First-principles Molecular Dynamics

Lars Ismer FHI Berlin

Example: 3¹⁰-helix (Polyalanine)

Vibrations at 298 K DFT-PBE MD run, 50 fs DFT allows efficient first-principles calculation of the Born-Oppenheimer surface via Kohn-Sham formalism

By analysing the electronic structure, the total energy and the bond lengths on the local minima of the BOS, many important properties of the system **Eart**:be understood. A microscopical system is never totally in rest in a local minimum. It's in motion.

Example: 3¹⁰-helix (Polyalanine)

Vibrations at 298 K DFT-PBE MD run, 50 fs

For many processes the dynamical properties of microscopic systems play an important role:

 \Rightarrow chemical reactions

➡ diffusion

⇒ stability of molecule systems

Thermal equilibrium is determined by the minimum of the free energy, not by the minimF = U - TS al energy

Are there methods to describe

Example: 2-dim BO - Surface

Harmonic Approximation: Complete statistical description of the system based on approximated dynamics

$$H^{ion} \approx \sum_{I=1}^{N^{ions}} \frac{1}{2M_I} \frac{\partial^2}{\partial \mathbf{X}_I^2} + \frac{1}{2} \Delta \mathbf{X}^{tr} \underline{\mathbf{H}} \Delta \mathbf{X}; \quad \mathbf{X} = \{\mathbf{X}_I\}; \quad H_{ij} = \frac{\partial^2 E^{\text{BOS}}}{\partial X_i \partial X_j} \bigg|_{\mathbf{X}_i}$$

Works well in describing the dynamics close to the local minima

Transition state theory can describe chemical reactions with high reaction barriers

$$k_bT << \Delta E$$

Breakdown of harmonic approximation:

 \Rightarrow chemical reactions with low barriers

➡ complex systems with many local minima close to each other

➡ For these systems the harmonic approximation has to be corrected !

Molecular Dynamics is a method to explore the phase space

Trajectory of a MD-run

Analysing time-correlation functions e.g. calculating frequency spectrum

Watching a movie "See" what will

happen

Calculating ensemble averages Deriving macroscopic observables

Outline

1. History of Molecular Dynamics

2. How does first-principles MD work ? - integrating Newton's equation - CPMD, Born-Oppenheimer Dynamics

3. What can one do with first-principles MD?

- MD as method to explore the phase space

- statistical ensembles, temperature

- application area of first-principles MD

4. Tools to explore the Born-Oppenheimer surface implemented in SFHIngX

History of Molecular Dynamics

Interaction of hard spheres
⇒ insight into the behaviour of simple liquids

Alder and Wainwright, JCP 27, 1208 (1957)

Simulation of liquid argon ⇒ first simulation using a realistic empirical interaction potential

Rahman, PRA 136, 405 (1964)

Source: http://www.ch.embnet.org

History of Molecular Dynamics

Stillinger and Rahman, JCP 60, 1545 (1974)

1977 Simulation of Bovine Pancreatic Trypsin Inhibitor ⇒ first simulation of a proteine

McCammon et al, Nature 267, 585 (1977)

Source: http://www.ch.embnet.org

History of Molecular Dynamics

1	.985	
	191 - 191	

Car-Parrinello Molecular Dynamics ⇒ molecular dynamics on a DFT Born-Oppenheimer surface

R. Car and M. Parrinello, PRL 55, 2471 (1985)

Kollmann and Singh

What is first-principles MD?

Definition:

(L1) First-principles Molecular Dynamics means classically treating the dynamics of the ion cores on the DFT (ground-state) Born-Oppenheimer potential surface

Realization:

solving Kohn-Sham equations for given ionic positions

$$\{\mathbf{X}_I\} \xrightarrow{KS} n_g(\{\mathbf{X}_I\}), E^{BOS}(\{\mathbf{X}_I\})$$

calculating the forces acting on the ions via HF-Theorem

and solving the newtonian equations of motion

$$\ddot{\mathbf{X}}_I = \frac{\mathbf{F}_I}{M_I}$$

<u>Approximations:</u>Born-Oppenheimer Approximation (L2), XC-Functional (L8), classical treatment of ion cores

MD-Loop of a DFT-Code

How are the ionic equations of motion integrated ?

Integrating Newton's Equations

Numerical integration schemes use finite time-steps to perform the integration!

$$dt \rightarrow \Delta t$$

A "good" integration scheme:
⇒ gives an accurate trajectory
⇒ conserves the total energy
⇒ uses as few time steps as possible

Integrating Newton's Equations

Simple example: Euler-scheme

$$\begin{aligned} \mathbf{X}_{I}(t_{n+1}) &= \mathbf{X}_{I}(t_{n}) + \Delta t \cdot \dot{\mathbf{X}}_{I}(t_{n}) \\ \dot{\mathbf{X}}_{I}(t_{n+1}) &= \dot{\mathbf{X}}_{I}(t_{n}) + \Delta t \cdot \ddot{\mathbf{X}}_{I}(t_{n}) \end{aligned}$$

only stable for very small time steps

1st order scheme

not reversible in time!

⇒ alternative schemes ?

Verlet Scheme

Taylor expansion for trajectory forward ...

$$\mathbf{X}_{I}(t_{n+1}) = \mathbf{X}_{I}(t_{n}) + \Delta t \cdot \dot{\mathbf{X}}_{I}(t_{n}) + \frac{\Delta t^{2}}{2!} \cdot \ddot{\mathbf{X}}_{I}(t_{n}) + \frac{\Delta t^{3}}{3!} \cdot \ddot{\mathbf{X}}_{I}(t_{n}) + \dots + \mathbf{A}^{4}$$

-....and backward in time:

$$\mathbf{X}_{I}(t_{n-1}) = \mathbf{X}_{I}(t_{n}) - \Delta t \cdot \dot{\mathbf{X}}_{I}(t_{n}) + \frac{\Delta t^{2}}{2!} \cdot \ddot{\mathbf{X}}_{I}(t_{n}) - \frac{\Delta t^{3}}{3!} \cdot \ddot{\mathbf{X}}_{I}(t_{n}) + \dots + \mathbf{A}^{4}$$

time reversible 3rd order update scheme for particle positions:

$$\mathbf{X}_{I}(t_{n+1}) = 2\mathbf{X}_{I}(t_{n}) - \mathbf{X}_{I}(t_{n-1}) + \frac{\Delta t^{2}}{2!} \cdot \frac{\mathbf{F}_{I}(t_{n})}{M_{I}} \leftarrow \mathbf{F}_{I} = M_{I}\ddot{\mathbf{X}}_{I}$$

Big advantage: reversible in time !!

$$\dot{\mathbf{X}}_{I}(t_{n}) = \frac{\mathbf{X}_{I}(t_{n+1}) - \mathbf{X}_{I}(t_{n-1})}{2\Delta t}$$

Disadvantage: actual velocities cannot b calculated directly Connection of thermostat not straightforward

Gear Predictor-Corrector

Gear Predictor-Corrector

Advantages:highly accurate particle position (g(t 5))accurate particle velocitiesO(t 4))accurate particle accelerationsO(t 3)

Direct calculation of the velocities makes connecting a thermostat straightforward

Disadvantage

not reversible in time !

Time Reversibility

Example : Vibrating dimer

Comparison of integration schemes

3¹⁰⁻helix (30 atoms) E^{tot}_{iof} 0.08 Hartree (@ 298K)

Comparison of integration schemes

Example: Simulation of a Liquid

$$v^{LJ}(r) = e\left(\frac{s}{r^{12}} - \frac{s}{r^6}\right)$$

- Gear Predictor Corrector more accurate for small time steps
- But: Increase of error with increasing time step more drastic for PC-Gear
 - Verlet more accurate for large time steps (!!!)

M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford University Press (1987)

MD-Loop of a DFT-Code

How is the electronic system updated in a MD run ?

Born-Oppenheimer Dynamics

Evaluation of electronic ground-state for initial ionic configuration lonic step t=t+Dt **Evaluation of electronic** ground-state for actual ionic configuration

For each ionic step the electronic system is fully relaxed to the Born-Oppenheimer surface by an iterative minimization scheme !

The ionic movement is fully decoupled from the electronic relaxation.

Time step size must sample ionic movement

in all other respects parameter free

<u>Car-Parrinello MD</u>

Car-Parrinello Lagrangian

<u>Car-Parinello MD</u>

Evaluation of electronic ground-state for initial ionic configuration

Electronic wavefunctions and ionic positions are updated simultaneously

Electronic system performs oscillations around ground-state for given ionic positions

Electronic oscillations must be significantly faster then ionic oscillations (frequency controlled by artificial electronic masses)

Time step size must sample <u>electronic</u> movement

Example: Simulation of water [1]

O-H vibration MD time-step on empirical potential CPMD time step

Time step of a Born-Oppenheimer MD is > 10x larger than that of a CPMD

 $\hat{1}$

But: Born-Oppenheimer MD needs to fully relax the electronic groundstate

$\hat{1}$

SFHIngX: Allstate-CCG + first order wavefunction extrapolation
 ⇒ 4-5 electronic steps per ionic step (for timestep of 1 fs
 ⇒ 1 Allstate-CCG step needs twice the time then a 2nd order electronic minimizer
 ⇒ CPMD and SFHIngX Born-Oppenheimer MD show comparable efficiency !
 [1] Y. Laudernet, Using CPMD in order to improve classical simulations, CINECA Report (2001)

Example: Simulation of Metals

Car-Parrinello MD:

lowest oscillation frequency in the electronic system is given by energy gap

$$w_0 = \left(\frac{2(e^{LUMO} - e^{HOMO})}{m_i}\right)^{1/2}$$

electronic system cannot be decoupled from ionic system in metals

correcting thermostat necessary, simulation not straightforward

Born-Oppenheimer MD:

simulation as straightforward as for insulators

(Performance comparison not yet done)

Exploring the phase space with MD

What can one do with a MD-run?

Trajectory of a MD-run

Watching a movie "See" what will happen

Calculating ensemble averages Deriving macroscopic observables

Statistical Ensembles

MD-trajectory yields ensemble of possible microscopic states of the system

Ensemble averages can be identified with macroscopic observables

Example:
$$p = -\left\langle \frac{\partial E^{\text{tot}}}{\partial V} \right\rangle$$

MD connects microscopic DFT-calculation with macroscopic observables

Statistical Ensembles

⇒ How is temperature enabled ?

Nosé-Hoover Thermostat

Additional degree of freedom (friction \boxtimes) simulates energy exchange with heat bath:

$$\dot{\mathbf{X}}_{I} = \frac{\mathbf{F}_{I}}{M_{I}} \implies \ddot{\mathbf{X}}_{I} = \frac{\mathbf{F}_{I}}{M_{I}} - \mathbf{X} \cdot \mathbf{P}_{I}$$
$$\dot{\mathbf{X}} = \frac{1}{O} \left(E^{\min} \left(\{ \dot{\mathbf{X}}_{I} \} \right) - L \cdot k_{B} T \right)$$

L: degrees of freedom Q: thermostat mass T: temperature

modified newtonian equations of motion !
total energy is no longer conserved !
new constant of motion for extended system !

 \Box

 \Box

$$H^{\rm NH} = E^{\rm tot} + \frac{1}{2}Q\dot{x^2} + X\frac{L}{k_B T}$$

Nose-Hoover thermostat exactly simulates canonical ensemble!

The role of the thermostat mass Q

Example: Simulation of Methane at 298K

Small Q lead to faster generation of the wanted temperature but: too small Q lead to instabilities in the integration process

<u>Summary</u>

What can one do with (first-principles) Molecular Dynamics ?

via extended equations of motion

Application-area of DFT-MD

Maximal system size (L1) order of 100 atoms

Maximal simulation time (L1) order of 100 ps, 10000 hydrogen-stretch vibrations

no simulation of "rare" events possible
 (Transition state theory, physical intiution)

Good for analysing microscopic processes which take place on t time scale of 1 ps (100 hydrogen-stretch vibrations)

embedding of the system in a realistic environment (e.g. water) possible via QM/MM

Structure optimization

implemented schemes

Damped Newton (Verlet) Quasi Newton scheme

Transition State Search

implemented scheme:

Initialization: synchronous transit Optimization: quasi newton (gradient minimizer)

Vibrational analysis

implemented schemes

Frozen Phonon vibrational analysis Harmonic thermodynamic analysis (sxgetdyn) Phonon dispersion relation (sxdispersion, not documented in manual)

[1] L. Ismer, J. Ireta, S. Boeck and J. Neugebauer, *to be published*[2] H. Lee and S. Krimm, Biopolymers 46, 283 (1998)

Molecular Dynamics

Technique	CCG-Born Oppenheimer Dynamics 1 st order wavefunction extrapolation
Integrators	Verlet
	Gear Predictor-Corrector
	Adams-Moulton Predictor Adams-Bashforth corrector
Ensembles	microcanonical and canonical
Initialisation	random velocities atom displacement in cartesian or phonon basis restart by file