The OpenKIM project: Reproducibility, Portability and Metadata Standards in Molecular Simulation

Ronald E. Miller, KIM Editor

Department of Mechanical and Aerospace Engineering Carleton University, Ottawa, Canada

KIM Team Members:

- Ellad Tadmor (U. Minnesota), KIM Director
- Ryan Elliott (U. Minnesota), KIM Technical Lead
- Daniel Karls (U. Minnesota), KIM Research Associate
- Noam Bernstein (NRL), Technical Advisor

KIM Research Team:

- George Karypis (U. Minnesota)
- Mark Transtrum (BYU)
- Yonatan Kurniawan (BYU)
- Mingjian Wen (U. Minnesota)

NSF CDI (2009-2014); NSF CDS&E (2014-2018); NSF CMMT (2019-)

NOMAD-FAIRDI Workshop, Berlin, Germany, July 8-12, 2019

A Simulation is Only as Good as the Potential

The predictive capability of an atomistic simulation is dependent on the fidelity of the interatomic model (IM).

Example: Projectile impacting silicon plate

Stillinger-Weber Potential exhibits ductile behavior

"All models are wrong but some are useful." - George E. P. Box

Interatomic Potentials for Silicon

- I. Keating (Valence), Phys. Rev., 145, 637 (1966).
- 2. Altmann,...,Tomassini (Valence), J. Phys. C, 15, 5581 (1982).
- 3. Pearson, Takai, Halicioglu, Tiller (PTHT), J. Cryst. Growth, **70**, 33 (1984).
- 4. Stillinger-Weber (SW), PRB, **31**, 5262 (1985).
- 5. Tersoff (T1), PRL, **56**, 632 (1986).
- 6. Brenner, Garrison, PRB, **34**, 1304 (1986).
- 7. Dodson (DOD), PRB, **35**, 2795 (1987).
- 8. Biswas, Hamann (BH), PRB, 36, 6434 (1987).
- 9. Baskes (EAM-Si), PRL, 2666 (1987).
- 10. Tersoff (T2), PRB, **37**, 6991 (1988).
- II. Tersoff (T3), PRB, **38**, 9902 (1988).
- 12. Khor, Das Sarma, PRB, 38, 3318 (1988).
- 13. Kaxiras, Pandey, PRB, 38, 12736 (1988).
- 14. Baskes, Nelson, Wright (MEAM-Si), PRB, 40, 6085 (1989).
- 15. Ackland, PRB, 40, 10351 (1989).
- 16. Chelokowsky, Phillips, Kamal, Strauss, PRL, 62, 292 (1989).
- 17. Mistriotis, Flytzanis, Farantos (4-body), PRB, 39, 1212 (1989).
- 18. Erkoç, Phys. Stat. Sol. (b), **152**, 447 (1989).
- 19. Bolding, Anderson, PRB, **41**, 10568 (1990).
- 20. Carlsson, Fedders, Myles, PRB, 41, 1247 (1990).
- 21. Murrell, Mottram, Mol. Phys., 69, 571 (1990).
- 22. Wang, Rockett, PRB, 43, 12571 (1991).
- 23. Chelikowsky, Glassford, Phillips, PRB, 44, 1538 (1991).
- 24. Li, Johnson, Murrell, Chem. Soc. Faraday Trans., 88, 1229 (1992).
- 25. Gong, PRB, **47**, 2329 (1993).
- 26. Liu, Thermocem. J. Molec. Struct., **341**, 253 (1995).
- 27. Omote, Waseda (Pair Potential), Jap. J. Appl. Phys. 1, 35, 151 (1996).
- 28. Stephenson, Radny, Smith (modifed SW), Surf. Sci., 366, 177 (1996).
- 29. Bazant, Kaxiras, Justo (EDIP), PRB, 56, 8542 (1997).
- 30. Cai, Phys. Stat. Sol. B, 212, 9 (1999).
- 31. Lenosky,...,Kress (MEAM), Mod. Sim. Mater. Sci. Eng., 8, 825 (2000).
- 32. van Duin,...,Goddard (ReaxFF), J. Phys. Chem. A 107, 3803 (2003).
- 33. Erhart, Albe (Bond Order), PRB, 71, 035211 (2005).
- 34. Kumagai, Izumi, Hara, Sakai, Comp. Mat. Sci, **39**, 457 (2007).
- 35. Lee, Calphad-Comp. Coupling Phase Diag. Thermochem., **31**, 95 (2007).
- 36. Yu, Sinnott, Phillpot, PRB, **75**, 085311 (2007).
- 37. Timonova, Lee, Thijsse (MEAM), Nuc. Inst. Meth. Phys. Res. B, 255, 195 (2007).
- 38. Gillespie,...,Pettifor (Bond Order), PRB, 75, 155207 (2007).

- 39. Behler and Parrinello (NN), Phys. Rev. Lett. 98, 146401 (2007).
- 40. Vashishta et al. (3-body), J. Appl. Phys. 101, 103515 (2007).
- 41. Sanville (NN), J. Phys. Cond. Matt. 20, 285219 (2008).
- 42. Schelling (Bond order), Comp. Mat. Sci. 44, 274-279 (2008)
- 43. Malshe et al. (NN), J. Chem. Phys. **129**, 044111 (2008).
- 44. Ohta et al. (SW), Jap. J. Appl. Phys. 48, 020225 (2009).
- 45. Hossain et al. (DFT-ArSi), Nucl. Inst. & Meth. Phys. Res. B 267, 1061 (2009).
- 46. Lucas et al. (EDIP), J. Phys. Cond. Matt. 22, 035802 (2010).
- 47. Ryu and Cai (MEAM), J. Phys. Cond. Matt. 22, 055401 (2010).
- 48. Timonova and Thijsse (MEAM), Comp. Mat.. Sci. 48, 609-620 (2010).
- 49. Grochia et al. (MEAM), Chem. Phys. Lett. 493, 57-60 (2010).
- 50. Du et al. (MEAM), Phys. Stat. Solidi B 248, 2050-2055 (2011).
- 51. Tewary (Phenomenological), Phys. Lett. A 375, 3811-3816 (2011).
- 52. Lee and Hwang (FM-SW), Phys. Rev. B 85, 125204 (2012).
- 53. Dongare et al. (A-EAM), MSMSE 20, 035007 (2012).
- 54. Cui et al. (MEAM), J. Power Sources 207, 150-159 (2012).
- 55. da Cruz et al. (MEAM), J. Heat Trans. **134**, 062402 (2012).
- 56. Briquet et al., (reactive) J. Phys.: Condens. Matter. 24, 395004 (2012).
- 57. Pastewka et al. (Bond Order). PRB 87, 205410 (2013).
- 58. Saidi et al. (MEAM). MSMSE 22, 055010 (2014).
- 59. Jaramillo-Botero et al. (ReaxFF). J. Chem. Theory Compt. 10, 1426 (2014).
- 60. Takamoto et al. (Tersoff). J. Appl. Phys. 120, 165109 (2016).
- 61. Pun and Mishin (Tersoff). PRB 95, 224103 (2017).
- 62. Bartok et al. (machine learning), PRX 8, 041048 (2018).

The Scream, Edvard Munch

The Problems with Molecular Modeling

- The KIM effort addresses key problems faced by molecular modelers:
 - **Problem I: Reproducibility**. It is currently very difficult or even impossible for a researcher to reproduce published results obtained using molecular simulations with a given IM or to use the same IM in a different study.

Problem 2: Portability. It is very difficult to port IMs between simulation codes that have different program architectures and may be written in different computer languages. (Interoperable)

KIM API

Problem 3: Re-inventing the wheel. A great deal of researcher time is spent redeveloping methods for computing complex material properties (e.g. melting temperature, thermal conductivity, phonon spectra, etc.). (Accessible, Recyclable)

The Problems with Molecular Modeling

- The KIM effort addresses key problems faced by molecular modelers:
 - **Problem 4: Coding Errors.** Programming errors in IM implementations can lead to systematic errors that can go unnoticed, or result in strange behavior that can be extremely difficult and time-consuming to debug.

KIM Verification Checks

Problem 5: Diffuse Knowledge. Researchers do not have a central location to exchange information about specific IMs and share analysis and visualization tools that they have developed related to molecular simulation. (Findable, Accessible)

KIM Model Pages Central Discussion Forum

Problem 6: Too many options. Researchers do not have a systematic way of choosing an IM for a given application. (Recyclable)

The Problems with Molecular Modeling

- The KIM effort addresses key problems faced by molecular modelers:
 - **Problem 7: Uncertainty.** Researchers rarely estimate the predictive uncertainty of IMs, i.e. systematic errors due to the mathematical representation of the IM (functional forms and parameters).

Problem 8: Access. Researchers do not have easy and reliable access to predictions of an IM for certain properties needed for problem setup or analysis, e.g. an equilibrium lattice constant is required to build a crystal or a bulk cohesive energy is required in a surface energy calculation. (Findable, Accessible)

Knowledgebase of Interatomic Models

The Open Knowledgebase of Interatomic Models (KIM) is a cyberinfrastructure funded by the U.S. National Science Foundation (NSF) with the following features:

- Curated repository interatomic models (IMs) (potentials and force fields) with comprehensive provenance and version control.
- Application Programming Interface (API) standards connecting molecular simulation codes ("simulators") with IMs.
- Standardized testing framework for archived IMs including their predictions for material properties and checks on their coding integrity.
- Source and binary distribution framework for easy installation and use of the KIM API and KIM IMs with conforming simulators.
- Rigorous transferability and uncertainty estimation for KIM IMs based on machine learning approaches to select IMs for target application and providing error bounds on their predictions. (under development)

KIM Community

► KIM is a collaborative effort.

It began with the KIM Inaugural meeting in San Diego, Feb 26-27, 2011

- 63 participants from 7 countries
 - Canada, Germany, Japan, South Korea, Sweden, UK, USA
- Many key model developers present
- Major MD code developers present: LAMMPS, IMD, GROMACS, SPaSM, DL_POLY

KIM Inaugural Meeting, San Diego, February 2011

- KIM currently has 460 registered members in 43 countries (June 28, 2019)
- The project actively collaborates with many researchers:
 - Nikhil Admal (UIUC)
 - Noam Bernstein (NRL)
 - Richard Berger (Temple)
 - Tobias Brink (TU Darmstadt)
 - David Cereceda (Villanova)
 - Lauren Dupuy (CEA)

- Julian Gale (Curtin)
- Anton Gladky (Debian)
- Ben Haley (nanoHUB)
- Christoph Junghans (LANL)
- Axel Kohlmeyer (Temple)
- Jim Madge (STFC)

- Jens Mortensen (DTU)
- Brandon Runnels (U. Colorado)
- Enrique Martinez Saez (LANL)
- Jakob Schiøtz (DTU)
- Daniel Schopf (Cinemo GmbH)
- Amit Singh (IIT Bombay)

KIM Governance

KIM Advisory Board

Pietro Asinari (Politech di Torino)

Michael Baskes (Mississippi State)

Betsy Rice

(ARL)

Sadasivan Shankar (Harvard)

Aidan Thompson (Sandia)

KIM Management and Team Leaders

Ellad Tadmor (U. Minnesota)

KIM Director

(U. Minnesota)

KIM Tech Lead

Ronald Miller (Carleton U.)

George Karypis (U. Minnesota)

KIM Co/PI

Mark Transtrum (BYU)

KIM Co/PI

Daniel Karls (U, Minnesota)

KIM Research Assoc

Ron Miller (Carleton University)

KIM Overview

Repository: A user-extendible database of

- interatomic Models
- standardized Tests (simulation codes)
- Predictions (results from Model-Test couplings)
- Reference Data (obtained from experiments and first principles calculations)
- Verification Checks (coding integrity scripts)

Web portal: A web interface that facilitates:

- user upload and download of Tests, Models, and Reference Data
- searching and querying the repository
- comparing and visualizing Predictions and Reference Data
- recording user feedback

Processing pipeline: An automatic system for generating results by mating *Tests* and *Verification Checks* with *Models* in the KIM Repository.

- puts the "knowledge" in "knowledgebase"
- employs OS virtualization and cloud-based computing

KIM API — Portable Models

- ► KIM Models employ the KIM Application Programming Interface (API).
 - Portable Models (PMs) conform to the KIM API Portable Model Interface (PMI)

• Can be written in any language supported by the API (Fortran, C, C++)

by the API (Fortran, C, C++, Python)

KIM API — Simulator Models

- ► KIM Models employ the KIM Application Programming Interface (API).
 - Simulator Models (SMs) conform to the KIM API Simulator Model Interface (SMI)

The KIM API v2 is designed with simplicity in mind and adheres to API best practices:

- Implementation hiding (pimpl idiom)
- Loose coupling
- Minimal-completeness

- Ease of use (discoverable,
 - consistent, orthogonal)
- Static factory methods
- Use of namespaces
- Const-correctness
- Avoid abbreviations

KIM-Compliant Simulators

GULP

DL POLY

Ron Miller (Carleton University)

Example: Using KIM PMs or SMs with LAMMPS

• Every KIM PM and SM is uniquely identified by a KIM ID:

EAM_Dynamo_ErcolessiAdams_1994_AI_MO_123629422045_005

human-readable prefix

Unique identifier (12 digit + 3 digit version)

- Using KIM PMs or SMs with LAMMPS is straightforward:
 - Install the KIM API from source or binary (packages available for Ubuntu, CentOS, Fedora, OpenSUSE, Homebrew).
 - Add the KIM Models that you want to use. (Binary packages have option to add all models.)
 - Replace native potential with kim commands to select a model based on its KIM ID:*

Citing KIM Models (PMs and SMs)

KIM is a member of DataCite and issues DOIs to content on openkim.org, which can be cited in publications:

... the potential employed was Johnson's nearest-neighbor EAM potential [1] archived in OpenKIM [2–3].

References

- R. A. Johnson, "Analytic nearest-neighbor model for fcc metals", *Phys. Rev. B*, 37, 3924–3931, 1988.
- 2. R. S. Elliott, "EAM Potential (analytical nearest-neighbor) for Cu developed by Johnson (1988) v002", https://doi.org/10.25950/3ccd9f3b.
- 3. E. B. Tadmor, R. S. Elliott, J. P. Sethna, R. E. Miller and C. A. Becker, "The potential of automatic simulations and the Knowledgebase of Interatomic Models", *JOM*, **63**, 17, 2011.

The ability to cite a DOI and have access to the archived KIM PMs and SMs makes it possible to reproduce atomistic simulations.

KIM Tests

- **Test:** A computer program that when coupled with a suitable Model generates one or more Predictions, each of which is associated with a specific KIM Property.
 - Test Types
 - Test (stand-alone test limited to a single case, or a parameter set to a driver)
 - Test Driver + Parameter Set (can work with multiple conditions)

A Test can be a program or an input file to an installed Simulator (e.g. ASE, LAMMPS, ...)

- What constitutes a KIM Property?
 - An "ideal" physical property without reference to the algorithmic details of how it is computed (e.g. "melting temperature" as opposed to a specific approach for getting it).
 - A "canonical property", i.e. a basic atomistic property to which Models are often fitted and from which larger-scale behavior might be inferred.

- dislocation core structure

- dislocation core energy Bulk - surface energy - Peierls barrier - surface structure - lattice constants - cohesive energy - gamma surface - - grain boundary structure - elastic constants Point - vacancy formation energy - phonon spectrum - ... - vacancy migration barrier Line

- ...

- ..

Wall

KIM Property Definition Format

A Property Definition is stored in a subset of EDN format and contains an unordered set of three required key-value pairs followed by an arbitrary number of key-map pairs:

Property Definition Example

monovacancy-formation-free-energy-crystal-npt

host-short-name host-a host-b host-c host-alpha host-beta host-beta host-gamma host-space-group host-wyckoff-multiplicity host-wyckoff-coordinates host-wyckoff-species

host-temperature host-cauchy-stress

host-removed-atom

reservoir-short-name reservoir-a reservoir-b reservoir-c reservoir-alpha reservoir-beta reservoir-gamma reservoir-space-group reservoir-wyckoff-multiplicity reservoir-wyckoff-coordinates reservoir-wyckoff-species

reservoir-temperature reservoir-cauchy-stress

reservoir-cohesive-free-energy

HOST CRYSTAL

RESERVOIR CRYSTAL

formation-free-energy

Example of a Property Definition

monovacancy-formation-free-energy-crystal-npt

- "property-id" "tag:staff@noreply.openkim.org,2014-08-21:property/monovacancy-formation-..."
- "property-title" "Formation free energy of a monovacancy in a crystal at finite temperature and ..."
- "property-description" "Gibbs free energy of formation a monovacancy in a ..."

```
"host-short-name" {
 "type"
              "string"
 "has-unit"
              false
              [":"]
 "extent"
 "required"
              false
 "description" "Short name describing the host crystal type (e.g. fcc, bcc, diamond)."
"host-a" {
 "type"
              "float"
 "has-unit"
              true
 "extent"
               П
 "required"
               true
 "description" "The average length of the host crystal unit cell vector <a>. The associated ..."
```

Property Instance

A Property Instance is either a Prediction or Reference Data conforming to the specification in the associated Property Definition:

Example of a Property Instance

monovacancy-formation-free-energy-crystal-npt

```
"property-id" "tag:staff@noreply.openkim.org,2014-08-21:property/monovacancy-formation-..."
"instance-id"
"host-short-name" {
  "source-value" [ "fcc" ]
"host-a" {
  "source-value" 4.032
  "source-unit" "angstrom"
  "digits" 5
"host-b" {
  "source-value" 4.032
  "source-unit" "angstrom"
  "digits" 5
"host-c" {
  "source-value" 4.032
 ...
```

KIM Processing Pipeline: Test/VC-PM/SM Coupling

Processing pipeline: An automatic cloud-based system for generating results due to new *Test/VC* or *Portable/Simulator Model* upload or changes in the OpenKIM Repository:

• Detect viable Test-PM/SM couplings (VCs run with all PMs and SMs)

- Uses Celery (an asynchronous queuing system based on message passing) to assign tasks to virtual machine workers.
- Handles dependencies between Tests
- Coordinates with WebApp to Store Test and VC Results in the OpenKIM Repository
- Written in Python

KIM Visualization

KIM Visualizers are designed to display/analyze Test results (i.e. Property Instances) and are displayed on Model pages.

Cohesive energy curve

FCC Lattice Constant

KIM Visualizers work by

- querying openkim.org to obtain desired Test results (see https://query.openkim.org/)
- plotting the results using Javascript libraries and templates developed in KIM

Follow the tutorials to adapt a visualizer to your own needs

OpenKIM	Getting Started About	ut - Download/Upload -	Browse - Support -	tadmor 🌲 📵 🕼 💠 😝			
Welcome to the Knowledgebase of Interatomic Models!							
OpenKIM is an online framework for making molecular simulations reliable, reproducible, and portable. Computer implementations of interatomic models are archived in OpenKIM, verified for coding integrity, and tested by computing their predictions for a variety of material properties. Models conforming to the KIM <i>application programming interface</i> (API) work seamlessly with major simulation codes that have adopted the KIM API standard.							
Models Tests Contribute a Model or Dat	а						
Models	-						
Click on an element to find interatomic models for the	Click on an element to find interatomic models for that species. You can narrow the selection to models that support multiple species after you click.						
н Sp				He			
LI Be			B C N O	F Ne			
Ne Mg			Al Si P S	Cl Ar			
K Ca Sc Ti V Cr	Min Fe Co	NI Cu Zn	Ga Ge As Se	Br Kr			
Rb Sr Y Zr Nb Mo	To Ru Rh	Pd Ag Cd	In Sn Sb Te	i Xe			
Cs Ba Hf Ta W	Re Os Ir	Pt Au Hg	п Рь Ві Ро	o At Rn			
Fr Ra Rf Db Sg	Bh Hs Mi	Ds Rg Cn	Nh Fl Mc Lv	тв Од			
La Ce Pr Nd Pm	Sm Eu Gd	d Tb Dy	Ho Er Tm	Yb Lu			
Ac Th Pa U Np	Pu Am Cm	m Bk Cf	Es Fm Md	No Lr			

Cu

Extended KIM ID	Title
EAM_Dynamo_AcklandTichyVitek_1987_CuMO_179025990738_005	Finnis-Sinclair potential (LAMMPS cubic hermite tabulation) for Cu developed by Ackland et al. (1987) v005
EAM_Dyname_AcklandTichyWtek_1987v2_CuMO_762798677654_000	Finnis-Sinclair potential (LAMMPS cubic hermite tabulation) for Cu developed by Ackland et al. (1957), version 2 refitted for radiation studies v000
EAM_Dynamo_AcklandVitek_1990_CuMO_542748370524_000	Finnis-Sinclair potential (LAMMPS cubic hermite tabulation) for Cu developed by Ackland and Vitek (1990) v000
EAM_Dynamc_AdamsFoiles_1989Universal6_CuMO_145873824897_000	EAM potential (LAMMPS cubic hermite tabulation) for Cu (Universal6) developed by Adams and Foiles (1989) v000

- •
- •

EAM_Dynamo_ZhouWadleyJohnson_2001_CuTaMO_547744193826_000	EAM potential (LAMMPS cubic hermite tabulation) for the Cu-Ta system developed by Zhou, Wadley and Johnson (2001) v000
FAM Experts Zhou Medley Jakason, SCOt, Cu., MO, 286822813353_000	EAM potential (LAMMPS cubic hermite tabulation) for Cu developed by Zhou, Wadley and Johnson (2001) v000
EAM_NN_Johnson_1988_CuMO_887933271506_002	EAM Potential (analytical nearest-neighbor) for Cu developed by Johnson (1988) v002
EMT_Asap_MetalGass_BalleySchlotzJacobsen_2004_CuMgMO_228059236215_001	EMT potential for Cu-Mg metallic glasses developed by Bailey, Schiotz, and Jacobsen (2004) v000
EMT_Asep_MetalGless_CuMgZrMO_655725647552_002	Effective Medium Theory potential for GuMg and GuZr alloys, in particular metallic glasses.
EMT_Asap_MetalGlass_PaduraruKenoufiBailey_2007_CuZrMO_987541074959_001	EMT potential for Cu-Zr metallic glasses developed by Paduraru et al. (2007) v000
EMT_Assp_Standard_JacobsenStoltzeNorskov_1996_AlAgAuQuNIPdPtMO_115316750986_001	EMT potential for Al, Ni, Gu, Pd, Ag, Pt and Au developed by Jacobsen, Stoltze, and Norskov (1996) v000
EMT_Asap_Standard_JacobsenStoltzeNorskov_1996_CuMO_396616545191_001	EMT potential for Cu developed by Jacobsen, Stoltze, and Norskov (1996) v000
EMT_Asap_Standard_Jacobsen_Stoltze_Norskov_AlAgAuCuNIPdPtMO_118428466217_002	Standard Effective Medium Theory potential for face-centered cubic metals as implemented in ASE/Asap.
LJ_EliottAkerson_2015_UniversalMO_959249795837_003	Efficient 'universal' shifted Lennard-Jones model for all KIM API supported species developed by Elliott and Akerson (2015) v003
MEAM_2NN_Fe_to_GeMO_145522277939_001	Model parameterization of 2NN MEAM model
Morse_Shifted_GirifalcoWeizer_1959HighCutoff_CuMO_151002396060_002	Morse potential (shifted) for Cu by Girifalco and Weizer (1959) using a high-accuracy cutoff distance v002
Morse_Shifted_GirifalcoWeizer_1959LowCutoff_CuMO_673777079812_002	Morse potential (shifted) for Cu by Girifalco and Weizer (1959) using a low-accuracy putoff distance v002
Morse_Shifted_GirlfslcoWeizer_1959MedCutoff_CuMO_173767283511_002	Morse potential (shifted) for Gu by Girifalco and Weizer (1959) using a medium-accuracy cutoff distance v002
Pair_Morse_Modified_MacDonaldMacDonald_CuMO_034823476734_000	Modified Morse pair potential for copper due to MacDonald and MacDonald

KIM Items / Models / EAM_NN_Johnson_1988_Cu__MO_887933271505_002

Jump to: Tests | Visualizers | Files | Wiki

EAW_NN_JOHNSON_	1966_C0MO_687933271303_002	
Title 🕑	EAM Potential (analytical nearest-neighbor) for Gu developed by Johnson (1988) v002	R
Description ©	Analytical nearest-neighbor EAM model for Cu by Johnson	C
Species Ø	Cu	
Contributor	Ryan	
Maintainer	Ryan	
Author	Ryan S. Elliott	C
Publication Year	2018	
Source Citations 😡	Johnson RA (1988) Analytic nearest-neighbor model for fcc metals. <i>Physical Review B</i> 37(8):3924–3931. doi:10.1103/PhysRevB.37.3924 C ^a	
Item Citation	Click here to download a citation in BibTeX format.	
Short KIM ID @	MO_887933271505_002	
Extended KIM ID @	EAM_NN_Johnson_1988_CuMO_887933271505_002	
DOI	10.25950/3ccd9f3b https://doi.org/10.25950/3ccd9f3b https://search.datacite.org/works/10.25950/3ccd9f3b	
Citable Link	https://openkim.org/cite/MO_887933271505_002	
KIM Item Type 🕑	Stand-alone Model	
KIM API Version	2.0	
Programming Language(s) 😡	100.00% C	

EAM_NN_Johnson_1988_Cu__MO_887933271505_002

- Further down the model page for
- EAM_NN_Johnson_1988_Cu__MO_887933271505_002

^o Verification Check Dashboard

(Click here to learn more about Verification Checks)

- Further down the model page for
- EAM_NN_Johnson_1988_Cu__MO_887933271505_002

Cubic Crystal Basic Properties Table

Species: Cu

	Model	Lattice Constant [Å]	Cohesive Energy [eV]0	c11 [GPa] ❷	c12 [GPa]	c44 [GPa]❷
<u>bcc</u> ∡^Expand	EAM_NN_Johnson _1988_CuMO_8 87933271505_002	2.85939610749000 03	3.60638315770475 47	146.260887382000 02	137.952181442	91.9367817649000 2
diamond	EAM_NN_Johnson _1988_CuMO_8 87933271505_002	5.45042160153000 1	2.42418324907400 16	N/A	N/A	N/A
fcc _^^Expand	EAM_NN_Johnson 1988 Cu MO 8 87933271505_002	3.61472985148	3.54000012331236 8	184.172808464	115.324864335	68.8519693905
SC <u>✓Collapse</u>	EAM_NN_Johnson _1988_CuMO_8 87933271505_002	2.37244981527000 04	3.26347357796984 1	270.847253148	24.4996165814	-17.5854303931
	EAM_Dynamo_Ackl andTichyVitek_198 7_CuMO_17902 5990738_005	2.41274794936	2.93498774633736 6	296.901843605	90.8334172056000 1	54.1961445689
	EAM Dynamo Ackl	2,39571615309	2 94757703382590	186.096823759000	61 7775700379000	24 2576222484000

- Further down the model page for
- EAM_NN_Johnson_1988_Cu__MO_887933271505_002

° Tests

ElasticConstantsCubic_	_TD_011862047401_004		Full	results page.
Computes the cubic ela estimate of the error as	estic constants for some common crystal types (fi sociated with the numerical differentiation perform	cc, bcc, sc) by calcula ned is reported.	ating the hessian of the evergy densit	y with respect to strain. An
Test		Test Results	Link to Test Results page	Benchmark time 🚱
ElasticConstantsCubic_bcc_CuTE_091603841600_004			Q view	2602
asticConstantsCubic_fcc_CuTE_188557531340_004			Q view	3660
EasticConstantsCubic_sc_CuTE_319353354686_004		<pre></pre>	Q, view	3079
•	Expand a	a property s	synopsis.	
•	Usertime muliplied by to used (approximately) to independently of the are	he Whetsto compare t chitecture c	one Benchmark.This he performance of on which the test w	s number can be different models as run.

- Further down the model page for
- EAM_NN_Johnson_1988_Cu__MO_887933271505_002

^o Tests

ElasticConstantsCubic_TD_011862047401_004

Computes the cubic elastic constants for some common crystal types (fcc, bcc, sc) by calculating the hessian of the energy density with respect to strain. An estimate of the error associated with the numerical differentiation performed is reported.

Test	Test Results	Link to Test Results page	Benchmark time 😡
ElasticConstantsCubic_bcc_CuTE_091603841600_004	⊮² expand	Q, view	2602
ElasticConstantsCubic_fcc_CuTE_188557531340_004	2 expand	Q, view	3665
ElasticConstantsCubic_sc_CuTE_319353354686_004	* collapse	Q view	3079

instance-id: 1

Isothermal elastic constants for a cubic crystal at constant temperature and stress (For more information, see the property definition elastic-constants-isothermal-cubic-crystal-npt)

Crystal type = ["sc"]

a = 2.37244981527 angetrom Species = ["Cu"] Basis atom coordinates = [[0.0 0.0 0.0]]

Temperature = 0 K Cauchy stress = [0 0 0 0 0 0] GPa

c11 = 270.8472531475441 GPa c12 = 24.49961658139509 GPa c44 = -17.585430393063543 GPa Elastic constants (note that c44 is negative indicating the sc structure is unstable).

- Further down the model page for
- _____EAM_NN_Johnson_1988_Cu__MO_887933271505_002

^o Visualizers (in-page)

Cohesive Energy Graph

This graph shows the cohesive energy versus volume-per-atom for the current mode for four mono-atomic cubic phases (body-centered cubic (bcc), face-centered cubic (fcc), simple cubic (sc), and diamond). The curve with the lowest minimum is the ground state of the crystal if stable. (The crystal structure is enforced in these calculations, so the phase may not be stable.) Graphs are generated for each species supported by the model.

Diamond Lattice Constant

This bar chart plot shows the mono-atomic face-centered diamond lattice constant predicted by the current model (shown in the unique color) compared with the predictions for all other models in the OpenKIM Repository that support the species. The vertical bars show the average and standard deviation (one sigma) bounds for all model predictions. Graphs are generated for each species supported by the model.

Click on any thumbnail to get a full size image.

- Further down the model page for
- EAM_NN_Johnson_1988_Cu__MO_887933271505_002

° Wiki

Description

This Model implements the potential developed by R.A. Johnson for foc metals as described in the reference above (see Source Citations). In particular, this model is applied to copper (Cu).

Parameters

Symbols (matching the reference):

 $r_e, \phi_e, \gamma, f_e, \beta, E_c, \alpha, \rho_e.$

Corresponding variables in code:

JEAM_R0, JEAM_PHI0, JEAM_GAM, JEAM_G0, JEAM_BET, JEAM_EC, JEAM_ALF, JEAM_RHO0, where the prefix JEAM emphasizes the fact that each variable corresponds to the "Johnson Embedded Atom Potential".

Warning: The model uses other parameters DIM, SPECCODE and MODEL_CUTOFF denoting the dimensionality of the space (3 by default), the number of species (1, by default) and the cut-off radius (3.5 Angstrom by default), respectively. Default values have been hardcoded and, in principle, they should not be modified.

Details

The total potential energy of a system of N atoms is assumed to take the form $E = \sum_{i=1}^{N} E_i$, such that

$$E_i = \sum_{i=1}^{N} \left[F(p_i) + \frac{1}{2} \sum_{j=1}^{m} \phi(r_{ij}) \right],$$

and

 $\rho_i = \sum_{j=1}^m f(r_{ij}),$

where E_i denotes the energy per atom i, $F(\rho_i)$ is the embedding function contribution, $\frac{1}{2} \sum_{j=1}^{m} \phi(r_{ij})$ is the two-body contribution to the energy, ρ_i stands for the electron density at atom i, and $f(r_{ij})$ is the atomic electron density of atom j as a function of the distance from its center r_{ij} , while j is one of the m neighbors of the atom i.

•••

Current Status (June 28, 2019)

Software supporting KIM API:

ASAP, ASE, DL_POLY, GULP, LAMMPS, libAtoms/QUIP, nanoHUB, Potfit, Quasicontinuum, MDStressLab

OpenKIM.org

https://openkim.org

Summary

KIM provides archival permanent storage of interatomic models, tests, and reference data with known provenance.

All KIM content is citable using issued DOIs. This makes it possible to reproduce simulation results in the future.

KIM Portable Models stored in the OpenKIM Repository conform to an API that allows them to run seamlessly with any KIM-compliant simulation code.

Models are tested against a user-extendible set of calculations for well-defined material properties and verified for coding integrity using an automated processing pipeline.

Machine learning based tools for assessing interatomic model transferability and topology based uncertainty quantification tools are in development.