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Votivation

Example: 3+-helix (Polyalanine)

Vibrations at 298 K
DFT-PBE MD run, 50 fs

DFT allows efficient first-principles
calculation of the Born-Oppenheimer
surface via Kohn-Sham formalism

By analysing the electronic
structure,

the total energy and the bond
lengths

on the local minima of the BOS,
many

important properties of the system

Batt:be understood.
A microscopical system is never

totally in rest in a local minimum. It’s
in motion.



Votivation

Example: 3+-helix (Polyalanine)

Vibrations at 298 K
DFT-PBE MD run, 50 fs

For many processes the dynamical
properties of microscopic systems
play an important role:

= chemical reactions
= diffusion
= stability of molecule systems

Thermal equilibrium is determined

9
the minimum of the free energy, not

by

the miniml =R VN | energy

= Are there methods to
describe the dynamical



Votivation

Harmonic Approximation:
Complete statistical description of the
Example: 2-dim BO - Surface system based on approximated dynamics
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Works well in describing the dynamics
close to the local minima

Transition state theory can describe
chemical reactions with high reaction barriers

Breakdown of harmonic approximation:
= chemical reactions with low barriers

= complex systems with many local
minima close to each other

= For these systems the harmonic approximation has to be corrected !



Votivation

Molecular Dynamics is a method to explore the phase space

Trajectory of a MD-run

Watching a

Analysing movie

time-correlation
functions €—

e.g. calculating
frequency spectrum

—p “See” what will
happen

Calculating ensemble averages
Deriving macroscopic observables



Outline

1. History of Molecular Dynamics

2. How does first-principles MD work ?
- integrating Newton’s equation
- CPMD, Born-Oppenheimer Dynamics

3. What can one do with first-principles MD ?
- MD as method to explore the phase space
- statistical ensembles, temperature
- application area of first-principles MD

4. Tools to explore the Born-Oppenheimer surface
implemented in SFHIngX



History of Molecular Dynamics

1957 Interaction of hard spheres

= insight into the behaviour of
37 o simple liquids

o~ <4—e

Alder and Wainwright, JCP 27, 1208 (1957)

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

1964 Simulation of liquid argon

=  first simulation using a realistic
empirical interaction potential

Rahman, PRA 136, 405 (1964)

Source: http://www.ch.embnet.org



History of Molecular Dynamics

1974 Simulation of liquid water

= first simulation of a realistic
(bio)system

Stillinger and Rahman, JCP 60, 1545 (1974)

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

1977 Simulation of Bovine Pancreatic
Trypsin Inhibitor
=  first simulation of a proteine

McCammon et al, Nature 267, 585 (1977)

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Source: http://www.ch.embnet.org



History of Molecular Dynamics

1985 Car-Parrinello Molecular Dynamics

"""""""""" =  molecular dynamics on a DFT
Born-Oppenheimer surface

E =

R. Car and M. Parrinello, PRL 55, 2471 (1985)

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

1986 QUEST
= QM/MM Dynamics
- ab-initio (QM) + force field (MM)

Kollmann and Singh




What is first-principles MD_7?

Definition: (L1) First-principles Molecular Dynamics means classically
treating the dynamics of the ion cores on the
DFT (ground-state) Born-Oppenheimer potential surface

Realization: solving Kohn-Sham equations for given ionic positions
{X;}%%® n,(X,}),EP°(X,})

calculating the forces acting on the ions via HF-Theorem

Approximations:Born-Oppenheimer Approximation (L2), XC-Functional (L8),
classical treatment of ion cores




MD-Loop of a DET-Code

Initial 1onic

positions
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Trajectory

New ionic positions

Initial 1onic

velocities

4

MD Loop
Integrating Newtonian
equations of motion
for new time step

tn = tn + Dt

/

How are the ionic equations of motion integrated ?



Integrating Newton's Equations

Numerical integration schemes
use finite time-steps to perform
the integration!

dt ® Dt
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Treectery A “good” integration scheme:

{X; (o)) {X; (o) z)? {X; (X, (1)

= gives an accurate trajectory

= conserves the total energy

. ] 1
Analytical ASAUNERSIUIRNLL

Integration: 0

FIE\;‘U)] = uses as few time steps as
' possible

noo.
X (1) =X, () + odrX (1)
0



Integrating Newton's Equations

Simple example: Euler-scheme

XI (tn+1) = XI (tn) + Dt )XI (tn)

XI (tn+1) = XI (tn) +Dr ><)”(I (tn)

Potential energy

: = only stable for very small
Trajectory time steps

{X; (o)) {X; (o) z)? {X; (X, (1)

X, () =X, (1) + ot F1IXO)
1o MI

Analytical

il og) e ol = alternative schemes ?

noo.
X (1) =X, () + odrX (1)
0




Verlet Scheme

Taylor expansion for trajectory forward ...
2 3

X (6y0) = X 1)+ DO 1)+ K 1)+ K 1,) %%

2

Big ad_vant_aqc?: N X, (1) - X (1) Dlsadvantaq_el:
reversible in time !! 1) 2Dt actual velocities cannot b

calculated directly
Connection of thermostat
not straightforward




Gear Predictor-Corrector

positions velocities accelerations

predictor
corrector

higher order
5 time derivatives
(up to 5th order)

1. Predictor step 2. Force calculation 3. Corrector step
evaluation of

¢ DXy predictor step
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Gear Predictor-Corrector

positions velocities accelerations

higher order
5 time derivatives
(up to 5th order)

Advantages: highly accurate particle positior3(t°)
accurate particle velocities O(t4)
accurate particle accelerations O(t?3)

Direct calculation of the velocities makes connecting
a thermostat straightforward

Disadvantaqge not reversible in time !




Time Reversibility

Example : Vibrating dimer

Reversible Integrating scheme
closed phase space trajectory

5 P L

2 Oscillation
S — q —> keeps total
g energy

2
Irreversible Integrating scheme

open phase space trajectory

2

£ Long term
2 —» energy

g drift

o

distance a




Comparison of integration schemes

31ot-r:elix (30 atoms)
E o 0.08 Hartree (@ 298K)

Dt=0.2 fs

total energy
O E/100 &

Small time steps:
simulation time & 5th order Predictor-Corrector more
accurate than Verlet (3" order scheme)

O EM00 &

|

Dt=0.6 fs

(0
)
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w
0

Large time steps:
Non reversible PC scheme shows a

strong drift in the total energy;
“ Dt=1.2 s Time-reversible Verlet scheme much

Verlet ™ ™ 5% order PC-Gear

O EM0O

OEM0O




Comparison of integration schemes

Example: Simulation of a Liquid

time ste Dt
103 107 I010-1

= Gear Predictor Corrector
more accurate for small time
steps

But: Increase of error with

4t _order Gear

Sa

5% order Geax

Increasing time step more
drastic for PC-Gear
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6"-order Gear

= Verlet more accurate for
large time steps (!!!)

M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford University Press (1987)



MD-Loop of a DET-Code

v / v

MD Loop

Integrating Newtonian
equations of motion
for new time step

tn = tn + Dt

New ionic positions /

How is the electronic system updated in a MD run ?




Born-Oppenheimer Dynamics

For each ionic step the electronic
system is fully relaxed to the
Born-Oppenheimer surface by

an iterative minimization scheme !

The ionic movement is fully
decoupled from the electronic
relaxation.

Time step size must sample
ionic movement

in all other respects parameter free




Car-Parrinello MD

Car-Parrinello Lagrangian

2nd order equation of motion
for the electrons

2nd order equation of motion
for the ions

Newtonian equations of motion Oscillations around
on the BO surface ground-state for given

ionic positions



Car-Parinello MD

==
-

Electronic wavefunctions and
ionic positions are updated
simultaneously

Electronic system performs
oscillations around ground-state
for given ionic positions

Electronic oscillations must be
significantly faster then ionic
oscillations (frequency controlled
by artificial electronic masses)

Time step size must sample
electronic movement




Comparison

Example: Simulation of water [1]

O-H vibration > 10 fs
MD time-step on empirical potential »>1 fs
CPMD time step > 0.1fs
4
Time step of a Born-Oppenheimer MD is >10x larger than that of a CPMD
4
But: Born-Oppenheimer MD needs to fully relax the electronic groundstate
4

SFHIngX: Allstate-CCG + first order wavefunction extrapolation
= 4-5 electronic steps per ionic step (for timestep of 1 f

= 1 Allstate-CCG step needs twice the time then
a 2" order electronic minimizer

= CPMD and SFHIngX Born-Oppenheimer MD show comparable efficiency !

[1] Y. Laudernet, Using CPMD in order to improve classical simulations, CINECA Report (2001)



Comparison

Example: Simulation of Metals

Car-Parrinello MD:

lowest oscillation frequency in the electronic system is
given by energy gap

172
_g@(elUMO _ gHOMOy 4

o R

= electronic system cannot be decoupled from ionic
system in metals

= correcting thermostat necessary, simulation not
straightforward

Born-Oppenheimer MD:
simulation as straightforward as for insulators

(Performance comparison not yet done)



Exploring the phase space with MD

What can one do with a MD-run ?

Trajectory of a MD-run

Watching a

Analysing movie

time-correlation
functions €—

e.g. calculating
frequency spectrum

—p “See” what will
happen

Calculating ensemble averages
Deriving macroscopic observables



Statistical Ensembles

MD-trajectory yields ensemble of possible microscopic states of the
system
Ergodicity Hypothesis
MD-Trajectory < » Statistical Ensemble

Ensemble averages can be identified with macroscopic observables

Example:

MD connects microscopic DFT-calculation with macroscopic
observables



Statistical Ensembles

Example: Methane-molecule microcanonical N,V =const
Ensemble E = const
\\\\\\\\\\\\S
Solving Newton's MD run of a g
c ]

equations > closed system > o \a |
(isolated molecule) Sk ® \
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canonical Ensemble <g>@T
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More realistic:
—» Particle of a gas
(colliding molecules)
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= How is temperature enabled ?



Nose-Hoover Thermostat

Additional degree of freedom (friction [XI) simulates energy exchange
with heat bath:

L: degrees of freedom
Q: thermostat mass

= T: temperature
= modified newtonian equations of motion | T pusss \
5 M
= total energy is no longer conserved ! T }
= new constant of motion for extended system ! SRS

HNH :EtOt +1QX2 + X L

2 kT

= Nose-Hoover thermostat exactly simulates canonical ensemble!



The role of the thermostat mass Q

Example: Simulation of Methane at 298K

large Q’s
Total energy oscillates with
characteristic frequency

wul/./0
g
>
o
Q | small Q’s
(1; m"m"’m ' <« Characteristic frequency
E couples to vibrations of
Simulation time & (0.4 ps) the system

= small Q lead to faster generation of the wanted temperature
but: too small Q lead to instabilities in the integration process



Summary

What can one do with (first-principles) Molecular Dynamics ?

Trajectory of a MD-run

Analysing Watching a
time-correlatiom_ : 9

functions movie
Entropy effects‘/ —— Thermal

annealing

Calculating ensemble averages
Deriving macroscopic observables

—_——

justing macroscopic state variables (e.g. Temperature, pressurgq)
via extended equations of motion




Application-area of DET-MD

Maximal system size (L1) order of 100 atoms

Maximal simulation time (L1) order of 100 ps,
10000 hydrogen-stretch vibrations

= no simulation of “rare” events possible
(Transition state theory, physical intiution)

= good for analysing microscopic processes which take place ont
time scale of 1 ps (100 hydrogen-stretch vibrations)

embedding of the system in a realistic environment
(e.g. water ) possible via QM/MM




Exploring the BOS with SEHIngX

Structure optimization

Example: Optimization of a 310-helix

——  fhi98md: damped newton + damped joannopoulos
—— SFHIngX: quasi newton + allstate conjugate gradient

1
m 0.001

0.0001

5000 10000 15000 20000 25000 30000 35000 40000

calculation time (s)

implemented schemes

Damped Newton (Verlet)
Quasi Newton scheme



Exploring the BOS with SEHIngX

Transition State Search

S DomainB
! - Y )

o, II"', |III
II‘II. III I.

local

I 1.,,-_-’ minimum B

implemented scheme:

Initialization: synchronous transit
Optimization: quasi newton (gradient minimizer)



Exploring the BOS with SEHIngX

Vibrational analysis

Example: Phonon dispersion relation of the polyalanine & -helix calculated with DFT-PBE [1];.
and compared to experimental values of [2]
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implemented schemes

Frozen Phonon vibrational analysis
Harmonic thermodynamic analysis (sxgetdyn)
Phonon dispersion relation (sxdispersion, not documented in manual)

[1] L. Ismer, J. Ireta, S. Boeck and J. Neugebauer, to be published
[2] H. Lee and S. Krimm, Biopolymers 46, 283 (1998)



Exploring the BOS with SEHIngX

Technique

Integrators

Ensembles

Initialisation

Molecular Dynamics

CCG-Born Oppenheimer Dynamics
1st order wavefunction extrapolation

Verlet
Gear Predictor-Corrector
Adams-Moulton Predictor Adams-Bashforth corrector

microcanonical and canonical
random velocities

atom displacement in cartesian or phonon basis
restart by file



