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KSformalism

Total energy separation
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Approximations to Ey+ E- (Exc)

LDA: Eg* =[&"(po(r))p(r)dr
GGA: Ec” = p(r) fe(p(r). 0p(r)....)dr

For the success and weaknesses of LDA and
GGA, seethe lecture notes of Martin Fuchs
(L8).



The exact-exchange (EXX) approach

In this approach E, is exactly calculated ==> only E-
needs to be approximated

Two views:
E,c Isonly asmall portion of E,, and E, is an order larger than E.

— EXX isamajor step forward.

LDA and GGA are good because of some cancellation of errors
between E, and E. ==> treating one of them exactly may do more
bad than good.

Which view Is more correct?
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Part |: Introduction



Some serious drawbacks of LDA and GGA:

Band-gap problem: E, of
semiconductors and insulators
are underestimates by 50 to
100%.

Binding energies of the
semicore electrons are higher
than experiment by 2to 4 eV, in
case of 11-1V and group-I11
nitrides.

Dueto self-interaction (S),

Zhang, Wei and Zunger,
PRB 52, 13975 (1995).
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Reason for the Band-gap problem
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Godby Schlutter and Sham, PRB 37, 10 159 (88) ,



Main problem with LDA and GGA

They allow for spurious self-inter action (Sl).
Exact DFT is Sl free:

4 (04010, ()5, )
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— Exact cancelation between self V,, and V,
— Thisisnot thecasefor LDA and GGA.



Self-interaction correction (SIC)

[Predew and Zunger, PRB 23, 5048 (1981)]
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And the single particle equations become (in atomic units)
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— VLo ODP (1) = 71w (1),

=P | Orbital dependent effective (or KS) potential




Comparison with-Near-Exact KS potentials, obtained
from QMC calculations

LDA and GGA
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Al-Sharif, Qteish and Resta, PRA 60, 3541 (1999)



Physical reality of KS potentials

Near-exact KS potentials
are the ones which
reproduce the near-exact
p(r ), obtain from QMC
calculations.

Relation between Quantum
defects and eigenvalues
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SIC pseudopotential method (Voge, Kruger and Pollmann, 1996)

SICisintroduced in a
non-self-consi stent
manner, and taken to be
that of the corresponding
atomic valence orbitals.

Incorporated as part of the
pseudopotential.

The band-gaps and
positions of semi-core d-
electrons are well
reproduced.
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Energy differences within the SIC-PP method

01 ———

Enthalpy (eV/atom)
o

01 b

T
0 5 10

15

Pressure (GPa)

20 10

15 20 25 30
Pressure (GPa)

Table 3. Transition pressures (GPa) of the phase transitions of ZnO and ZnS studied.

Present work

System  Transition LDA SIC-PP Experiment
Zn0 ZB — RS 6.6 13.3%, 134> —
W—-RS 67 — 2.0-8.7°, 8.0, 9.0¢, 9.5
ZnS ZB — RS 1435 2LI° 14.7-15.48,15.0-16.2", 12.0', 18.1¢

— Not good



Summary of part:

The spurious Sl allowed by LDA and GGA is quite
Important, especially for highly localized states.

SIC methods give very encouraging results.

A Sl free method within the KS formalism would highly
desirable.



Part |11: Theory and implementation
of the EXX method



Theory of Exact-exchange (EXX)

[Stadele et a. PRB 59, 10 031 (1999)]

Total energy
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The derivatives appearing In‘above expression of V,

can be explicitly calculated
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So, V, becomes,

V()= olr'z{< T e LRI )}Xél(r,r')
with
0 ()Po(r)

VXNL(r’r') +: _ezz

Vg |I’ =f I
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|n momentum space we have

Vi(G)= 2>, [E(G)+E*(—G")]x, (G,G"),
G #0

2 (VK| T}f[‘\ck)(ckk_icr‘vk) with
E(G)=g Zk .
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Note: the no. of G-vectorsincluded, here, is controlled in SFHIngX by: ChiEcut



Some Technical detalls:;

The singularitiesin VN (k,G,G’) when k=q+ G, are removed as
suggested by Gygi and Baldereschi [PRB 34, 4405 (86)]

The ¢, and &, needed for x are obtained by direct diagonalization,
and all conduction band states are included

Only the body of X is calculated and inverted:
G

G=0

body
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Thisis because we require that

oo(G=0)=0 , and

op(G)=0 for odV,.. =const.
Note that:

P(G) =Y Xo(G.G),s(G)

Thisleadsto
V,(G=0)=0



EXX loop

Construct
& diagonalizg
Hk(G,G’)

Calculate
Vx (G)

mix

|
p andp

==> p

in out

Update p,

at fixed Vy

out
::>p




Summary of part I1.

The EXX approach is quite straightforward to implement
In a PP-PW code.

The EXX potential islocal.
It is highly demanding in terms of CPU time and memory.

In its present implementation it works only for non-
metallic systems.



Part |11: Results
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Effective masses [stadele et a. PRB 59, 10 031 (1999)]

LDA EXX Expt.
Si my 0.95 0.97 0.92
me 0.19 0.22 0.19
Ge my 1.71 1.70 1.57
mr 0.07 0.10 0.08
C my 1.68 1.59 1.4
me 0.29 0.29 0.36
GaAs 238 0.02 0.10 0.07
AlAs my 0.84 0.95 1.0
n 0.24 0.27 0.25
GalN 238 0.17 0.26 0.20
AIN 20 0.30 0.36
SiC my 0.68 0.67 0.68

m-x 0.23 0.26 0.25




Correlation effects: 1: On the band-gaps
Example == bulk GaAs

S -
Band gap = ' .
0
Approach Vaue (eV)

EXX+GGA Corr. 1.53
EXX+LDA Corr. 1.70
EXX (only) 1.68

Energy (eV)

Expt. 1.63

—_
o

— Similar results are
also obtained by
Stadele et al.
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Correlation effects: 11. On the structural properties

Example == bulk GaAs

EXX+PBE C EXX+LDA C EXX(only) LDA Expt.

a(Bohr)  10.72 10.63 10.83 1059  10.68
B, (Mbar)  0.76 0.88 0.78 o) 2 Y

Correlation effects are quite small for both structural and electronic
structure properties of semiconductors.



Exchange vs correlation potentials
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Band-gap problem revisited

[Stadeleet al. PRB 59, 10 031 (1999)]

Epup=E(N+1)+E(N—1)—2E(N)

__ _KS _ _EXX(X) KS
—agap—I—Axc—sgap +8gap,c+Axc

The results shown imply that

And A4, to berather small --- of order of 0.1 eV



* LDA + GWA ==
GW calculations
base on LDA
results

* EXX + GWA ==
GW calculations
base on EXX
results

EXXvs GW band gaps
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Band Structure of group-111 nitrides:
|. Treating the semicore d-electrons as core states

Energy-gaps (eV)

LDA EXX Expt.
(LDA Corr.)
ZB-AIN 4.27 5.74 ~6.0°

Z/B-GaN 2.09 3.38 3.2-3.3

ZB-InN  0.17 1.49 0.7 orl.7°

“Obtained by subtracting 0.2 eV from
the band-gap of the corresponding
wurtzite phase.

ZB-GaN

N

B

Energy (eV)
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ll. EXX and LDA calculations, using EEX-PP and treating
the semicore d-aectrons as core states

Energy-gaps (eV)

LDA EXX  Expt.
ZB-GaN 1.493153° 276 3.2-3.3
ZB-InN -0.492-0.4° 0.81 0.7,1.7°!
"Obtained by subtracting 0.2 €V from
the band-gap of the corresponding
wurtzite phase.

=

Energy (eV)

Position of Occ. d-bands’ (eV)

-12
LDA EXX  Expt. "
ZB-GaN 13.9316.8° 14.7° 17.1 TR :
ZB-InN _13.6314.9° 13.5° 149 18 ST RN RS SR SRR SRS LH R R ST TR Y
"Below the valence band maximum »
aUsing LDA-PP. L L e N 1 1.

bUsing EXX-PP.



Explanation of the upward shift of the d-bands

Eigenvalues of the pseudo-atoms
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Conclusions

The EXX approach isreally amaor step forward.

The EXX method gives band-gaps which are very close to
those of GW.

It is highly desirable to make it more efficient.



