

When States Get Excited or a Short Guide to time dependent DFT

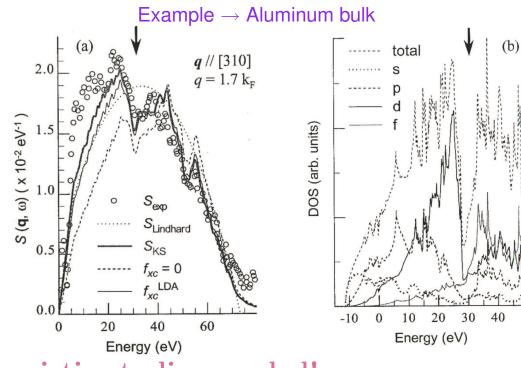
Krzysztof Tatarczyk

tatar@fhi-berlin.mpg.de

Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6, 14195 Berlin, Germany

Why study excited states ?

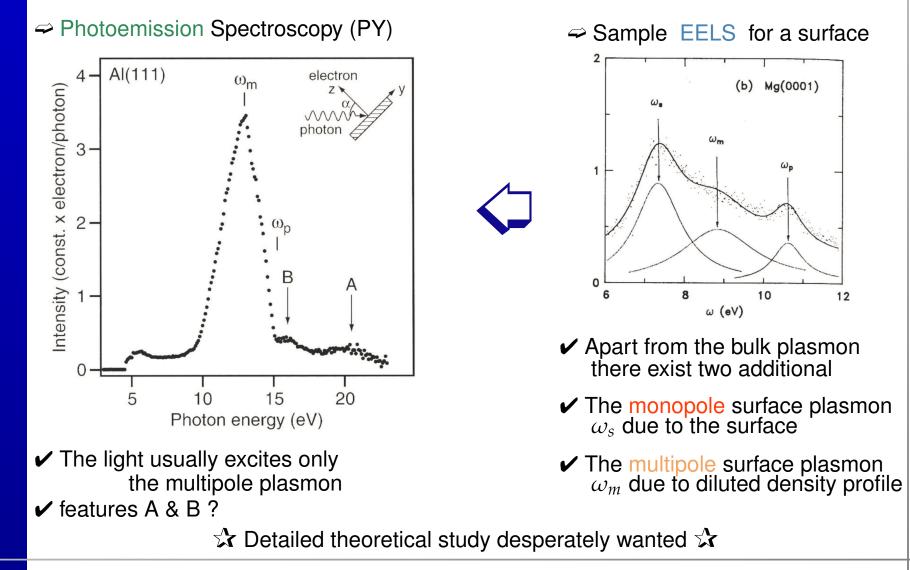
- Because they are there
- Image: Motivation from experiments ⇒ progress in spectroscopy methods
 Example → Aluminum bulk
- Electron Energy Loss Spectroscopy (EELS)
- Plasmon excitations in bulk systems
- $S(\mathbf{q}, \omega) = -q^2 \Im \varepsilon^{-1}(\mathbf{q}, \omega)$
- Anormalous behaviour ? P.M. Platzman *et al.*, PRB 46,12 943(1992)
- Property of the material A. Fleszar *et al.*, PRL, **74**, 590(1995)



Atomistic studies needed!

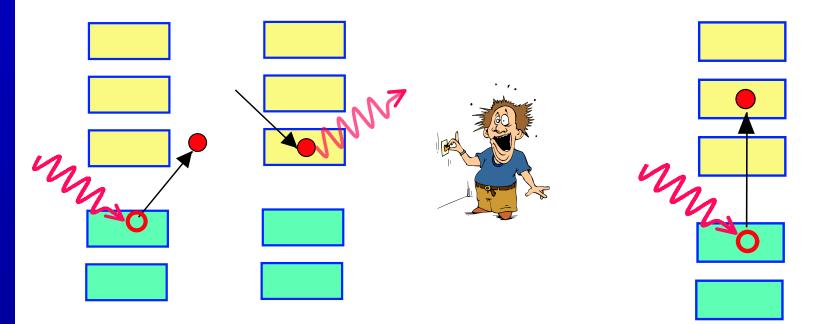
❑ The ultimate gain ~→ more realistic description of exchange and correlation effects

How about surfaces ?



Spectroscopies ?

Prototype Spectroscopy Measurements
 Photoemission Spectroscopy (PE)
 Absorption



- ★ Electron is removed/added to the system
 ★ Direct Photoemission scans occupied levels
 ★ Inverse Photoemission probes unoccupied states
- ★ Electron-hole pair is created
- ★ Charge-neutral excitation results
- ★ Number of electrons unchanged

 \checkmark I can't directly use my ground-state code \checkmark

Kohn-Sham eigenvalues dilemma (?)

Description of such measurements is intimately bound to the one-particle/-like energies

These can be obtained from DFT, but...

$$\left[-\frac{1}{2}\nabla^2 + V^{\text{ext}}(\mathbf{r}) + V^{\text{H}}(\mathbf{r}) + V^{\text{xc}}(\mathbf{r})\right]\phi_i(\mathbf{r}) = \varepsilon_i\phi_i(\mathbf{r})$$

 $n(\mathbf{r}) = \sum_i f_i |\phi_i(\mathbf{r})|^2$ $E_0 = \min E_{tot}[n]$

Means ???

- Static approach to many-body problem
- By design describes the ground-state properties
- Kohn-Sham eigenvalues aquire meaning via Janak theorem $\varepsilon_i = \frac{\delta E_0[n]}{\delta f_i} \rightsquigarrow$ all but the highest occupied one are mathematical artifacts of the method
- the highest occupied KS eigenvalue corresponds to chemical potential of the system

Can we use DFT for excited states ?

- Kohn-Sham eigenvalues <u>cannot</u> be interpreted directly as excitation energies
 - no formal justification for such action
 - differences of about 10%-50% are observed if the KS excitations energies are compared with experiment
- Janak theorem legitimises use of the ground-state scheme for lowest excited states

$$E_0^{DFT}(f_1, \dots, f_i, \dots, f_N) - E_0^{DFT}(f_1, \dots, f_i - 1, \dots, f_N) = \\ = \int_0^1 d\zeta \, \varepsilon_i^{KS}(f_1, \dots, f_i - 1 + \zeta, \dots, f_N) = \varepsilon_i^{KS}(f_i + \frac{1}{2})$$

excitation energy is obtained by two separate, ground-state calculations, ΔSCF
 problematic in solids

Band-structure & ... the band-gap ? $E^{g} \equiv I - A = [E_{0}(N-1) - E_{0}(N)] - [E_{0}(N) - E_{0}(N+1)]$ $E^{g} = \varepsilon_{N+1}(N) - \varepsilon_{N}(N) + [V_{N+1}^{xc} - V_{N}^{xc}]$ $H \in L P ?$

Ways to go

In order to obtain excitation energies:

- Improve description of the bandstructure
 - in a way that it yields <u>electron addition/removal</u> energies seen in spectroscopy experiments
 - Means ? Solve the band-gap problem!
 - Employ the Many-Body Perturbation Theory (MBPT)

$$\left[-\frac{1}{2}\nabla^2 + V^{\rm H}(\mathbf{r})\right]\phi_i(\mathbf{r}) + \int d^3r' \ \sum(\mathbf{r}, \mathbf{r}', \varepsilon_i^{QP})\phi_i(\mathbf{r}') = \varepsilon_i^{QP}\phi_i(\mathbf{r})$$

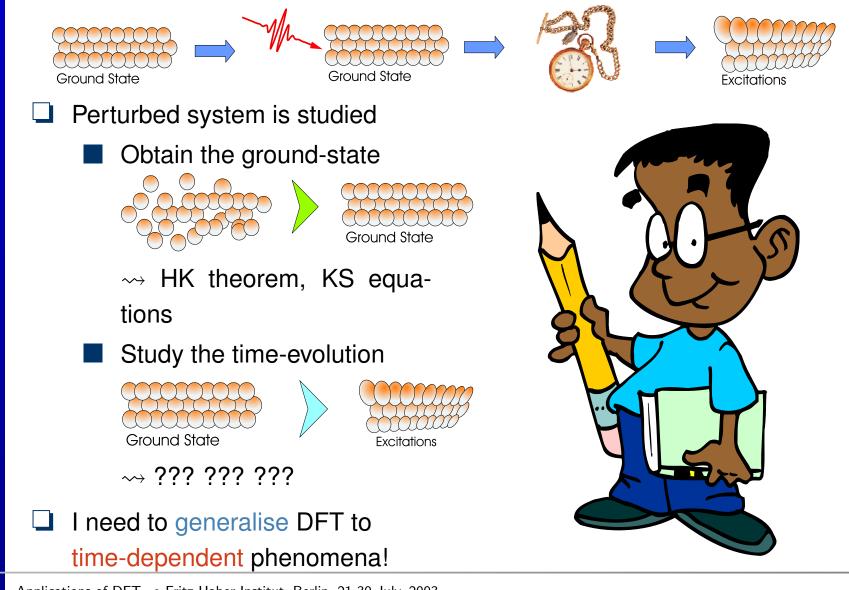
 \rightsquigarrow Effective quasiparticle Hamiltonian with the optical mass (self-energy) operator \rightarrow the GW method

Stay within the DFT and improve the XC potential

$$V^{\mathbf{x}} = \frac{\delta E^{\mathbf{x}}}{\delta n} \Big|_{n=n_0}, \quad E^{\mathbf{x}} = -\frac{1}{2} \sum_{i,j} \int d^3 r \, d^3 r' \phi_i^*(\mathbf{r}) \phi_j^*(\mathbf{r}') v(\mathbf{r} - \mathbf{r}') \phi_i(\mathbf{r}) \phi_j(\mathbf{r}')$$

the EXX method \rightarrow it works (!) How about charge-neutral excitations ?

Hint from experiments



Starting point

Consider two separate systems of N electrons

① $\hat{H}^{(1)} = \hat{T} + \hat{V}(t) + \hat{W}$ ② $\hat{H}^{(2)} = \hat{T} + \hat{V}'(t) + \hat{W}'$

- and two continuity equations
 - for the electron density $\partial_t n(\mathbf{r}, t) = -\nabla \cdot \mathbf{j}(\mathbf{r}, t)$
 - for the current density $\partial_t \mathbf{j}(\mathbf{r},t) = -i\langle \Psi | [\hat{\mathbf{j}}(\mathbf{r},t), \hat{H}^{(1,2)}(t)] | \Psi \rangle$
- \square Ask the question \rightarrow

Could it be that $n^{(1)}(\mathbf{r},t) \equiv n^{(2)}(\mathbf{r},t)$?

Always true, if

n^①(**r**,
$$t_0$$
) $\equiv n^{2}$ (**r**, t_0) and **P**^①(t_0) $=$ **P**²(t_0)

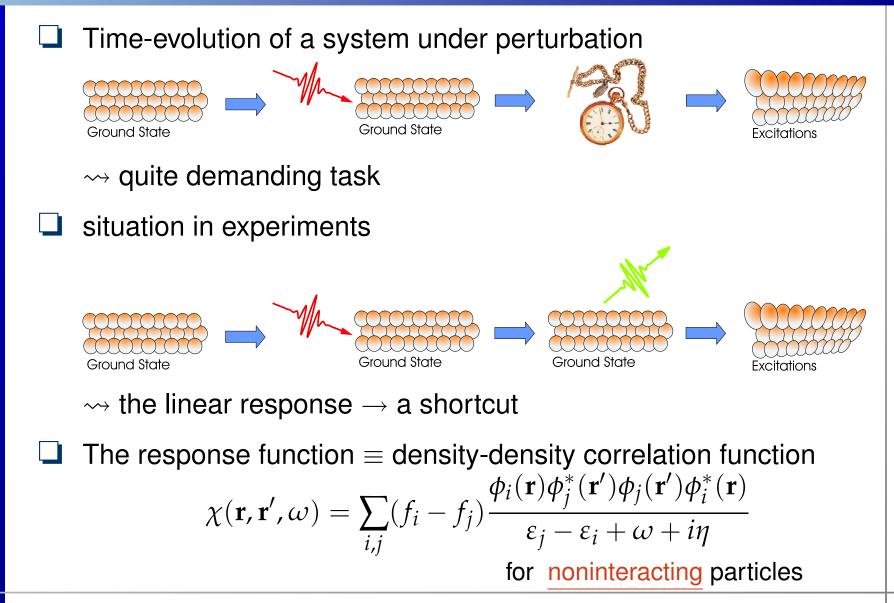
 \Rightarrow currents and densities vanish at infinity \Rightarrow

S R. van Leeuwen, PRL, 82, 3863 (1999).

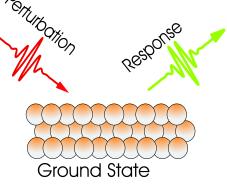
Conclusions ???

 $* \hat{W}^{(1)} = \hat{W}^{(2)}$ $\star \Phi_0^{(1)} = \Phi_0^{(2)}$ Let → Runge-Groß theorem $V^{\text{ext}}(t) = V^{\text{ext}}[n] + C(t)$ $\frac{\delta A[n]}{s} = 0$ $A[n] = \int_{t_0}^{t_1} dt \int d^{3N} r \psi^*(\{\mathbf{r}\}, t) \left\{ i\partial_t + \frac{1}{2}\nabla^2 - V^{\text{ee}}(\mathbf{r}, t) - V^{\text{ext}}(\mathbf{r}, t) \right\} \psi(\{\mathbf{r}\}, t)$ time-dependent Kohn-Sham system $n(\mathbf{r},t) = \sum_{i} f_{i} \phi_{i}^{*}(\mathbf{r},t) \phi_{i}(\mathbf{r},t)$ $\left\{ i\partial_{t} + \frac{1}{2}\nabla^{2} \right\} \phi_{i}(\mathbf{r},t) = \left\{ V^{\text{ext}}(\mathbf{r},t) + \int d^{3}r' \frac{n(\mathbf{r},t)}{|\mathbf{r}-\mathbf{r}'|} + \frac{\delta A^{\text{xc}}[n]}{\delta n} \Big|_{n=n(\mathbf{r},t)} \right\} \phi_{i}(\mathbf{r},t)$ **Questions**: What do I do with A^{xc} ?

Take a look at experiments again



Here we go again



- Assume external potential of the form $v^{\text{ext}}(\mathbf{r}, t) = v_0^{\text{ext}}(\mathbf{r}) + v_1^{\text{ext}}(\mathbf{r}, t)\Theta(t - t_0)$
- Expand electron density into Taylor series $n(\mathbf{r}, t) = n_0(\mathbf{r}) + n_1(\mathbf{r}, t) + \dots$

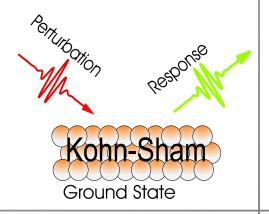
The first-order term is :

$$n_1(\mathbf{r},t) = \int dt' \int d^3r' \,\chi(\mathbf{r},t,\mathbf{r}',t') v_1^{\text{ext}}(\mathbf{r}',t'), \quad \chi(\mathbf{r},t,\mathbf{r}',t') = \frac{\delta n(\mathbf{r},t)}{\delta v^{\text{ext}}(\mathbf{r}',t')}$$

Due to utilising the Kohn-Sham system

 $\chi_0(\mathbf{r}, t, \mathbf{r}', t') = \frac{\delta n(\mathbf{r}, t)}{\delta v^{\text{eff}}(\mathbf{r}', t')}$ $\chi_0(\mathbf{r}, \mathbf{r}', \omega) = \sum_{i,j} (f_i - f_j) \frac{\phi_i(\mathbf{r})\phi_j^*(\mathbf{r}')\phi_j(\mathbf{r}')\phi_i^*(\mathbf{r})}{\varepsilon_j^{KS} - \varepsilon_i^{KS} + \omega + i\eta}$

A poles at KS excitation energies A

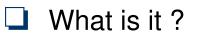


Getting excited

Play a little bit with definitions $\chi(\mathbf{r},\mathbf{r}',\omega) = \frac{\delta n(\mathbf{r},\omega)}{\delta v^{\text{ext}}(\mathbf{r},\omega)}, \qquad \chi_0(\mathbf{r},\mathbf{r}',\omega) = \frac{\delta n(\mathbf{r},\omega)}{\delta v^{\text{eff}}(\mathbf{r},\omega)}$ functional chain rule $\frac{\delta n}{\delta_{7}} = \frac{\delta n}{\delta_{7}} \frac{\delta v^{\text{eff}}}{\delta_{7}} = \frac{\delta n}{\delta_{7}} \frac{\delta v^{\text{eff}}}{\delta_{7}} \frac{\delta n}{\delta_{7}}$ The Dyson equation $f^{xc}[n] = \frac{\delta v^{xc}}{\delta n} \bigg|_{n = \infty}$ $\chi = \chi_0 + \chi_0 (v_{\rm C} + f^{\rm xc}) \chi,$ shifts the poles dynamic XC effects How do I search for the poles ? $\chi = [1 - \chi_0 (v_C + f^{xc})]^{-1} \chi_0 \rightsquigarrow R(\omega) = 1 - \chi_0 (v_C + f^{xc})$ $\chi_0(v_{\rm C} + f^{\rm xc})|\zeta\rangle = \lambda(\omega)|\zeta\rangle \quad \lambda(\Omega) \equiv 1$

M. Petersilka, U.J. Gossmann, and E.K.U. Gross, PRL, 76, 1212(1996).

Mysterious kernel



$$\int c^{\mathrm{xc}}[n](\mathbf{r},\mathbf{r}',\omega) = \frac{\delta v^{\mathrm{xc}}[n](\mathbf{r})}{\delta n(\mathbf{r}',\omega)}$$

nonlocal and dynamic response of the exchange-correlation potential Why is it important ?

$$\chi = \chi_0 + \chi_0 (v_{\rm C} + f^{\rm xc}) \chi$$

 $f^{\rm xc}$ introduces electron-hole attraction

Where does it come from ?

$$f^{\rm xc} = \chi^{-1} - \chi_0^{-1} - v_{\rm C}$$

 χ has to be known first

How do we use it ?

$$f_{\text{ALDA}}^{\text{xc}}(\mathbf{r},\mathbf{r}',0) = \delta(\mathbf{r}-\mathbf{r}')\frac{\delta v_{\text{LDA}}^{\text{xc}}}{\delta n} \qquad f_{\text{RPA}}^{\text{xc}} \equiv 0$$

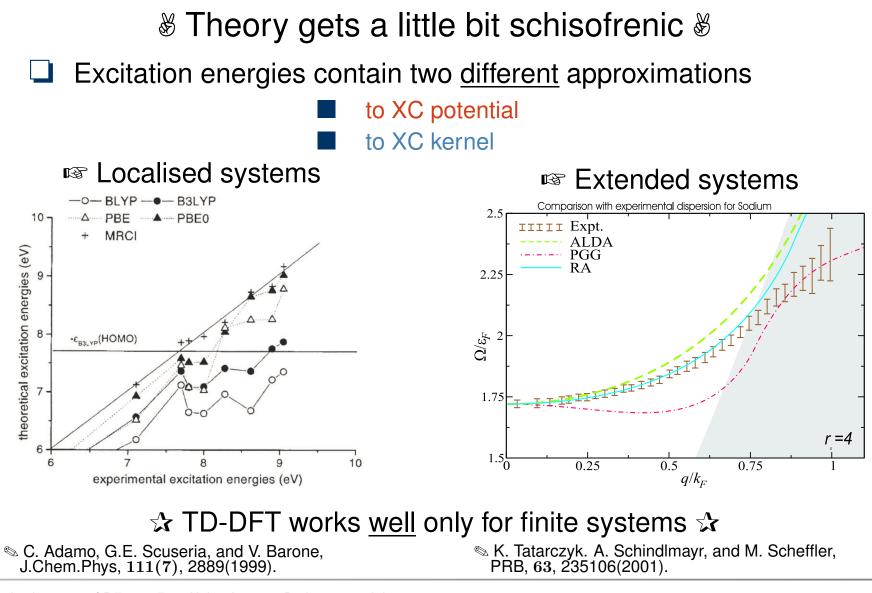
parameterisations are based on electron gas $f_{gas}^{xc}(q,\omega) = -v_{\rm C}(q)G_{gas}(q,\omega)$

Recipe for excitation energies

To obtain excitation energies :

- perform the ground-state calculation to aquire $\phi_i(\mathbf{r})$, ε_i
- \square build up the KS response function χ_0
- J solve the Dyson equation to access χ
- \Box find the poles of χ

rightarrow How does it work in practice ? rightarrow



The Dyson equation at work

Renormalization of the KS response function

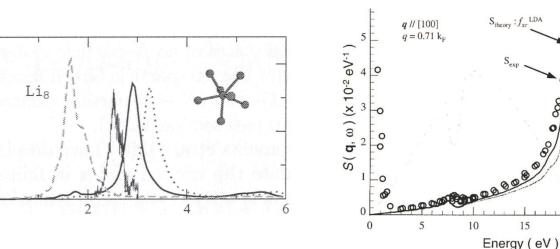
$$\chi = \chi_0 + \chi_0 (v_{\rm C} + f^{\rm xc}) \chi$$

Do we really need this kernel ?

Strength Function (1/eV)

10

0



\checkmark The kernel is necessary for quantitative results \checkmark

M.A.L. Marques, A. Castro, and A. Rubio, J.Chem.Phys, 115, 3006(2001). A.G. Eguiluz, W. Ku, and J.M. Sullivan, J.Phys.Chem.Solids, 61, 383(2000).

Extended systems

 $S_{\text{theory}}: f_{xc} = 0$

Al

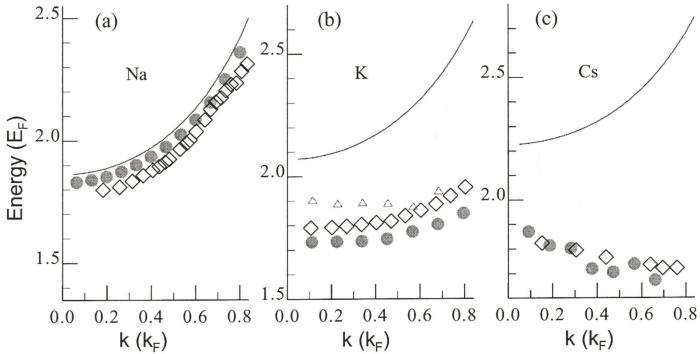
25

30

20

Plasmon dispersion in bulk

- I How do I calculate plasmons ? $\rightarrow S(\mathbf{q}, \omega) \approx -\Im \chi(\mathbf{q}, \omega)$
 - Alkali metals are free-electron systems



☆ The RPA catastrophe resolved

N. Ku and A.G. Eguiluz in Proceedings edited by A.Gonis and N. Kioussis (Plenum, NY'99).

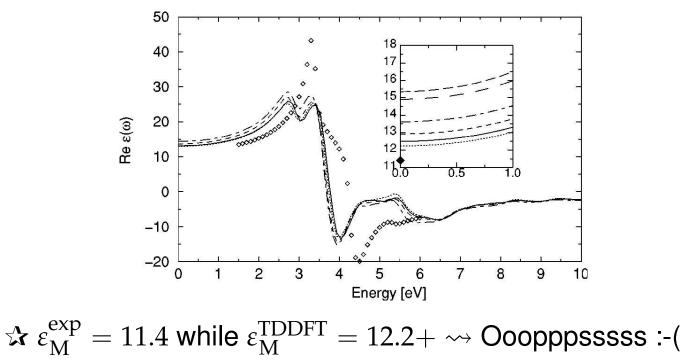
Dielectric function of Silicon

□ In terms of response function

$$\varepsilon_{\mathbf{M}}(\omega) = \lim_{|q| \to 0} \frac{1}{\varepsilon_{0,0}^{-1}(\mathbf{q},\omega)}, \quad \varepsilon_{\mathbf{G},\mathbf{G}'}^{-1}(\mathbf{q},\omega) = \delta_{\mathbf{G},\mathbf{G}'} + v_{\mathbf{C}}^{\mathbf{G},\mathbf{G}'}(\mathbf{q})\chi_{\mathbf{G},\mathbf{G}'}(\mathbf{q},\omega)$$

• Easily accessed if the response function is at hand

Let's see it :



∞ V. Olevano, M. Palummo, G. Onida, and R.D. Sole, PRB 60, 14224(1999).

What is wrong ?

- The formulation strictly valid for localised systems only
 - we requested that the density & currents vanish at ∞

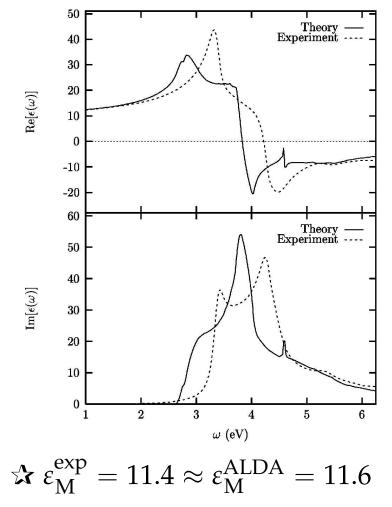
RG theorem holds, provided that $\oint n(\mathbf{r}, t_0) [\nabla u^2(\mathbf{r})] \cdot d\mathbf{f} \equiv 0$

- ☐ The corespondence $v(\mathbf{r}, t) \rightleftharpoons n(\mathbf{r}, t)$ is proven by $v(\mathbf{r}, t) \rightleftharpoons \mathbf{j}(\mathbf{r}, t)$ and then $\mathbf{j}(\mathbf{r}, \mathbf{t}) \rightleftharpoons \mathbf{n}(\mathbf{r}, \mathbf{t})$
- What happens if we choose the current density as a basic variable ? $\left\{\frac{1}{2}\left[\mathbf{p} + \frac{1}{c}\mathbf{A}^{\text{eff}}[\mathbf{j}](\mathbf{r},t)\right]^{2} + v^{\text{eff}}(\mathbf{r},t)\right\}\phi(\mathbf{r},t) = i\partial_{t}\phi(\mathbf{r},t)$ $\mathbf{j}(\mathbf{r},t) = \Im\sum_{i_{occ}}\phi_{i}^{*}(\mathbf{r},t)\nabla\phi_{i}(\mathbf{r},t) - \frac{1}{c}n(\mathbf{r},t)\mathbf{A}^{\text{eff}}(\mathbf{r},t)$ $\Box \text{ TD-Current-DFT } \mathbf{A}^{\text{eff}} = \mathbf{A}^{\text{ext}} + \mathbf{A}^{\text{H}} + \mathbf{A}^{\text{T}} + \mathbf{A}^{\text{xc}}$ $\Box \mathbf{E}^{\text{xc}} = \frac{i\omega}{c}\mathbf{A}^{\text{xc}} = \alpha\mathbf{P}^{\text{mac}} + \omega\beta\mathbf{j}^{\text{T}}$

S. C. Vignale and W.Kohn, PRL, 77, 2037(1996).
N.T. Maitra, I. Souza, and K. Burke, to appear in PRB.

Dielectric function of Silicon...again

Does it work now ?



S. Koostra, P.L. de Boeij, and J.G. Snijders, J.Chem.Phys. 112, 6517(2000).

- Charge-neutral (optical) excitations can be conveniently accessed via time-generalisation of DFT
- The excitations can be studied through :
 - time-evolution of a system under perturbation
 - linear-response approach
- Due to early stage of development, the results usually are in qualitative/quantitative agreement with experiment
- Better description of XC effects desperately needed
- Many open questions await to be answered