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Outline

● Challenges and Insight in DFT from Fractional 

Perspectives 

● Scaling Corrections to Approximate Functionals

● Pairing Matrix Fluctuations--Connecting DFT to 

many-body theory through the pairing channel for 

electron correlation

● Pp-RPA as an approximation of linear response to a 

pairing field perturbation

● Capturing double, charge transfer and Rydberg 

excitations

● Diradicals, Conical Intersections



Density Functional Theory

• DFT is exact and should give agreement with experiment or 
high-level ab initio calculations in all situations.

• Approximate functionals perform well in many systems but 
can fail dramatically in other situations.

• This can be traced back to errors of DFA (density 
functional approximation)

• The understanding of these errors will hopefully lead to new 
and improved functionals.

• The same challenges for other approximate QM 
methods.



A large class of problems

• Wrong dissociation limit for molecules and ions

• Over-binding of charge transfer complex

• too low reaction barriers

• Overestimation of polarizabilities and hyperpolarizabilities

• Overestimation of molecular conductance in molecular electronics

• Incorrect long-range behavior of the exchange-correlation potential

• Charge-transfer excited states

• Band gaps too small

• Diels-Alder reactions, highly branched alkanes, dimerization of 
aluminum complexes

Fractional Charges

Delocalization Error



Error Increases for systems with fractional 
number of electrons: Yingkai Zhang and WY, JCP 1998

too low energy for delocalized electrons

Savin, in Seminario, “Recent Developments and Applications of Modern DFT”, 1996

+

2H at the dissociation limit



DFT for fractional number of electrons
from grand ensembles,

Perdew, Parr, Levy, and Balduz,  PRL. 1982



Where can you find fractional charges?

WY, Yingkai Zhang and Paul Ayers, PRL, 2000 – pure states
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The linearity condition in fractional charges: The energy of  e/2  

( )E N

e
e/2

1 1
2 2

( ) (1)E E

0

0

-I



E(N)



1
2 ( ) ( ) ( 1),

2
For -convex,   <    delocalizedN E N E N E N   

( )A dimer, with   separation: each monomer has    E N

1
2 ( ) ( ) ( 1),

2
For -concave,   >    localizedN E N E N E N   

2 x + e



Localization Error

Delocalization Error

Delocalization and Localization Error
Paula Mori-Sanchez, Aron Cohen and WY, PRL 2008

Consequence of Delocalization Error
1.  predicts too low energy for delocalized distributions

2.  gives too delocalized charge distributions



Delocalization Error

Define the Delocalization Error as the violation of the

linearity condition for fractional charges

Cohen, Mori-Sanchez  and Yang, 2008 Science



Delocalization Error vs. Self-Interaction Error (SIE)

Delocalization Error (Mori-Sanchez, Cohen and Yang, PRL 2008)
• Two SIE-free functionals: Becke06, and MCY2 (2006) did not solve the problems 

(Self-interaction-free exchange-correlation functional for thermochemistry and 
kinetics, Mori-Sanchez, Cohen and Yang, JCP 2006)

• Many-electron SIE were used in 2006 (A. Ruzsinszky, J. P. Perdew, G. I. Csonka, O. 
A. Vydrov, and G. E. Scuseria, JCP 2006, Mori-Sanchez, Cohen and Yang, JCP 2006) 

• Delocalization Error agrees with SIE for one electron systems. For general 
systems, it reveals the true relevant mathematical error of approximate 
functionals, and captures the physical nature of the error—delocalization.

Self-Interaction Error   (Perdew-Zunger 1982)
• Exc error for one-electron systems
• Self-Interaction Correction (SIC) forces the correction for 

every one-electron orbital,  improves atomic systems.
• SIC does not improve molecular systems in general 

(sometime over corrections). 
• SIE fractional extension (0<N<1, Zhang and Yang, JCP 1998) 

explained           problem) +

2H
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Delocalization Error in GGA, LDA, B3LYP

• Energy of dissociation of molecular ion: too low

• Charge transfer complex energy: too low

• Transition state energy: too low

• Charge transfer excitation energy: too low

• Band gap: too low

• Molecular conductance: too high

• (Hyper)polarizability for long molecules: too high

• Diels-Alder reaction products, highly branched 
alkanes, dimerization of aluminum complexes: too 
high

Too low energy for fractional charge systems

Cohen, Mori-Sanchez  and Yang, 2008 Science



Seeing the delocalization error  2 7( )Cl H O

Where is the negative charge ?



Another large class of problems

• huge error dissociation of chemical bonds

• transition metal dimmers

• some magnetic properties

• strongly correlated systems

• Mott insulators, high         superconductors

• degeneracy and near degeneracy
c

T

Fractional Spins

Static Correlation Error

Aron Cohen, Paula Mori-Sanchez and WY,  JCP, 2008



The huge error in breaking any bond



Where can you find fractional spins?

Aron Cohen, Paula Mori-Sanchez and Yang, 2008, JCP

Yang, Ayers and Zhang, PRL 2000
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The constancy condition: energy of  fractional spins  
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Static Correlation Error

Define the Static Correlation Error as the violation 

of the constancy condition for fractional spins

Cohen, Mori-Sanchez  and Yang, 2008, JCP;  2008 Science



Exact conditions on DFT

, ,[ ]i N i N i Ni
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•!! The exact XC functional cannot be an explicit and differentiable 
functional of the electron density/density matrix, either local or nonlocal.

•Valid for density functionals, and also for 1-body density matrix 
functionals, 2-RDM theory, and other many-body theories.

Fractional Charge: 1982: Perdew, Levy, Parr and Baldus

Fractional Spins:  2000, PRL, WY, Zhang and Ayers;
2008, JCP,  Cohen, Moris-Sanchez, and WY

Fractional Charges and Spins: 2009: PRL, Moris-Sanchez, Cohen and WY
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Why we have to deal with fractional number of electrons?

½(r)()ª(r1; r2; :::rN)

E = hªjH jªiE = E[½(r)]

Wavefunction TheoryDensity Functional Theory

Fractional charge can occur Integers, always!

Many-electron theories based on

•Green function
•Density matrix



: , ,Falt plan for Hydrogen H H and H 

H+

H(↓)

H-

H(↑)

Fractional Charges and Spins: PRL 2009, Cohen, Moris-Sanchez, and WY



B3LYP



Band Gap
Definition of fundamental gap

derivative

Only if                      is linear.



Cohen, Mori-Sanchez and Yang (PRB 2008), based on potential 

functional theory  (PFT) (Yang, Ayers and Wu, PRL 2005)

Computing the chemical potential based on PFT  



Chemical Potentials Cohen, Mori-Sanchez and WY, PRB, 2008

GaGap as the discontinuity of energy derivatives- chemical potentials



How can fundamental gap be predicted in DFT

• LUMO energy is the chemical potential for electron addition

• HOMO energy is the chemical potential for electron removal

• Fundamental gaps predicted from DFT with KS, or GKS 

calculations, as the KS gap or the GKS gap

• For orbital functionals, the LUMO of the KS (OEP) eigenvalue 

is NOT the chemical potential of electron addition.

Thus the KS gap is not the fundamental gap predicted by the 

functional.  @Ev(N)

@N
= hÁf jHe® jÁfi

WY, Mori-Sanchez and Cohen, PRB 2008, JCP 2012

For continuous and differentiable functionals of density/density matrix



Convex curve (LDA, GGA):
derivative underestimates I, overestimates A,   I-A is too small

Concave curve (HF):
derivative overestimates I, underestimate A,   I-A is too large

1,
E

N E
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How well can fundamental gap be predicted in DFT

• Fundamental gaps predicted from DFT with KS, or GKS 

calculations, as the KS gap or the GKS gap

• Only works well if functionals have minimal 

delocalization/localization error.
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What do we do?

1. Use the exact conditions to improve existing 
approximations

2. Many-body theory



Improving band gap prediction in density 
functional theory from molecules to solids

PRL, 2011, Xiao Zheng, Aron J. Cohen, Paula Mori-
Sanchez, Xiangqian Hu, and Weitao Yang

Paula Mori-Sanchez
(Univ. Autonoma Madrid)

Xiao Zheng
(USTC)

Aron J. Cohen
(Cambridge) Xiangqiang Hu

First Approach: Use the exact conditions to improve approximations
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Nonempirical Scaling correction

To linearize an energy component, Ecomp, for a system of N + n (0 < n < 1) 
electrons, we construct

1  and  0  at E  reproduces  and , with linearly scales )(E compcomp  nnnnN
~

The SC to Ecomp is

It is then important to cast ΔEcomp into a functional form, so that it depends 

explicitly on ρ(r), or on Kohn-Sham first-order reduced density matrix 

ρs(r,r’)
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Scaling correction to J[ρ]

At fractional electron number N + n, the electron density is 

The modified electron Coulomb energy which scales linearly with n is

The SC to J[ρ] is
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Scaling correction to J[ρ]

At integer points, nm = 1 for all occupied m, so that

At fractional n:

HF exchange hole function
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Energy versus fractional electron number

The SC significantly restores linearity condition for energy
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Band gaps by various DFA and S-DFA
Summary of band-gap prediction for a variety of systems

 The SC preserves the accuracy of I, A, and integer gaps, while it improves
significantly on HOMO and LUMO energies, and derivative gaps

 S-MLDA predicts reasonable band gaps with consistent accuracy for systems
of all sizes, ranging from atoms and molecules to solids



Atoms and Molecules 

Bulk Solids
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Band gaps of H-passivated Si nanocrystals
Computational details

 Systems under study: H-passivated spherical Si nanocrystals. The largest
system is Si191H148 with a diameter of 20 angstrom

 Geometries optimized by B3LYP with Lanl2dz ECP basis set, except that
the largest system Si191H148 is optimized with semiempirical PM3 method

 Diffusive basis functions are important to obtain accurate HOMO-LUMO
gaps: 6-31G for H atoms; an sp-shell with an exponent of 0.0237 au and a
d-shell with an exponent of 0.296 au added to Lanl2dz basis for Si atoms

Si191H148
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Band gaps of H-passivated Si nanocrystals

The S-MLDA HOMO-LUMO gaps agree well with the GW gaps

S-MLDA

LDA



Local Scaling Correction, PRL, 2015

Paula Mori-Sanchez 

(Univ. Autonoma Madrid)

Xiao Zheng

(USTC)

Aron J. Cohen

(Cambridge)
)

Chen Li

(Duke)



Delocalization Error

Define the Delocalization Error as the violation of the

linearity condition for fractional charges

Cohen, Mori-Sanchez  and Yang, 2008 Science



Local Scaling Correction

• Motivation

• Consider 𝑀0.5+ (M is an atom)

• Diagonize PS matrix

• 𝑃𝑆 ⟶

1
⋱

1

O O

O 0.5 O

O O
0

⋱
0

• 𝑃𝑆 − 𝑃𝑆 𝑚 ⟶

0
⋱

0

O O

O 0.5 O

O O
0

⋱
0



Local Scaling Correction

• Motivation
• S ⟹ 𝑆𝑣 (screened S to reflect locality)

• In atomic basis representation,

𝑙 𝑟 = lim
𝑚→∞

𝜒𝑇 𝑟 𝑃 − 𝑃𝑆𝑣
𝑚−1𝑃 𝜒 𝑟 ,

𝑑 𝑟 = lim
𝑚→∞

𝜒𝑇 𝑟 𝐼 − 𝑃𝑆𝑣
𝑚 − 𝐼 − 𝑃𝑆𝑣

𝑚 (𝑆𝑣)
−1𝜒 𝑟 ,

• Our key idea

• Apply local linearity condition using f(r) and d(r)



Local fractional occupation numbers n(r)



• Reaction barrier heights

Test Set MAE (kcal/mol)

BLYP LSC-BLYP B3LYP LSC-B3LYP

HTBH38/0811 7.83 4.85 4.43 2.71

NHTBH38/0811 8.79 4.38 4.44 2.93

G2-9712 7.28 7.41 3.40 4.51

• LSC improves reaction barrier heights,
maintains thermochemistry.

11. Zheng, J.; Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2009, 5, 808-821.
12. L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 
1997, 106, 1063.





• Polarizablity (longitudinal)

Hydrogen chain

2 n(H )



• Polarizablity (longitudinal)

Polythiophene (PT)

4 2 nH(C H S) H



• OH(H2O)n



Second Approach: Many-Body Theory

Kohn-Sham electrons Physical Electrons



Adiabatic Connection



Two channels

Particle-hole channel

Particle-particle channel (Hole-hole channel)



Particle-hole channel

Linear response in density

particle-number conserving field

Density at t=0 Density at t

Linear response

pertubation



Linear response in the p-h channel 

• Exact expression (Langreth and Perdew, 1975)

• ACFDT –adiabatic connection fluctuation dissipation theorem

• Correlation from Dynamic linear response of electron density   



First-order approximation to Linear response

• Simplest Approxmation is particle-hole Random Phase 
Approximation  (ph-RPA)

• Direct-RPA, using only direct interaction, w/o exchange

• Geometric summation of V, or Ring diagrams



Particle-particle channel – Pairing Matrix Fluctuation

Exchange-Correlation Energy from Pairing Matrix Fluctuation and the Particle-Particle 
Random Phase Approximation
Helen van Aggelen, Yang Yang, Weitao Yang, arXiv:1306.4957  (2013), PRA (2013)

Helen van Aggelen Yang Yang

http://arxiv.org/find/physics/1/au:+Aggelen_H/0/1/0/all/0/1
http://arxiv.org/find/physics/1/au:+Yang_Y/0/1/0/all/0/1
http://arxiv.org/find/physics/1/au:+Yang_W/0/1/0/all/0/1
http://arxiv.org/find/physics/1/au:+Aggelen_H/0/1/0/all/0/1
http://arxiv.org/find/physics/1/au:+Yang_Y/0/1/0/all/0/1


pairing field

The pp propagator K  describes pairing matrix fluctuations



pairing field

Paring Matrix Fluctuation



2 correlation/excitation 

channels

a+a

a+a+

aa

particle-particle                            hole-hole

particle-hole



The correlation energy can be written in terms of

pairing (matrix) fluctuations

density (matrix) fluctuations

van Aggelen, Yang, Yang, PRA (2013)

Langreth, Perdew (1975);

Gunnarsson, Lundqvist (1976)



The simplest approximation to     is the pp-RPAK

pp-RPA has been used

• double ionization energies for molecules

• correlation energy in nuclear physics, not in electronic 

structure before.



The pp-RPA correlation energy from pairing matrix fluctuations:



One way to get the pp-RPA correlation energy



The ph-RPA has large fractional-charge errors



The ph-RPA has large fractional-charge errors



The ph-RPA violates the ‘flat plane 

condition’

H



The pp-RPA satisfies the ‘flat plane condition’

H



ph-RPA vs. pp-RPA

Li atom



CH3-CH3 dissociation



The pp-RPA has much better energy derivatives than the ph-

RPA

¶E

¶N



The pp-RPA has much better energy derivatives than the ph-

RPA

pp-RPA ph-RPA LDA expt.

Li 0.125 -3.013 -2.169 -0.618

Be 1.185 -2.811 -2.515 -0.295

B 0.772 -4.010 -3.812 -0.280

C 0.177 -4.131 -5.083 -1.262

N 0.959 -5.553 -4.910 -0.070

O -1.395 -8.299 -7.709 -1.461

F -4.206 -11.434 -10.812 -3.401

MAE 0.945 4.552 4.232

¶E

¶N

æ

èç
ö

ø÷
N+d



The pp-RPA also recovers van der Waals 

interactions

Ar2



The pp-RPA also recovers van der Waals 

interactions

NeAr



Error dependence on number of atoms 

Background   Spin separation   Spin adaptation   Benchmark tests   Future plan   Summary

ph-RPA: 

increase 

dramatically

pp-RPA: 

nearly 

constant

Reason? 

May be change 

of electron pairs



TDDFT with pairing fields

What is the exact theory behind pp-RPA?

110

TDDFT RPA

TD ? 
theory

pp-RPA

𝑓𝑥𝑐 = 0

?𝑥𝑐 = 0

Ph-excitation:

Pp-excitation:
double ionization,
double electron affinity

TDDDFT-P: TDDFT with pairing fields



Linear-response TDDFT-P

• TDDFT with pairing field (TDDFT-P) at zero-
pairing field limit

• Extension and Restriction of work related to 
DFT/TDDFT for superconductors by Gross et al.

• Path forward 

117
Peng, van Aggelen, Yang, Yang, J. Chem. Phys. 2014



TDDFT with pairing fields
--What is the exact theory behind pp-RPA?

118

TDDFT RPA

TDDFT-P pp-RPA

𝑓𝑥𝑐 = 0

𝑔𝑥𝑐 = 0

Ph-excitation:

Pp-excitation:
double ionization,
double electron affinity

--Justify the use of DFT reference in the pp-RPA calculations

Peng, van Aggelen, Yang, Yang, J. Chem. Phys. 2014



Capture Challenging Excitations 

with Particle-Particle Random 

Phase Approximation

Yang Yang, Helen v. Aggelen and WY

J. Chem. Phys. 2013



N-2 system  to  N system

E-𝜇N E-𝜇N

N-2 N N+2N-2 N N+2

Reference shift

Eexcitation= Eblue- Ered



Results: capture double excitation



Results: describe Rydberg excitation



The particle-particle random phase approximation with a 

Hartree-Fock reference accurately describes all the 

Rydberg excitations with a small error in quantum defect.

Mol. Phys. 2015



Results: correct CT 1/r behavior

C2H4·C2F4

Black: non-CT

Red: CT

Blue: 1/r reference



Results: good single excitation



Benchmark tests: Error summary

16 molecules

46 excitations

27 Singlets

19 Triplets

All-E-Decapentaene

not drawn



Benchmark tests: Error summary

eV
RPA-

hf

RPA-

b3lyp

RPA-

pbe

TDA-

hf

TDA-

b3lyp

TDA-

pbe
CIS TD-hf

TD-

b3lyp

TD-

pbe

Total MSE 0.02 0.04 -0.14 -0.14 -0.24 -0.44 0.34 -0.85 -0.34 -0.54

Total MAE 0.88 0.38 0.38 0.85 0.41 0.60 0.79 1.74 0.38 0.54

Singlet MSE -0.17 0.10 -0.04 -0.33 -0.16 -0.30 0.82 0.61 -0.28 -0.63

Singlet MAE 0.99 0.33 0.34 1.00 0.32 0.54 0.87 0.79 0.36 0.63

Triplet MSE 0.29 -0.05 -0.27 0.12 -0.34 0.40 -0.36 -2.93 -0.42 -0.41

Triplet MAE 0.71 0.46 0.44 0.64 0.54 0.43 0.67 3.08 0.42 0.41



Predictions of singlet-triplet 
gaps for diradicals through 

particle-particle random phase 
approximation

JPC 2015



Diradicals

• Radical

• Diradical --- two radicals

– To pair or not to pair? 

p q

p q

p

q

p
q

Degenerate Energy far away

Hund’s rule --- Exchange Orbital energy





Vertical singlet-triplet gaps for disjoint diradicals

● Using DFT references are critical for pp-RPA.

● When there is no charge transfer (
1
𝐴1), both pp-

RPA and SF-TDDFT perform well.

● pp-RPA performs much better when there is charge 

transfer.



Acene 2 3 4 5 6 7 8 9 10

pp-RPA/B3LYP S 
geo

2.90 2.01 1.41 1.00 0.71 0.51 0.37 0.28 0.22

pp-RPA/B3LYP T 
geo

0.39 0.25 0.17 0.12 0.09

Expt 2.65a 1.87
b

1.27c 0.86
d

Singlet-triplet gaps (in eV) for acenes



pp-RPA with SCC-DFTB 

Adriel Dominguez Garcia Thomas Frauenheim



1. Excitations with double contributions

2. Charge transfer excitations

--Need functionals with reduced delocalization error.

--Use the RS hybrid DFTB from Thomas Niehaus



Conical intersection

05/26/201

6

Yang Yang    Thesis 

Defense

158/37

• two electronic states are 

degenerate and the

potential energy surfaces 

intersect

• Nint-2 dimension space

• Often relates to charge 

transfer, ultrafast 

photochemical transitions



●Current methods

● TDDFT

● Completely fails to get Nint-2 dimension

● Multi-reference methods

● Usually expensive

● Recently developed methods

● CIC-TDA, CDFT-CI, SI-SA-REKS, SF-TDDFT 

05/26/201

6

Yang Yang    Thesis 

Defense

159/37

A multi-configuration method that efficiently describes 
the ground and excited states on the same footing.



1. D3h H3

J. Phys. Chem. Letters, in press 2016

Ground state Excited stateD3h, Huckel’s model



2. D3h NH3

161/37

Ground state Excited state

Accurate double-
cone character

-

Mori-Sanchez, Cohen and Yang, JCP 2006, 

J. Phys. Chem. Letters, in press 2016


