
S. Nakamura et al., Jpn. J. Appl. Phys. 35, L217 (1996).

Example: Blue Laser

Sapphire substrate

n-type GaN

n AlGaN

p AlGaN
p GaN

p-electrode

n-electrode
InGaN MQW

Challenges:
• Interfaces

Simulations:

• compute properties of above
structures

• compute synthesis 
(crystal growth)

• Dislocations/Grain Boundaries
• Alloys
• Formation of nanostructures
(intentional/unintentional)

• Growth optimization

Jörg Neugebauer
Fritz-Haber-Institut der MPG, Berlin

Ab initio based Multiscale Methods



Scaling Problem in Modeling
length

(m)

10−9

10−8

10−7

10−6

dislocations
boundaries

point defects, 
impurities

time (s)110−15 10−9 10−3 103

surface growth

electronic
structure

How to simulate across length and time scales?



Outline

• Motivation: Multi-scale simulation methods
• Point Defects: Impurities

• electronic structure
• atomic geometry/stoichiometry
• energetics/stability 

atomic scale mesoscopic scale

• Crystal growth

• Extended defects: Dislocations

• charge states
• atomic geometry
• formation energy/concentrations



Key Concepts of Multiscale MethodsKey Concepts of Multiscale Methods

gas phase

surface

bulk

• Energy
• Strain
• Charge transfer
• Mass transport

Idea:
1. Partition total system into regions containing the relevant microscopic structures
2. Calculate all relevant properties + interaction parameters for these regions (DFT) 
3. Connect the regions based on the calculated interaction parameters 



How to Describe the Different Types of InteractionsHow to Describe the Different Types of Interactions

Energy
⇒Thermostats (Lars Ismer)

Strain
⇒ Approximated microscopic models/continuum theory

Particle transfer (electrons, atoms, defects)
⇒Thermodynamic equilibrium (→ chemical potentials)
⇒ Kinetics (→ energy barriers, transition state theory)

µ

x

Ediff

I II III

Jump rate:
wI→II=v0exp(-Ediff/kBT)



Convergence aspects for defect calculations 

⇒ interaction across cell boundaries:

elastic:
- strain fields

electrostatic:
- monopoles
- multipoles

long ranged
1/Rn

electronic:
- overlap of 

wave functions
- dispersion of
defect states

- Artificial interaction across cell boundaries → have to be removed
- Increase cell size → all physical quantities converge
- Error estimation and reduction for 'small' cells is crucial!

Periodic boundary conditions



32-atom bcc cell 64-atom sc cell
P

Gaideal P-vac. [1]

a1

t2
t2

a1

t2

a1
a1

t2

Electronic effects (I)

Example: Neutral GaP P-Vacancy:

G. Schwarz, PhD thesis

- large dispersion due to defect-defect interaction
- unphysical splitting of degenerate t2 defect state



t2

2 5
G G

1

32 64 216

G

256

G
1 1

cell

k-points

convergence of t2 state

32 64 216 256

convergence of 
formation energy Ef

G

G

G G2 5 1 1 1
4.65

Electronic effects (II)
Convergence Tests: Cell Size and k-Points 
Example: Neutral Ideal GaP P-Vacancy

G. Schwarz, PhD thesis

- slow convergence of defect state and energy at the Γ point
- average over special k-points converges significantly faster 

(error < 0.02eV) 



32

64

216
256

N2 ln(N)
scaling

Example: Neutral GaP P-Vacancy

Relative CPU Time Consumption

By a proper treatment of defects in supercells more than two orders
of magnitude in CPU time can be saved!



Convergence aspects for defect calculations 

⇒ interaction across cell boundaries:

elastic:
- strain fields

electrostatic:
- monopoles
- multipoles

long ranged
1/Rn

electronic:
- overlap of 

wave functions
- dispersion of
defect states

- Artificial interaction across cell boundaries → have to be removed
- Increase cell size → all physical quantities converge
- Error estimation and reduction for 'small' cells is crucial!

Periodic boundary conditions



Calculating charged defects

Charged defect in an infinite cell

q

electron
reservoir

asymptotic behavior:

r

q
V

0εε
∝

screened Coulomb potential

Charged defect in a supercell

q

q q

q

q

q

q q q

electrostatic potential

( )
2

G

G
V Hartree ρ∝

( ) ( ) rdrG
rr

∫
Ω

ρ==ρ 0

For non-neutral systems the G=0 component of the potential diverges
(VHartree ill defined!)
⇒ supercell must be always charge neutral!



Charge compensation

How to realize a charge neutral supercell?
⇒ Look at nature!

D+=n

EFermi

Example: Donor

Transfer electron from donor 
level to bottom of conduction band

delocalized state

D+=A-

EFermi

Transfer electron from donor to 
acceptor level

q
-q

q
q

q
-q

-q

-q

statistically homogeneous distribution

First approximation: constant background [set VHartree(G=0) = 0]



Compensation by constant background

Problem: Slow convergence with supercell size

Electrostatic interaction between charged defects in neighboring supercells:

q

total charge of background: -q

L

L

q
E

ε
∝

2

Defect-defect interaction vanishes asymptotically like 1/L!

Suggestion (Ref. [1]): Correct explicitly for this error 
⇒ subtract it from total energy

[1] G. Makov and M. C. Payne, Phys. Rev. B 51, 4014 (1995).

ε bulk dielectric constant



Example: First ionization energy of an atom

without correction

with correction

256  216  64 32

1/Lattice (10-2 Å-1)

256  216  64 32

bccsc

5 6 9 11
1/Lattice (10-2 Å-1)

5 6 9 11

without correction

with correction

exp.

System: Ga Atom in Cubic Cells

Makov/Payne correction significantly improves convergence with 
respect to supercell size for this system!

G. Schwarz, PhD thesis



Example: Positively Charged Vacancy

1/Lattice (Å-1)

0.05 0.06  0.09 0.11

atoms:    256  216     64   32

1/Lattice (Å-1)

0.05 0.06  0.09 0.11

atoms:    256  216     64   32

ε = 8.6 ε = 8.6

with correction with correction

q = 1+ q = 3+

Charge Transfer Level ETL for 1+ and 3+

Makov/Payne correction overestimates the error!
Problem: bulk dielectric constant not appropriate 

⇒ enhanced screening around defect



Thermodynamic potentials

Free energy*: { })T,V(ZlnTk)T,V(F B−=

Chemical potential:
p,T

n

A n

)A(G











∂
∂=µ

Gibbs Free energy: ( ) pVTVFTpG += ,),(

Partition function: ∑ −=
i

TkE BieTVZ /),(

Key quantity:

Phase 1 Phase 2

1,phase
Aµ 2,phase

Aµ
*From Etot + dynamical matrix
Implemented in SFHIngX



Example: Point defects

Free energy: TSUF −=

DnEU =For isolated defects:

number of defects formation energy of
an isolated defect

Configurational entropy:
( )

( ) !! 

!

!

)1(1
   th        wiln

nnN

N

n

nNNN
WWkS B

config

−
=−−−== K

Minimize free energy: 0ln =−−=







∂
∂

n

nN
TkE

n

F
BS

T

Defect concentration: 






−=
kT

E
Nn Dexp



Defect Formation energy

Defect concentration:

Ga reservoirGa







−=

kT

E
Nn D

sitesDefekt exp

How can we calculate formation energy ED?

Note: To create a defect the number of atoms in the system may change!

Example: Creation of a vacancy in GaN (two steps)

( ) FermiGaGaGa :):( qEVGaNEVGaNE q
tot

q
D ++= µ

Ga

a)   DFT calculations

Ga

b)  Thermodynamics

Ga atom gains energy µGa



Chemical Potentials
Specific value of the chemical potentials depends on the environment!
⇒ variables, which can be experimentally controlled 

(via T, p, fluxes and flux  ratio)
But: Boundary conditions are well defined and can be calculated

Example: Ga vacancy in GaN

Boundary conditions: µGa<µGa(bulk)

µGa

µGa(bulk)

µGa+ µN =µGaN(bulk)

µN<µN(molecule)

µGa(bulk)+ µN(molecule) =µGaN(bulk)+∆Hf

µGa(bulk)-∆Hf

Ga rich

N rich

Interpretation:

µGa(bulk) − ∆Hf < µGa< µGa(bulk)

bulk

Ga droplets (µGa=µGa(bulk))

Ga rich

bulk

N rich

bulk

Incorporation at a Kink (µGa=µGa(bulk)- ∆Hf)



Example: H in GaNExample: H in GaN

Electric behavior of hydrogen in GaN can be identified!

Ef(GaN:Hq)  = Etot (GaN:Hq) – µΗ +qEF

J. Neugebauer and C. Van de Walle, Phys. Rev. Lett. 75, 4452 (1995)



Explore Chemical TrendsExplore Chemical Trends

Hydrogen exhibits very different behavior!

GaN ZnO

compensating center donor impurity



Identification of an Universal AlignmentIdentification of an Universal Alignment

Multiscale methods allow identification of hidden rules!

Position of the Hydrogen level:

C.G. Van de Walle and J. Neugebauer, Nature 423, 626 (2003).



Scaling ProblemScaling Problem

Zone I:  broken bonds & large displacements            ⇒ ab initio methods
Zone II: large displacements                                    ⇒ empirical potentials
Zone III: small displacements



( )( )






+−

+





= −

22
1

x yxν12
xy

x
y

tan
2π
b

y)(x,u

( ) ( ) ( ) ( )( )






+−

−++
−

−−= 22

22
22

y yxν14
yx

yxln
ν14

2ν1
2π
b

yx,u

Step I: Linear Elastic TheoryStep I: Linear Elastic Theory

Displacement Field:1,2

b: burger’s vector 
ν: Poisson’s ratio

[1] J.P. Hirth & J. Lothe, Theory of Dislocations (Wiley, New York, 1982)
[2] M. Yu. Gutkin & E.C. Aifantis, Scripta Materiala 36, 129 (1996)

full core4 atom core open core



supercells with more than 10105 5 atoms

Step II: Empirical PotentialsStep II: Empirical Potentials
large scale small scale

supercells with ~10102 2 atoms

⇒ Connect to continuum theory ⇒ Connect to ab initio
calculations



Application: EnergeticsApplication: Energetics

L. Lymperakis and J. Neugebauer, to be published



Example: Crystal Growth

Length: 10-6 m

Time: 100 s 

Microscopic scale Mesoscopic/macroscopic scale 

Length: 10-10 -10-9 m

Time: ~10-15 s

Hierarchical  Approach:

Atomic Interaction 

Identify stable surfaces

Identify kinetic pathways

Electronic many 
particle system 

Atomic many 
particle system ?



The Master Equation

Master Equation:   ∂P(C, t)/∂t = −ΣC’ W(C→C’) P(C,t) + ΣC’ W(C’→C) P(C’,t)

Flux out Flux in

Deposition
Migration

Total energy potential

Eb Eb
C→C’

C
C’

Transition probability:
TKE

CCC
B

CC
beW /

'

'→−
→ Γ=



Solving the Master Equation: Kinetic Monte Carlo

Master Equation:   ∂P(C, t)/∂t = −ΣC’ W(C→C’) P(C,t) + ΣC’ W(C’→C) P(C’,t)

Example: Lattice gas

1

1
2
3
4
5
6
7
8

1. Build up probability vector:

w

4
3

2

5
8

7
6

wtot

2. Get time step:

totw

p
t 1ln−=∆

3. Get event:

tot

i

tot

i

w

w
p

w

w 1
2

lnln +<≤

p2



Kinetic Monte Carlo Simulations
Conventional approach: Simulation of the process by KMC.

PROBLEM: Number of diffusion events is order of magnitudes 
larger than number of growth events!

∆ts= average time for a change in the surface (nucleation, attachment)   

∆tad= average time for an adatom position change

53 10....10~
ad

s

t

t

∆
∆

Temp. (K) Diff. free 
path 

∆tdiff (s) 

500 30 3.3*10-5 

750 470 2.1*10-6 

1000 1800 5.6*10-7 

1150 60000 1.7*10-8 
 

 



20

40

60

20

40

60

0.0003
0.0004
0.0005
0.0006

20

40

60

From Adatom Trajectories to Density

P(x1,x2, ..., xN, t) ρ(x, t)

Challenges:
• Nucleation (requires in principle two particle density)
• Attachment
• Efficient calculation of the time evolution of the adatom density
• Numerical stability, statistical tests
• Connection to ab initio calculations (potential energy surface, diffusion paths)

[1] L. Mandreoli, J. Neugebauer, R. Kunert, E. Scholl, subm. to PRB



Conclusions

Multiscale methods allow an accurate description 
of various aspects of materials science!

length
(m)

time (s)110-15 10-9 10-3

10-9

10-6

10-3

103

DFT

ab inito continuum theories
ab initio thermodynamics

ab initio statistical physics

ab initio
growth/device 

simulations


