Exact-exchange approach in the KS formalism of DFT

Abdallah Qteish

Yarmouk University, Irbid-Jordan

Collaborators \& Support

Collaborators:

6. Abdullah Al-Sharif (Yarmouk University)

- Jörg Neugebauer (FHI)
- Sixten Boeck (FHI)
- Martin Fuchs (FHI)
- Matthias Scheffler (FHI)

New comers: Matthias Wahn and Hazem Abu-Farsakh

- Support: from the Volkswagen Stiftung.

KS formalism

Total energy separation

$$
E_{t o t}=T_{o}+E_{H}+E_{e-i}+E_{X}+E_{C}
$$

Single particle KS equations

$$
\left\{-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{\text {ion }}+V_{H}[\rho]+V_{X}[\rho]+V_{C}[\rho]\right\} \psi_{i}=\varepsilon_{i} \psi_{i}, \text { with }
$$

$$
\begin{equation*}
\rho(r)=\sum_{i}^{o c c}\left|\psi_{i}(r)\right|^{2} ; \quad V_{y}=\frac{\delta E_{y}}{\delta \rho(\mathbf{r})} \quad(y=H, X \text { and } C) \tag{1}
\end{equation*}
$$

Approximations to $\mathrm{E}_{\mathrm{X}}+\mathrm{E}_{\mathrm{C}}\left(\mathrm{E}_{\mathrm{XC}}\right)$

LDA: $E_{x C}^{L D A}=\int \varepsilon_{x c}^{\mathrm{hom}}(\rho(\mathbf{r})) \rho(\mathbf{r}) d \mathbf{r}$

GGA: $E_{X C}^{G G A}=\int \rho(\mathbf{r}) f_{x c}(\rho(\mathbf{r}), \nabla \rho(\mathbf{r}), \ldots) d \mathbf{r}$

For the success and weaknesses of LDA and GGA, see the lecture notes of Martin Fuchs (L8).

The exact-exchange (EXX) approach

- In this approach E_{X} is exactly calculated $=\Rightarrow$ only E_{C} needs to be approximated

Two views:

- $E_{X C}$ is only a small portion of $E_{\text {tot }}$, and E_{X} is an order larger than E_{C}
\longrightarrow EXX is a major step forward.
LDA and GGA are good because of some cancellation of errors between E_{X} and $E_{C}==>$ treating one of them exactly may do more bad than good.

Which view is more correct?

Outline:

Introduction => Self-interaction and its correction

Exact-exchange (EXX) scheme and its implementation in a pseudopotential-PW code

Results

Some serious drawbacks of LDA and GGA:

1- Band-gap problem: E_{g} of semiconductors and insulators are underestimates by 50 to 100%.

- Binding energies of the semicore electrons are higher than experiment by 2 to 4 eV , in case of II-IV and group-III nitrides.
\longrightarrow Due to self-interaction (SI), Zhang, Wei and Zunger, PRB 52, 13975 (1995).

Reason for the Band-gap problem

Discontinuity in $V_{X C}$

$$
\begin{aligned}
\Delta & \equiv E_{g}-\left(E_{N+1, \mathrm{DFT}}^{(N)}-E_{N, \mathrm{DFT}}^{(N)}\right) \\
& =\boldsymbol{V}_{\mathrm{xc}}^{(N+1)}(\mathbf{r})-\boldsymbol{V}_{\mathbf{x c}}^{(N)}(\mathbf{r})
\end{aligned}
$$

The magnitude of Δ is still an open problem

Godby Schlutter and Sham, PRB 37, 10159 (88),

Main problem with LDA and GGA

They allow for spurious self-interaction (SI).
Exact DFT is SI free:

$$
\left.E_{x}=-\frac{e^{2}}{2} \sum_{w \mathrm{kk}} \iint^{\varphi_{\mathrm{k}}^{*}(\mathbf{r}) \varphi_{\nu \mathrm{k}}(\mathbf{r}) \varphi_{\nu \mathrm{k}}\left(\mathbf{r}^{\prime}\right) \varphi_{\nu \mathrm{k}}^{*}(\mathbf{r})} \right\rvert\, \overrightarrow{r-r \mid} d \mathbf{r} d \mathbf{r}
$$

for $\nu \mathbf{k}=v \mathbf{k}^{\prime}$,

$$
E_{x}^{s e l f}=-\frac{e^{2}}{2} \iint \frac{\rho_{\text {ok }}(\mathbf{r}) \rho_{\text {ok }}(\mathbf{r})}{|r-r|} d \mathbf{r} d \mathbf{r}=-E_{H}^{\text {self }}
$$

\Rightarrow Exact cancelation between self V_{H} and V_{X}
\Rightarrow This is not the case for LDA and GGA.

Self-interaction correction (SIC)

$$
\begin{aligned}
E_{t o t}^{\mathrm{SIC}-\mathrm{LDA}}= & T_{o}+E_{\text {ext }}+E_{H}[\rho]+E_{\mathrm{XC}}^{\mathrm{LDA}}[\rho] \\
& -\sum_{i}^{o c c}\left[\frac{1}{2} \int V_{H}\left[\rho_{i}\right] \rho_{i}(\mathbf{r}) d \mathbf{r}+E_{\mathrm{XC}}^{\mathrm{LSD}}\left[\rho_{i \uparrow}, 0\right]\right]
\end{aligned}
$$

And the single particle equations become (in atomic units)

$$
\begin{gathered}
\left(-\nabla^{2} / 2+V_{e x t}+V_{H}[\rho]+V_{\mathrm{XC}}^{\mathrm{LDA}}[\rho]-V_{H}\left[\rho_{i}\right]\right. \\
\left.\quad-V_{\mathrm{XC}}^{\mathrm{LSD}}\left[\rho_{i \uparrow}, \mathrm{O}\right]\right) \Psi_{i}^{\mathrm{SIC}}(\mathbf{r})=\varepsilon_{i}^{\mathrm{SIC}} \Psi_{i}^{\mathrm{SIC}}(\mathbf{r})
\end{gathered}
$$

\rightarrow Orbital dependent effective (or $K S$) potential

Comparison with Near-Exact KS potentials, obtained from QMC calculations

Al-Sharif, Qteish and Resta, PRA 60, 3541 (1999)

Physical reality of KS potentials

- Near-exact KS potentials are the ones which reproduce the near-exact $\rho(\mathrm{r})$, obtain from QMC calculations.

Relation between Quantum defects and eigenvalues

$$
E_{n l}=-\frac{1}{2\left(n-\delta_{n, l}\right)^{2}}
$$

SIC pseudopotential method (Vogel, Kuger and Polimann, 1996)

SIC is introduced in a non-self-consistent manner, and taken to be that of the corresponding atomic valence orbitals.

Incorporated as part of the pseudopotential.

- The band-gaps and positions of semi-core delectrons are well reproduced.

Energy differences within the SIC-PP method

Table 3. Transition pressures (GPa) of the phase transitions of ZnO and ZnS studied.

		Present work		
System	Transition	LDA	SIC-PP	
Experiment				
ZnO	$\mathrm{ZB} \rightarrow \mathrm{RS}$	6.6^{a}	$13.3^{\mathrm{a}}, 13.4^{\mathrm{b}}$	-
	$\mathrm{W} \rightarrow \mathrm{RS}$	6.7^{a}	-	$2.0-8.7^{\mathrm{c}}, 8.0^{\mathrm{d}}, 9.0^{\mathrm{e}}, 9.5^{\mathrm{f}}$
ZnS	$\mathrm{ZB} \rightarrow \mathrm{RS}$	14.35^{a}	21.1^{a}	

\rightarrow Not good

Summary of part I:

The spurious SI allowed by LDA and GGA is quite important, especially for highly localized states.

SIC methods give very encouraging results.

A SI free method within the KS formalism would highly desirable.

Part II: Theory and implementation of the EXX method

Theory of Exact-exchange (EXX)

[Stadele et al. PRB 59, 10031 (1999)]

Total energy

$$
\begin{aligned}
E_{t o t}[\rho]= & T_{o}+E_{e-i}+\frac{e^{2}}{2} \iint \frac{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}- \\
& \frac{e^{2}}{2} \sum_{v v \mathbf{k} \mathbf{k}} \iint \frac{\varphi_{v \mathbf{k}}^{*}(\mathbf{r}) \varphi_{v \mathbf{k}}\left(\mathbf{r}^{\prime}\right) \varphi_{v \mathbf{k}}\left(\mathbf{r}^{\prime}\right) \varphi_{v \mathbf{k}}^{*}(\mathbf{r})}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}+E_{C}[\rho]
\end{aligned}
$$

Single-particle equations

$$
\begin{gathered}
\left\{-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{i o n}+V_{H}[\rho]+V_{X}[\rho]+V_{C}[\rho]\right\} \psi_{i}=\varepsilon_{i} \psi_{i}, \text { with } \\
V_{X}=\frac{\delta E_{X}}{\delta \rho(\mathbf{r})}=\sum_{v k} \iint\left[\frac{\delta E_{X}[\rho]}{\delta \varphi_{v k}\left(r^{\prime}\right)} \frac{\delta \varphi_{v k}\left(r^{\prime}\right)}{\delta V_{K S}\left(r^{\prime \prime}\right)}+c . c .\right] \frac{\delta V_{K S}\left(r^{\prime \prime}\right)}{\delta \rho(\mathbf{r})}
\end{gathered}
$$

The derivatives appearing in above expression of V_{x} can be explicitly calculated

$$
\frac{\delta E_{x}[\rho]}{\delta \varphi_{v \mathbf{k}}\left(\mathbf{r}^{\prime}\right)}=-e^{2} \sum_{v^{\prime} \mathbf{k}^{\prime}} \int d \mathbf{r}_{1} \frac{\varphi_{v}^{*} \mathbf{k}^{\prime}\left(\mathbf{r}^{\prime}\right) \varphi_{v \mathbf{k}}^{*}\left(\mathbf{r}_{1}\right) \varphi_{v^{\prime} \mathbf{k}^{\prime}}\left(\mathbf{r}_{\mathbf{1}}\right)}{\left|\mathbf{r}_{1}-\mathbf{r}^{\prime}\right|} .
$$

$$
\frac{\delta \varphi_{v \mathbf{k}}\left(\mathbf{r}^{\prime}\right)}{\delta V_{K S}\left(\mathbf{r}^{\prime \prime}\right)}=\sum_{n^{\prime} \mathbf{k}^{\prime} \neq v \mathbf{k}} \varphi_{n^{\prime} \mathbf{k}^{\prime}}\left(\mathbf{r}^{\prime}\right) \frac{\varphi_{n^{\prime} \mathbf{k}^{\prime}}^{*}\left(\mathbf{r}^{\prime \prime}\right) \varphi_{v \mathbf{k}}\left(\mathbf{r}^{\prime \prime}\right)}{\varepsilon_{v \mathbf{k}}-\varepsilon_{n^{\prime} \mathbf{k}^{\prime}}} .
$$

$$
\frac{\delta \rho(\mathbf{r})}{\delta V_{K S}\left(\mathbf{r}^{\prime}\right)}=\chi_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \Rightarrow \frac{\delta V_{K S}\left(\mathbf{r}^{\prime}\right)}{\delta \rho(\mathbf{r})}=\chi_{0}^{-1}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)
$$

So, V_{x} becomes,

$$
V_{x}(\mathbf{r})=\int d \mathbf{r}_{v c \mathbf{k}}\left[\left\langle\varphi_{v \mathbf{k}}\right| V_{X}^{N L}\left|\varphi_{c \mathbf{k}}\right\rangle \frac{\varphi_{c k}^{*}\left(\mathbf{r}^{\prime}\right) \varphi_{v \mathbf{k}}^{*}\left(\mathbf{r}^{\prime}\right)}{\varepsilon_{c \mathbf{k}}-\varepsilon_{v \mathbf{k}}}\right] \chi_{0}^{-1}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)
$$

with

$$
V_{X}^{N L}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=-e^{2} \sum_{v q} \frac{\varphi_{v q}(\mathbf{r}) \varphi_{v q}^{*}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

The χ_{0} is defined as

$$
\chi_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=2 \sum_{v c \mathbf{k}} \frac{\varphi_{v \mathbf{k}}^{*}(\mathbf{r}) \varphi_{c \mathbf{k}}(\mathbf{r}) \varphi_{c \mathbf{k}}^{*}\left(\mathbf{r}^{\prime}\right) \varphi_{v \mathbf{k}}\left(\mathbf{r}^{\prime}\right)+\text { c.c. }}{\varepsilon_{v \mathbf{k}}-\varepsilon_{c \mathbf{k}}} .
$$

In momentum space we have

$$
\begin{aligned}
& V_{x}(\mathbf{G})=\sum_{\mathbf{G}^{\prime} \neq 0}\left[E\left(\mathbf{G}^{\prime}\right)+E^{*}\left(-\mathbf{G}^{\prime}\right)\right] \tilde{\chi}_{0}^{-1}\left(\mathbf{G}, \mathbf{G}^{\prime}\right), \\
& E(\mathbf{G})=\frac{2}{\Omega} \sum_{v c \mathbf{k}} \frac{\langle v \mathbf{k}| \hat{V}_{x}^{N L}|c \mathbf{k}\rangle\langle c \mathbf{k}| e^{-i \mathbf{G r}}|v \mathbf{k}\rangle}{\varepsilon_{v \mathbf{k}}-\boldsymbol{\varepsilon}_{c \mathbf{k}}} . \\
& \chi_{0}\left(\mathbf{G}, \mathbf{G}^{\prime}\right)=\frac{4}{\Omega} \sum_{v c \mathbf{k}} \frac{\langle v \mathbf{k}| e^{-i \mathbf{G r}}|c \mathbf{k}\rangle\langle c \mathbf{k}| e^{i \mathbf{G}^{\prime} \mathbf{r}}|v \mathbf{k}\rangle}{\varepsilon_{v \mathbf{k}}-\boldsymbol{\varepsilon}_{c \mathbf{k}}} . \quad \text { aith } \\
& V_{x}^{N L}\left(\mathbf{k}, \mathbf{G}, \mathbf{G}^{\prime}\right)=-\frac{4 \pi e^{2}}{\Omega} \sum_{v \mathbf{q} \mathbf{G}_{1}} \frac{C_{v \mathbf{q}}\left(\mathbf{G}+\mathbf{G}_{1}\right) C_{v \mathbf{q}}^{*}\left(\mathbf{G}^{\prime}+\mathbf{G}_{1}\right)}{\left|\mathbf{q}-\mathbf{k}+\mathbf{G}_{1}\right|^{2}}
\end{aligned}
$$

Note: the no. of G-vectors included, here, is controlled in SFHIngX by: ChiEcut

Some Technical details:

The singularities in $V_{x}^{N L}\left(\mathbf{k}, \mathbf{G}, \mathbf{G}^{\prime}\right)$ when $\mathbf{k}=\mathbf{q}+\mathbf{G}_{\mathbf{1}}$, are removed as suggested by Gygi and Baldereschi [PRB 34, 4405 (86)]

The $\varphi_{c \mathbf{k}}$ and $\varepsilon_{c \mathrm{c}}$ needed for χ are obtained by direct diagonalization, and all conduction band states are included

- Only the body of χ is calculated and inverted:

This is because we require that

$$
\begin{aligned}
& \delta \rho(\mathbf{G}=0)=0, \text { and } \\
& \delta \rho(\mathbf{G})=0 \quad \text { for } \quad \delta V_{K S}=\text { const } .
\end{aligned}
$$

Note that:

$$
\delta \rho(\mathbf{G})=\sum_{G^{\prime}} \chi_{0}\left(\mathbf{G}, \mathbf{G}^{\prime}\right) \delta V_{K S}\left(\mathbf{G}^{\prime}\right)
$$

This leads to

$$
V_{X}(\mathbf{G}=0)=0
$$

EXX loop

Summary of part II.

- The EXX approach is quite straightforward to implement in a PP-PW code.

The EXX potential is local.

It is highly demanding in terms of CPU time and memory.

- In its present implementation it works only for nonmetallic systems.

Lattice parameters

FIG. 1. Relative deviations (given in percent) of selfconsistently calculated LDA and EXX lattice constants of various semiconductors from the experimental values that are taken from

Stadele et al. PRB 59, 10031 (1999)

Cohesive energies

Stadele et al. PRB 59, 10031 (1999)

Band gaps

Stadele et al. PRB 59, 10031 (1999)

Effective masses [Stadele et al. PRB 59, 10031 (19999]

		LDA	EXX	Expt.
Si	m_{l}^{Δ}	0.95	0.97	0.92
Ge	m_{t}^{Δ}	0.19	0.22	0.19
	m_{l}^{L}	1.71	1.70	1.57
C	m_{t}^{L}	0.07	0.10	0.08
	m_{l}^{Δ}	1.68	1.59	1.4
GaAs	m_{t}^{Δ}	0.29	0.29	0.36
AlAs	m_{Γ}	0.02	0.10	0.07
	m_{l}^{X}	0.84	0.95	1.0
GaN	m_{t}^{X}	0.24	0.27	0.25
AlN	m_{Γ}	0.17	0.26	0.20
SiC	m_{Γ}	0.30	0.36	
	m_{l}^{X}	0.68	0.67	0.68
	m_{t}^{X}	0.23	0.26	0.25

Correlation effects: I. On the band-gaps

Band gap

Correlation effects: II. On the structural properties

Example $==$ bulk GaAs

EXX+PBE C EXX+LDA C EXX(only) LDA Expt.

a_{o} (Bohr)	10.72	10.63	10.83	10.59	10.68
$\underline{\mathrm{~B}}_{\mathrm{o}}(\mathrm{Mbar})$	0.76	0.88	0.78	0.74	0.77

\rightarrow Correlation effects are quite small for both structural and electronic structure properties of semiconductors.

Exchange vs correlation potentials

Band-gap problem revisited

[Stadele et al. PRB 59, 10031 (1999)].

$$
\begin{aligned}
E_{g a p} & =E(N+1)+E(N-1)-2 E(N) \\
& =\varepsilon_{g a p}^{K S}+\Delta_{x c}=\varepsilon_{g a p}^{E X X(X)}+\varepsilon_{g a p, c}^{K S}+\Delta_{x c}
\end{aligned}
$$

The results shown imply that

$$
\Delta_{x c} \approx-\varepsilon_{g a p, c}^{K S}
$$

And $\Delta_{x c}$ to be rather small --- of order of 0.1 eV

EXX vs GW band gaps

Aulbur et al. PRB 62, 7121 (2000)

Band gaps of Si IFlezar, PRB 64, 245204 (2001)

Band gaps of Ge [Fiezar, PRB 64, 245204 (2001)]
$\mathrm{Ge}: \mathrm{E}_{\mathrm{g}}$
Exp: 074

$0060.620,860.94$

Ge: E.

Exp: 090

Gc: \bar{E}_{0}

Ge: E_{2}
Exp: 4.45

Band Structure of group-III nitrides:

I. Treating the semicore d-electrons as core states

Energy-gaps (eV)

	LDA	EXX (LDA Corr.)	Expt.
ZB-AIN	4.27	5.74	$\sim 6.0^{*}$
ZB-GaN	2.09	3.38	$3.2-3.3$
ZB-InN	0.17	1.49	0.7^{*} or 1.7^{*}

*Obtained by subtracting 0.2 eV from the band-gap of the corresponding wurtzite phase.

ZB-GaN

$$
\text { LDA } \quad-\quad \text { EXX }
$$

II. EXX and LDA calculations, using EEX-PP and treating the semicore d-electrons as core states

Energy-gaps (eV)

	LDA	EXX	Expt.
ZB-GaN	$1.49^{\mathrm{a}}, 1.53^{\mathrm{b}}$	2.76	$3.2-3.3$
ZB-InN	$-0.49^{\mathrm{a}},-0.4^{\mathrm{b}}$	0.81	$0.7,1.7^{*}!!$
Obtained by subtracting 0.2 eV from			
"On band-gap of the corresponding			
wurtzite phase.			

Position of Occ. d-bands* ${ }^{*}(\mathrm{eV})$

	LDA	EXX	Expt.
ZB-GaN	$13.9^{\mathrm{a}}, 16.8^{\mathrm{b}}$	14.7^{b}	17.1
ZB-InN	13.6^{a}, 14.9 $^{\mathrm{b}}$	13.5^{b}	14.9

*Below the valence band maximum
${ }^{a}$ Using LDA-PP.
${ }^{\mathrm{b}}$ Using EXX-PP.

Explanation of the upward shift of the d-bands

Eigenvalues of the pseudo-atoms

- - LDA, LDA-PP $\quad \quad$ LDA, EXX-PP EXX, EXX-PP

Conclusions

The EXX approach is really a major step forward.

- The EXX method gives band-gaps which are very close to those of GW.
- It is highly desirable to make it more efficient.

