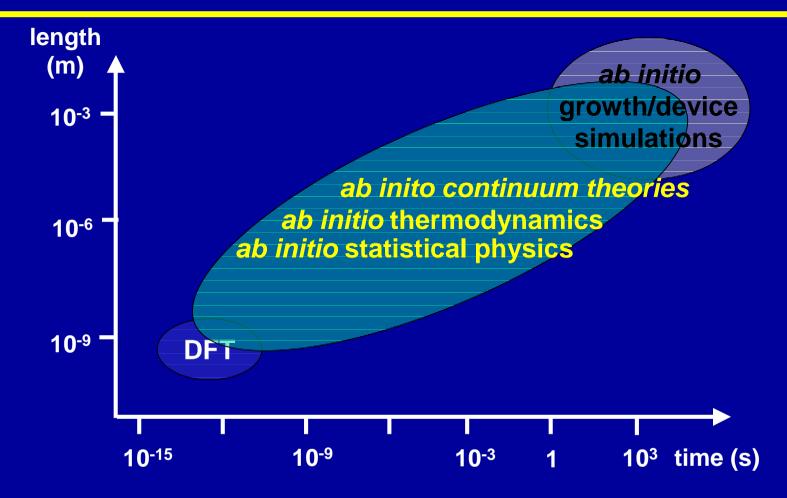


Challenges:

- Nucleation (requires in principle two particle density)
- Attachment
- Efficient calculation of the time evolution of the adatom density
- Numerical stability, statistical tests
- Connection to ab initio calculations (potential energy surface, diffusion paths)

[1] L. Mandreoli, J. Neugebauer, R. Kunert, E. Scholl, subm. to PRB

Conclusions



Multiscale methods allow an accurate description of various aspects of materials science!