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Why study excited states ?

o Because they are there

o Motivation from experiments ⇒ progress in spectroscopy
methods Example → Aluminum bulk

• Electron Energy Loss
Spectroscopy (EELS)

• Plasmon excitations
in bulk systems

• S(q, ω) = −q2=ε−1(q, ω)

• Anormalous behaviour ?
P.M. Platzman et al., PRB 46,12 943(1992)

• Property of the material
A. Fleszar et al., PRL, 74, 590(1995)

Atomistic studies needed!

o The ultimate gainÃ more realistic description of exchange and
correlation effects
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How about surfaces ?

ë Sample EELS for a surface

4 Apart from the bulk plasmon
there exist two additional

4 The monopole surface plasmon
ωs due to the surface

4 The multipole surface plasmon
ωm due to diluted density profile

î

ë Photoemission Spectroscopy (PY)

4 The light usually excites only
the multipole plasmon

4 features A & B ?
P Detailed theoretical study desperately wanted P
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Spectroscopies ?

ý Prototype Spectroscopy Measurements

q Absorption

O Electron-hole pair is created
O Charge-neutral excitation results
O Number of electrons unchanged

q Photoemission Spectroscopy (PE)

O Electron is removed/added to the system
O Direct Photoemission scans occupied levels
O Inverse Photoemission probes unoccupied states

P I can’t directly use my ground-state code P
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Kohn-Sham eigenvalues dilemma (?)

o Description of such measurements is intimately bound to the
one-particle/-like energies

o These can be obtained from DFT, but...
[

− 1
2∇

2 + Vext(r) + VH(r) + Vxc(r)
]

φi(r) = ε iφi(r)

n(r) = ∑i fi|φi(r)|2 E0 = minEtot[n]

o Means ???
n Static approach to many-body problem

n By design describes the ground-state properties

n Kohn-Sham eigenvalues aquire meaning via Janak theorem
εi =

δE0[n]
δ fi
Ã all but the highest occupied one are mathematical

artifacts of the method

n the highest occupied KS eigenvalue corresponds to chemical
potential of the system



Lecture 17th • When States Get Excited -or- a Short Guide to TDDFT • Krzysztof Tatarczyk
Applications of DFT...• Fritz-Haber-Institut, Berlin, 21-30 July, 2003

Can we use DFT for excited states ?

o Kohn-Sham eigenvalues cannot be interpreted directly as
excitation energies
n no formal justification for such action

n differences of about 10%-50% are observed if the KS excitations energies
are compared with experiment

o Janak theorem legitimises use of the ground-state scheme for
lowest excited states
EDFT

0 ( f1, . . . , fi, . . . , fN) − EDFT
0 ( f1, . . . , fi − 1, . . . , fN) =

=
∫ 1

0 dζ εKS
i ( f1, . . . , fi − 1 + ζ, . . . , fN) = εKS

i ( fi + 1
2 )

n excitation energy is obtained by two separate, ground-state calculations, ∆SCF

n problematic in solids

o Band-structure & ... the band-gap ?
Eg ≡ I − A = [E0(N − 1) − E0(N)] − [E0(N) − E0(N + 1)]

Eg = εN+1(N) − εN(N) + [Vxc
N+1 − Vxc

N ]

H E L P ?
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Ways to go...

In order to obtain excitation energies:

o Improve description of the bandstructure
n in a way that it yields electron addition/removal energies seen in

spectroscopy experiments

n Means ? Solve the band-gap problem!
F Employ the Many-Body Perturbation Theory (MBPT)

[

− 1
2∇

2 + VH(r)
]

φi(r) +
∫

d3r′ ∑(r, r′, εQP
i )φi(r′) = εQP

i φi(r)

Ã Effective quasiparticle Hamiltonian with the optical mass
(self-energy) operator → the GW method

F Stay within the DFT and improve the XC potential

Vx =
δEx

δn

∣

∣

∣

∣

n=n0

, Ex = −
1
2 ∑

i,j

∫

d3r d3r′φ∗
i (r)φ∗

j (r′)v(r − r′)φi(r)φj(r′) Ã

the EXX method → it works (!)
o How about charge-neutral excitations ?
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Hint from experiments

o Perturbed system is studied

n Obtain the ground-state

Ã HK theorem, KS equa-
tions

n Study the time-evolution

Ã ??? ??? ???

o I need to generalise DFT to
time-dependent phenomena!



Lecture 17th • When States Get Excited -or- a Short Guide to TDDFT • Krzysztof Tatarczyk
Applications of DFT...• Fritz-Haber-Institut, Berlin, 21-30 July, 2003

Starting point

o Consider two separate systems of N electrons

¬ Ĥ¬ = T̂ + V̂(t) + Ŵ ­ Ĥ­ = T̂ + V̂ ′(t) + Ŵ ′

o and two continuity equations

n for the electron density ∂tn(r, t) = −∇ · j(r, t)

n for the current density ∂tj(r, t) = −i〈Ψ|[ĵ(r, t), Ĥ¬,­(t)]|Ψ〉

o Ask the question →

Could it be that n¬(r, t) ≡ n­(r, t) ?

o Always true, if

n n¬(r, t0) ≡ n­(r, t0) and P¬(t0) = P­(t0)

n P currents and densities vanish at infinity P

. R. van Leeuwen, PRL, 82, 3863 (1999).
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Conclusions ???

o Let O Ŵ¬ = Ŵ­ O Φ¬
0 = Φ­

0

o Ã Runge-Groß theorem

n Vext(t) = Vext[n] + C(t)

n δA[n]

δn
= 0

A[n] =

∫ t1

t0

dt
∫

d3Nrψ∗({r}, t)
{

i∂t +
1
2
∇2 − Vee(r, t) − Vext(r, t)

}

ψ({r}, t)

n time-dependent Kohn-Sham system
n(r, t) = ∑

i
fiφ

∗
i (r, t)φi(r, t)

{

i∂t +
1
2
∇2
}

φi(r, t) =

{

Vext(r, t) +

∫

d3r′
n(r, t)
|r − r′|

+
δAxc[n]

δn

∣

∣

∣

∣

n=n(r,t)

}

φi(r, t)

o Questions :
n What do I do with Axc ?

n Can I calculate things efficiently with this scheme ?
. E. Runge and E.K.U. Gross, PRL, 52, 997(1984).
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Take a look at experiments again

o Time-evolution of a system under perturbation

Ã quite demanding task

o situation in experiments

Ã the linear response → a shortcut

o The response function ≡ density-density correlation function

χ(r, r′, ω) = ∑
i,j

( fi − f j)
φi(r)φ∗

j (r′)φj(r′)φ∗
i (r)

ε j − ε i + ω + iη
for noninteracting particles
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Here we go again

o Assume external potential of the form
vext(r, t) = vext

0 (r) + vext
1 (r, t)Θ(t − t0)

o Expand electron density into Taylor series
n(r, t) = n0(r) + n1(r, t) + . . .

The first-order term is :

n1(r, t) =

∫

dt′
∫

d3r′ χ(r, t, r′, t′)vext
1 (r′, t′), χ(r, t, r′, t′) =

δn(r, t)
δvext(r′, t′)

o Due to utilising the Kohn-Sham system

χ0(r, t, r′, t′) =
δn(r, t)

δveff(r′, t′)

χ0(r, r′, ω) = ∑
i,j

( fi − f j)
φi(r)φ∗

j (r′)φj(r′)φ∗
i (r)

εKS
j − εKS

i + ω + iη

o P poles at KS excitation energies P
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Getting excited

o Play a little bit with definitions

χ(r, r′, ω) =
δn(r, ω)

δvext(r, ω)
, χ0(r, r′, ω) =

δn(r, ω)

δveff(r, ω)

o functional chain rule
δn

δvext =
δn

δveff
δveff

δvext =
δn

δveff
δveff

δn
δn

δvext

o The Dyson equation

χ = χ0 + χ0(vC + f xc)χ, f xc[n] =
δvxc

δn

∣

∣

∣

∣

n=n0
• shifts the poles • dynamic XC effects

o How do I search for the poles ?
χ = [1 − χ0(vC + f xc)]−1 χ0 Ã R(ω) = 1 − χ0 (vC + f xc)

χ0(vC + f xc)|ζ〉 = λ(ω)|ζ〉 λ(Ω) ≡ 1
. M. Petersilka, U.J. Gossmann, and E.K.U. Gross, PRL, 76, 1212(1996).
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Mysterious kernel

o What is it ?
f xc[n](r, r′, ω) =

δvxc[n](r)
δn(r′, ω)

nonlocal and dynamic response of the exchange-correlation potential
o Why is it important ?

χ = χ0 + χ0(vC + f xc)χ

f xc introduces electron-hole attraction
o Where does it come from ?

f xc = χ−1 − χ−1
0 − vC

χ has to be known first
o How do we use it ?

f xc
ALDA(r, r′, 0) = δ(r − r′)

δvxc
LDA
δn

f xc
RPA ≡ 0

parameterisations are based on electron gas f xc
gas(q, ω) = −vC(q)Ggas(q, ω)
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Stiring the states

Recipe for excitation energies
To obtain excitation energies :

o perform the ground-state calculation
to aquire φi(r), ε i

o build up the KS response function χ0

o solve the Dyson equation to
access χ

o find the poles of χ

P How does it work in practice ? P
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The grey reality

, Theory gets a little bit schisofrenic ,

o Excitation energies contain two different approximations
n to XC potential
n to XC kernel

+ Localised systems + Extended systems

P TD-DFT works well only for finite systems P
. C. Adamo, G.E. Scuseria, and V. Barone,

J.Chem.Phys, 111(7), 2889(1999).
. K. Tatarczyk. A. Schindlmayr, and M. Scheffler,

PRB, 63, 235106(2001).
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The Dyson equation at work

o Renormalization of the KS response function

χ = χ0 + χ0(vC + f xc)χ

Do we really need this kernel ?

+ Localised systems + Extended systems

P The kernel is necessary for quantitative results P

. M.A.L. Marques, A. Castro, and A. Rubio,
J.Chem.Phys, 115, 3006(2001).

. A.G. Eguiluz, W. Ku, and J.M. Sullivan,
J.Phys.Chem.Solids, 61, 383(2000).
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Plasmon dispersion in bulk

o How do I calculate plasmons ? → S(q, ω) ≈ −=χ(q, ω)

• Alkali metals are free-electron systems

P The RPA catastrophe resolved
. W. Ku and A.G. Eguiluz in Proceedings edited by A.Gonis and N. Kioussis (Plenum, NY’99).
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Dielectric function of Silicon

o In terms of response function

εM(ω) = lim
|q|→0

1
ε−1

0,0(q, ω)
, ε−1

G,G′ (q, ω) = δG,G′ + vG,G′

C (q)χG,G′ (q, ω)

• Easily accessed if the response function is at hand

o Let’s see it :

P ε
exp
M = 11.4 while εTDDFT

M = 12.2+Ã Ooopppsssss :-(
. V. Olevano, M. Palummo, G. Onida, and R.D. Sole, PRB 60, 14224(1999).
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What is wrong ?

o The formulation strictly valid for localised systems only
n we requested that the density & currents vanish at ∞

n RG theorem holds, provided that
∮

n(r, t0)[∇u2(r)] · df ≡ 0

o The corespondence v(r, t)­ n(r, t) is proven by v(r, t)­ j(r, t)
and then j(r, t)­ n(r, t)

o What happens if we choose the current density as a basic
variable ? {

1
2

[

p +
1
c

Aeff[j](r, t)
]2

+ veff(r, t)

}

φ(r, t) = i∂tφ(r, t)

j(r, t) = =∑
iocc

φ∗
i (r, t)∇φi(r, t) −

1
c

n(r, t)Aeff(r, t)

o TD-Current-DFT Aeff = Aext + AH + AT + Axc

o Exc = iω
c Axc = αPmac + ωβjT

. G. Vignale and W.Kohn, PRL, 77, 2037(1996). . N.T. Maitra, I. Souza, and K. Burke, to appear in PRB.
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Dielectric function of Silicon...again

o Does it work now ?

P ε
exp
M = 11.4 ≈ εALDA

M = 11.6
. F. Koostra, P.L. de Boeij, and J.G. Snijders, J.Chem.Phys. 112, 6517(2000).
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Summary

o Charge-neutral (optical) excitations can be conveniently
accessed via time-generalisation of DFT

o The excitations can be studied through :

n time-evolution of a system under perturbation

n linear-response approach

o Due to early stage of development, the results usually are in
qualitative/quantitative agreement with experiment

o Better description of XC effects desperately needed

o Many open questions await to be answered
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