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Example: Blue L aser Challenges:

e Interfaces
» Didlocationg/Grain Boundaries

p-electrode

/ * Alloys
InGaN MQW e Formation of nanostructures
n-electrode (intentional/unintentional)
p GaN s _
p AlGaN » Growth optimization
n AlGaN /
Simulations.

n-type GaN
e compute properties of above

structures
e compute synthesis
(crystal growth)

S. Nakamura et al., Jpn. J. Appl. Phys. 35, L217 (1996).




Scaling Problem in Modeling

electronic
structure
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10715 107 102 1 108 time (s)

How to simulate across length and time scales?




Outline

e Motivation: Multi-scale simulation methods
* Point Defects: Impurities
.
. ‘ e charge states
e atomic geometry
« formation energy/concentrations

 electronic structure
e atomic geometry/stoichiometry
» energetics/stability

atomic scale mesoscopic scale




Key Concepts of Multiscale Methods

e Energy

e Strain

e Chargetransfer
e Masstransport

Partition total system into regions containing the relevant microscopic structures
Calculate all relevant properties + interaction parametersfor these regions (DFT)
Connect theregions based on the calculated interaction parameters




How to Describe the Different Types of Interactions

Energy
—=Thermostats (Lars|smer)

Strain
= Approximated microscopic models/continuum theory

Particletransfer (electrons, atoms, defects)
—=Thermodynamic equilibrium (- chemical potentials)
= Kinetics (- energy barriers, transition state theory)

Jump rate;
W, _ 1 =VoeXP(-EgisKgT)




Convergence aspects for defect calculations

Periodic boundary conditions

= interaction across cell boundaries;

electrostatic:
dastic: - monopoles
- strain fields B eke

long ranged

/RN

electronic:

- overlap of
wave functions

- dispersion of
defect states

- Artificial interaction across cell boundaries - haveto beremoved
- Increase cell size - all physical quantities converge
- Error estimation and reduction for ‘'small' cellsis crucial!




Electronic effects (1)

Example: Neutral GaP P-Vacancy:

32-atom bcc cell 64-atom sc cell
J - ‘ 4.0 '

e(k) (eV)

- large dispersion due to defect-defect interaction
- unphysical splitting of degenerate t, defect state

G. Schwar z, PhD thesis



Electronic effects (11)

Convergence Tests. Cell Size and k-Points
Example: Neutral 1deal GaP P-Vacancy

convergence of t, state ' conver gence of
formation energy Ef

- slow convergence of defect state and energy at the I point
- average over special k-points converges significantly faster
(error < 0.02eV)

G. Schwar z, PhD thesis




Relative CPU Time Consumption

Example: Neutral GaP P-Vacancy

6.
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2 scaling
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System Size (Nb. atoms)

By a proper treatment of defectsin supercells morethan two orders
of magnitude in CPU time can be saved!




Convergence aspects for defect calculations

= interaction across cell boundaries;

electrostatic:
dastic: - monopoles
- gtrain fields - multipoles

long ranged

/RN

electronic:

- overlap of
wave functions

- dispersion of
defect states




Calculating charged defects

Charged defect in an infinite cell Charged defect in a super cell

electron
I eservoir

i T electrostatic potential
asymptotic behavior:

v
g€l

screened Coulomb potential

For non-neutral systemsthe G=0 component of the potential diverges
(VHartree j|| defined!)
= supercell must be always charge neutral!




Charge compensation

How to realize a charge neutral supercell?
= L ook at nature!

Example: Donor

Transfer electron from donor Transfer electron from donor to
level to bottom of conduction band acceptor level

[ ] |

delocalized state statistically homogeneous distribution

First approximation: constant background [set VHartree(G=0) = 0]




Compensation by constant background

Problem: Slow conver gence with supercell size

total charge of background: -q

< >
L

€ bulk didectric constant

Defect-defect interaction vanishes asymptotically like 1/L!

Suggestion (Ref. [1]): Correct explicitly for thiserror
= subtract it from total energy

[1] G. Makov and M. C. Payne, Phys. Rev. B 51, 4014 (1995).




Example: First ionization energy of an atom

System: Ga Atom in Cubic Cells

256 216 64 32 256 216 64 32

FEerE-

with correction

£l
[ without correction 1 I without correction
56 911 56 911
1/L attice (102 A-Y) 1/L attice (102 AY)

M akov/Payne correction significantly improves conver gence with
respect to supercell sizefor this system!

G. Schwar z, PhD thesis




Example: Positively Charged Vacancy

Charge Transfer Level ETL for 1+ and 3+

atoms: 256 216 64 32 atoms: 256 216 64 32

| g =1+ _ q=3+
i ’#_@/e ] ' /@-——@ ‘
| ol 0. ccel

with correction . _ with correction

[ £€=8.6
0.05 0.06 0.000.11 0.050.06 0.090.11
1/Lattice (A-Y) 1/Lattice (A1)

M akov/Payne correction overestimatestheerror!
Problem: bulk dielectric constant not appropriate
= enhanced screening around defect




Thermodynamic potentials

Key quantity:

Partition function: Z(\/,T) — Ze—Ei [kgT
i

Freeenergy’: F(V,T) = —kgTIn{Z(V,T)}

GibbsFreeenergy: G(p,T) = F(V,T)+ pV

Chemical potential: Ha :[

BG(A”)j
T.p

"From E,, + dynamical matrix
| mplemented in SFHIngX




Example: Point defects

Free energy: F=U-TS

For isolated defects: U =nEg
PN

number of defects formation energy of
an isolated defect

900000
L
900000

Configurational entropy:

gconfig = kg INW with W = N(N —1)...(N -n-1) _ N!

n! (N-n)in

oF N-n
Minimize free energy: (%] =Eg—-kgTIn - =0
T

: E
m Defect concentration: [N exp(—k—_[r’j




Defect Formation ener gy

Defect concentration: Nperae = Nites exp(—%j

How can we calculate formation energy E,?

Note: To create a defect the number of atomsin the system may change!

Example: Creation of a vacancy in GaN (two steps)

Ga atom gains energy Mg,

Q—»

a) DFT calculations b) Thermodynamics

ED (GaN :V(ga) = Etot (GaN :V(ga)'l' :uGa t cIEFermi




Chemical Potentials

Specific value of the chemical potentials depends on the environment!
= variables, which can be experimentally controlled
(viaT, p, fluxesand flux ratio)
But: Boundary conditions are well defined and can be calculated

Example: Ga vacancy in GaN 0
AHGa
Boundary conditions: [ <Hgapuik u e e
- MGa(bulk) aric

|J-N<|JN(moIecuIe)

_ T HcapukyBH: <> Nrich
Heat HN =Hgan(bulk)

Haapulk)t Mngmolecule) “Haan(ouikyTAH:

Heapuik) ~ AHt < Hga< Maagpulk)

| nter pretation:

Incor poration at a Kink (KMga=Hgagpuik™ &Hs)

Ga droplets (Mga=Hga(ulk)

Garich




Example: H in GaN

£(0/-) e(+/-) g(+/0)

S
2
>
(7]
| .
o
c
L
c
9O
i
@
£
|-
o
LL

© = N W £ O
Valence band
Conduction band

0.0 0510 15 2.0 25 3.0
E_ (eV)

E.(GaN:H9) =E,, (GaN:H9) —u,, +qE

Electric behavior of hydrogen in GaN can be identified!

J. Neugebauer and C. Van de Walle, Phys. Rev. Lett. 75, 4452 (1995)




Explore Chemical Trends

Zn0O

£(0/-) g(+/-) £(+/0)
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compensating center donor impurity

Hydrogen exhibits very different behavior!




Identification of an Universal Alignment
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Multiscale methods allow identification of hidden rules!

C.G. Van de Walle and J. Neugebauer, Nature 423, 626 (2003).
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Step |: Linear Elastic Theory

Displacement Field:12

y Xy

u,(6Y) = = tan‘l(—}f i
2n X 2(1—v)(x +y)

b: burger’s vector
Vv: Poisson’s ratio

_.‘ 4 atom core open core full core

[1] J.P. Hirth & J. Lothe, Theory of Dislocations (Wiley, New York, 1982)
[2] M. Yu. Gutkin & E.C. Aifantis, Scripta Materiala 36, 129 (1996)




Step II: Empirical Potentials

large scale small scale
P99 9 9 @

i
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\gf&i\
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>
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supercells with more than 10°atoms supercells with ~10%2atoms

= Connect to continuum theory — Connect to ab initio
calculations




Application: Energetics

dislocation density [cm™]
1 E14 1 E13 1E12

| an 1D (1Vv)

. O oc [ab-initio]
' /\ oc [SW]
[ oc [SW shifted]
. @ 4 core [ab-initio]
' A\ 4 core [SW] -
.l 4 core [SW shifted] |

. o L1
separation distance [A] 100

L. Lymperakisand J. Neugebauer, to be published



Example:

Length: 1010-109m

Time:; ~101° s

Hierarchical Approach:

Electronic many
particle system v/

Atomic Interaction v

Crystal Growth

Length: 10%m

Time: 10°s

Mesoscopic/macroscopic scale

’p'i 200nm
>

S b 100nm

Identify stable surfaces

\A Identify kinetic pathways




The Master Equation

Deposition

Migration

M

Total energy potential

Transition probability:

Master Equation: 9P(C, t)/ot = -2 . W(C - C’) P(C,t) + 2. W(C’' -~ C) P(C’ t)

o~ ——

Flux out Fluxin




Solving the Master Equation: Kinetic Monte Carlo

Master Equation: P(C, t)/dt = -2 . W(C - C’) P(C,t) + 2. W(C’' - C) P(C’ t)

Example: Lattice gas 1. Build up probability vector:
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Kinetic Monte Carlo Simulations

Conventional approach: Simulation of the processby KMC.

Temp (K) Diff. free At giss (S)
path
500 30 3.3*10°

750 470 2.1%10°
1000 1800 5610
1150 60000 1.7%10°®

PROBLEM: Number of diffusion eventsisorder of magnitudes
larger than number of growth events!

At = averagetimefor a changein the surface (nucleation, attachment)
At_,= averagetimefor an adatom position change




From Adatom Trajectories to Density
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P(X{,X5, ey Xps 1)

Challenges:
* Nucleation (requiresin principle two particle density)
» Attachment
 Efficient calculation of the time evolution of the adatom density
* Numerical stability, statistical tests
» Connection to ab initio calculations (potential ener gy surface, diffusion paths)

[1] L. Mandreoli, J. Neugebauer, R. Kunert, E. Scholl, subm. to PRB




Conclusions

ab inito continuum theories

ab initio thermodynamics
ab initio statistical physics

| >
103 time (S)

Multiscale methods allow an accurate description
of various aspects of materials science!




