First-principles Molecular Dynamics

Lars Ismer

FHI Berlin

Motivation

Example: $3_{10 \text {-helix (Polyalanine) }}$

Vibrations at 298 K DFT-PBE MD run, 50 fs

DFT allows efficient first-principles calculation of the Born-Oppenheimer surface via Kohn-Sham formalism

By analysing the electronic structure,
the total energy and the bond lengths on the local minima of the BOS, many
important properties of the system Bart:be understood.
A microscopical system is never totally in rest in a local minimum. It's in motion.

Motivation

Example: 3_{10}-helix (Polyalanine)

Vibrations at 298 K DFT-PBE MD run, 50 fs

For many processes the dynamical properties of microscopic systems play an important role:
\Rightarrow chemical reactions
\Rightarrow diffusion
\Rightarrow stability of molecule systems
Thermal equilibrium is determined by the minimum of the free energy, not by the minim $F=U-T S$ al energy
\Rightarrow Are there methods to
describe \quad the dynamical

Motivation

Harmonic Approximation:
Complete statistical description of the system based on approximated dynamics
$H^{i o n} \approx \sum_{I=1}^{N^{i o n s}} \frac{1}{2 M_{I}} \frac{\partial^{2}}{\partial \mathbf{X}_{I}^{2}}+\frac{1}{2} \Delta \mathbf{X}^{t r} \underline{\underline{\mathbf{H}}} \Delta \mathbf{X} ; \quad \mathbf{X}=\left\{\mathbf{X}_{I}\right\} ; \quad H_{i j}=\left.\frac{\partial^{2} E^{\mathrm{BOS}}}{\partial \mathrm{X}_{\mathrm{i}} \partial \mathrm{X}_{\mathrm{j}}}\right|_{\mathbf{x}_{0}}$

Works well in describing the dynamics close to the local minima

Transition state theory can describe chemical reactions with high reaction barriers

$$
k_{b} T \ll \Delta E
$$

Breakdown of harmonic approximation:
\Rightarrow chemical reactions with low barriers
\Rightarrow complex systems with many local minima close to each other
\Rightarrow For these systems the harmonic approximation has to be corrected!

Motivation

Molecular Dynamics is a method to explore the phase space

Outline

1. History of Molecular Dynamics
2. How does first-principles MD work ?

- integrating Newton's equation
- CPMD, Born-Oppenheimer Dynamics

3. What can one do with first-principles MD ?

- MD as method to explore the phase space
- statistical ensembles, temperature
- application area of first-principles MD

4. Tools to explore the Born-Oppenheimer surface implemented in SFHIngX

History of Molecular Dynamics

1957 Interaction of hard spheres

$\Rightarrow \quad$ insight into the behaviour of simple liquids

Alder and Wainwright, JCP 27, 1208 (1957)

1964 Simulation of liquid argon
\Rightarrow first simulation using a realistic empirical interaction potential

Rahman, PRA 136, 405 (1964)
Source: http://www.ch.embnet.org

History of Molecular Dynamics

1974 Simulation of liquid water
\Rightarrow first simulation of a realistic (bio)system

Stillinger and Rahman, JCP 60, 1545 (1974)

1977 Simulation of Bovine Pancreatic Trypsin Inhibitor
\Rightarrow first simulation of a proteine
McCammon et al, Nature 267, 585 (1977)

Source: http: / /www.ch.embnet.org

History of Molecular Dynamics

1985

R. Car and M. Parrinello, PRL 55, 2471 (1985)

1986

QUEST
\Rightarrow QM/MM Dynamics ab-initio (QM) + force field (MM)

Kollmann and Singh

What is first-principles MD?

Definition: (L1) First-principles Molecular Dynamics means classically treating the dynamics of the ion cores on the DFT (ground-state) Born-Oppenheimer potential surface

Realization: solving Kohn-Sham equations for given ionic positions

$$
\left\{\mathbf{X}_{I}\right\} \xrightarrow{K S} n_{g}\left(\left\{\mathbf{X}_{I}\right\}\right), E^{\mathrm{BOS}}\left(\left\{\mathbf{X}_{I}\right\}\right)
$$

calculating the forces acting on the ions via HF-Theorem

and solving the newtonian equations of motion

$$
\ddot{\mathbf{X}}_{I}=\frac{\mathbf{F}_{I}}{M_{I}}
$$

Approximations:Born-Oppenheimer Approximation (L2), XC-Functional (L8), classical treatment of ion cores

MD-Loop of a DFT-Code

How are the ionic equations of motion integrated ?

Integrating Newton's Equations

$\left\{\mathrm{X}_{I}\left(\mathrm{t}_{0}\right)\right\},\left\{\dot{\mathrm{X}}_{I}\left(\mathrm{t}_{0}\right)\right\} \xrightarrow{? ? ?}\left\{\mathrm{X}_{I}\left(\mathrm{t}_{1}\right)\right\},\left\{\dot{\mathrm{X}}_{I}\left(\mathrm{t}_{1}\right)\right\}$

Numerical integration schemes use finite time-steps to perform the integration!

$$
d t \quad \rightarrow \quad \Delta t
$$

A "good" integration scheme:
\Rightarrow gives an accurate trajectory
\Rightarrow conserves the total energy
\Rightarrow uses as few time steps as possible

Integrating Newton's Equations

Analytical Integration:

$$
\begin{aligned}
& \dot{\mathbf{X}}_{I}\left(t_{1}\right)=\dot{\mathbf{X}}_{I}\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} d t \frac{\mathbf{F}_{I}[\mathbf{X}(t)]}{M_{I}} \\
& \mathbf{X}_{I}\left(t_{1}\right)=\mathbf{X}_{I}\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} d t \dot{\mathbf{X}}_{I}(t)
\end{aligned}
$$

1 st order scheme
Simple example: Euler-scheme

$$
\begin{aligned}
& \mathbf{X}_{I}\left(t_{n+1}\right)=\mathbf{X}_{I}\left(t_{n}\right)+\Delta t \cdot \dot{\mathbf{X}}_{I}\left(t_{n}\right) \\
& \dot{\mathbf{X}}_{I}\left(t_{n+1}\right)=\dot{\mathbf{X}}_{I}\left(t_{n}\right)+\Delta t \cdot \ddot{\mathbf{X}}_{I}\left(t_{n}\right)
\end{aligned}
$$

\Rightarrow only stable for very small time steps
\Rightarrow alternative schemes ?

Verlet Scheme

Taylor expansion for trajectory forward ...

$$
\left.\mathbf{X}_{I}\left(t_{n+1}\right)=\mathbf{X}_{I}\left(t_{n}\right)+\Delta t \cdot \dot{\mathbf{X}}_{I}\left(t_{n}\right)+\frac{\Delta t^{2}}{2!} \cdot \ddot{\mathbf{X}}_{I}\left(t_{n}\right)+\frac{\Delta t^{3}}{3!} \cdot \dddot{\mathbf{X}}_{I}\left(t_{n}\right)+\ldots+>\alpha^{4}\right)
$$

....and backward in time:

$$
\mathbf{X}_{I}\left(t_{n-1}\right)=\mathbf{X}_{I}\left(t_{n}\right)-\Delta t \cdot \dot{\mathbf{X}}_{I}\left(t_{n}\right)+\frac{\Delta t^{2}}{2!} \cdot \ddot{\mathbf{X}}_{I}\left(t_{n}\right)-\frac{\Delta t^{3}}{3!} \cdot \dddot{\mathbf{X}}_{I}\left(t_{n}\right)+\ldots+\not \partial\left(\dot{t}^{4}\right)
$$

time reversible 3rd order update scheme for particle positions:
$\longrightarrow \mathbf{X}_{I}\left(t_{n+1}\right)=2 \mathbf{X}_{I}\left(t_{n}\right)-\mathbf{X}_{I}\left(t_{n-1}\right)+\frac{\Delta t^{2}}{2!} \cdot \frac{\mathbf{F}_{I}\left(t_{n}\right)}{M_{I}} \leftarrow \mathbf{F}_{I}=M_{I} \ddot{\mathbf{X}}_{I}$

Big advantage: reversible in time !!

$$
\dot{\mathbf{X}}_{I}\left(t_{n}\right)=\frac{\mathbf{X}_{I}\left(t_{n+1}\right)-\mathbf{X}_{I}\left(t_{n-1}\right)}{2 \Delta t}
$$

Disadvantage:
actual velocities cannot b calculated directly
Connection of thermostat not straightforward

Gear Predictor-Corrector

positions

velocities

accelerations

higher order
\rightarrow time derivatives (up to $5^{\text {th }}$ order)

1. Predictor step

$$
\begin{aligned}
& \mathbf{X}_{I}^{p}\left(t_{n+1}\right)=\mathbf{X}_{I}^{p}\left(t_{n}\right)+\sum_{q=1}^{k} \frac{\Delta t^{q}}{q!}\left(\left.\frac{\partial^{q} \mathbf{X}_{I}^{p}}{\partial t^{q}}\right|_{t_{n}}\right) \\
& \mathbf{X}_{I}^{p}\left(t_{n+1}\right)=\dot{\mathbf{X}}_{I}^{p}\left(t_{n}\right)+\sum_{q=2}^{k} \frac{\Delta t^{q-1}}{(q-1)!}\left(\left.\frac{\partial^{q} \mathbf{X}_{I}^{p}}{\partial t^{q}}\right|_{t_{n}}\right. \\
& \vdots \\
& \left.\frac{\partial^{q} \mathbf{X}_{I}^{p}}{\partial t^{q}}\right|_{t_{n+1}}=\left.\frac{\partial^{q} \mathbf{X}_{I}^{p}}{\partial t^{q}}\right|_{t_{n}}
\end{aligned}
$$

2. Force calculation evaluation of predictor step
$\mathbf{F}_{I}\left(t_{n+1}\right)=\mathbf{F}_{I}\left(\left\{\mathbf{X}^{p}\left(t_{n+1}\right)\right\}\right)$

$$
\begin{aligned}
& \Delta \ddot{\mathbf{X}}_{I}=\frac{\mathbf{F}_{I}}{M_{I}}-\ddot{\mathbf{X}}_{I}^{p} \\
& \Delta \widetilde{\mathbf{X}}_{I}=\frac{1}{2} \Delta \ddot{\mathbf{X}}_{I}^{p} \cdot(\Delta t)^{2}
\end{aligned}
$$

3. Corrector step

$$
\begin{array}{lll}
\mathbf{X}_{I}\left(t_{n+1}\right) & =\mathbf{X}_{I}^{p}\left(t_{n+1}\right) & +\alpha_{0} \cdot \Delta \widetilde{\mathbf{X}}_{I} \\
\dot{\mathbf{X}}_{I}\left(t_{n+1}\right) \cdot \Delta t & =\dot{\mathbf{X}}_{I}^{p}\left(t_{n+1}\right) \cdot \Delta t+\alpha_{1} \cdot \Delta \widetilde{\mathbf{X}}_{I}
\end{array}
$$

$$
\frac{\left(\left.\frac{\partial^{k} \mathbf{X}_{I}}{\partial t^{k}}\right|_{t_{n+1}}\right) \cdot \Delta t^{k}}{k!}=\frac{\left(\left.\frac{\partial^{k} \mathbf{X}_{I}^{p}}{\partial t^{k}}\right|_{t_{n+1}}\right) \cdot \Delta t^{k}}{k!}+\alpha_{k} \cdot \Delta \widetilde{\mathbf{X}}_{I}
$$

Gear Predictor-Corrector

Advantages: highly accurate particle positione(t^{5}) accurate particle velocities $O\left(t^{4}\right)$ accurate particle accelerations $O\left(t^{3}\right)$

Direct calculation of the velocities makes connecting a thermostat straightforward

Disadvantage not reversible in time !

Time Reversibility

Example : Vibrating dimer
Reversible Integrating scheme

closed phase space trajectory

Oscillation keeps total energy

Irreversible Integrating scheme

open phase space trajectory

Comparison of integration schemes

3 3-helix (30 atoms)
$\mathrm{E}_{\text {ion }}^{\text {tot }} 0.08$ Hartree (@ 298K)

Small time steps:
$5^{\text {th }}$ order Predictor-Corrector more accurate than Verlet (3rd order scheme)

Large time steps:
Non reversible PC scheme shows a strong drift in the total energy; Time-reversible Verlet scheme much more stable

Comparison of integration schemes

Example: Simulation of a Liquid

$$
v^{L J}(r)=\varepsilon\left(\frac{\sigma}{r^{12}}-\frac{\sigma}{r^{6}}\right)
$$

Gear Predictor Corrector more accurate for small time steps

But: Increase of error with increasing time step more drastic for PC-Gear
$\Rightarrow \quad$ Verlet more accurate for large time steps (!!!)

MD-Loop of a DFT-Code

How is the electronic system updated in a MD run ?

Born-Oppenheimer Dynamics

For each ionic step the electronic system is fully relaxed to the Born-Oppenheimer surface by an iterative minimization scheme !

The ionic movement is fully decoupled from the electronic relaxation.

Time step size must sample ionic movement
in all other respects parameter free

Car-Parrinello MD

Car-Parrinello Lagrangian

$$
L^{C P}=\sum_{i} \mu_{i}\left\langle\dot{\psi}_{i} \mid \dot{\psi}_{i}\right\rangle+\frac{1}{2} \sum_{I} M_{I} \dot{\mathbf{X}}_{I}^{2}-\widetilde{E}^{\mathrm{BOS}}[\Psi, \mathbf{X}]
$$

Small artificial electron masses m

$2^{\text {nd }}$ order equation of motion for the ions

Newtonian equations of motion on the BO surface
$2^{\text {nd }}$ order equation of motion for the electrons

Oscillations around ground-state for given ionic positions

Car-Parinello MD

Electronic wavefunctions and ionic positions are updated simultaneously

Electronic system performs oscillations around ground-state for given ionic positions

Electronic oscillations must be significantly faster then ionic oscillations (frequency controlled by artificial electronic masses)

Time step size must sample electronic movement

Comparison

Example: Simulation of water [1]

Time step of a Born-Oppenheimer MD is $\mathfrak{a} 10 x$ larger than that of a CPMD』

But: Born-Oppenheimer MD needs to fully relax the electronic groundstate

```
|
```

SFHIngX: Allstate-CCG + first order wavefunction extrapolation
$\Rightarrow 4-5$ electronic steps per ionic step (for timestep of 1 f
$\Rightarrow 1$ Alstate-CCG step needs twice the time then a $2^{\text {nd }}$ order electronic minimizer
\Rightarrow CPMD and SFHIngX Born-Oppenheimer MD show comparable efficiency :
[1] Y. Laudernet, Using CPMD in order to improve classical simulations, CINECA Report (2001)

Comparison

Example: Simulation of Metals

Car-Parrinello MD:

lowest oscillation frequency in the electronic system is given by energy gap

$\Rightarrow \quad$ electronic system cannot be decoupled from ionic system in metals
\Rightarrow correcting thermostat necessary, simulation not straightforward

Born-Oppenheimer MD:

simulation as straightforward as for insulators
(Performance comparison not yet done)

Exploring the phase space with MD

 What can one do with a MD-run?

Statistical Ensembles

MD-trajectory yields ensemble of possible microscopic states of the system

MD-Trajectory $\stackrel{\text { Ergodicity Hypothesis }}{\longleftrightarrow}$ Statistical Ensemble

Ensemble averages can be identified with macroscopic observables

Example:

MD connects microscopic DFT-calculation with macroscopic observables

Statistical Ensembles

\Rightarrow How is temperature enabled ?

Nosé-Hoover Thermostat

Additional degree of freedom (friction 区) simulates energy exchange with heat bath:

$$
\ddot{\mathbf{X}}_{I}=\frac{\mathbf{F}_{I}}{M_{I}} \quad \Rightarrow \quad \begin{aligned}
& \ddot{\mathbf{X}}_{I}=\frac{\mathbf{F}_{I}}{M_{I}}-\xi \cdot \mathbf{P}_{I} \\
& \dot{\xi}=\frac{1}{Q}\left(E^{\mathrm{kin}}\left(\left\{\dot{\mathbf{X}}_{I}\right\}\right)-L \cdot k_{B} T\right)
\end{aligned}
$$

L: degrees of freedom Q: thermostat mass
T: temperature

$$
H^{\mathrm{NH}}=E^{\mathrm{tot}}+\frac{1}{2} Q \xi^{2}+\xi \frac{L}{k_{B} T}
$$

$\Rightarrow \quad$ Nose-Hoover thermostat exactly simulates canonical ensemble!

The role of the thermostat mass Q

Example: Simulation of Methane at 298K

Simulation time o ($\mathbf{0 . 4} \mathbf{~ p s}$)
large Q's
Total energy oscillates with characteristic frequency
$\omega \propto 1 / \sqrt{Q}$
small Q's
Characteristic frequency couples to vibrations of the system
\Rightarrow small Q lead to faster generation of the wanted temperature but: too small Q lead to instabilities in the integration process

Summary

What can one do with (first-principles) Molecular Dynamics ?

Application-area of DFT-MD

Maximal system size (L1) order of 100 atoms
Maximal simulation time (L1) order of 100 ps , 10000 hydrogen-stretch vibrations
$\Rightarrow \quad$ no simulation of "rare" events possible (Transition state theory, physical intiution)
$\Rightarrow \quad$ good for analysing microscopic processes which take place on time scale of 1 ps (100 hydrogen-stretch vibrations)
embedding of the system in a realistic environment (e.g. water) possible via QM/MM

Exploring the BOS with SFHIngX

Structure optimization

implemented schemes
Damped Newton (Verlet) Quasi Newton scheme

Exploring the BOS with SFHIngX

Transition State Search

implemented scheme:

Initialization: synchronous transit
Optimization: quasi newton (gradient minimizer)

Exploring the BOS with SFHIngX Vibrational analysis

Example: Phonon dispersion relation of the polyalanine a -helix calculated with DFT-PBE [1] and compared to experimental values of [2]

implemented schemes

Frozen Phonon vibrational analysis Harmonic thermodynamic analysis (sxgetdyn)
Phonon dispersion relation (sxdispersion, not documented in manual)
[1] L. Ismer, J. Ireta, S. Boeck and J. Neugebauer, to be published
[2] H. Lee and S. Krimm, Biopolymers 46, 283 (1998)

Exploring the BOS with SFHIngX

Molecular Dynamics

