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Motivation 

 

To understand long-standing and fundamental problems in solid-

state physics and materials chemistry by using the random 

phase approximation (RPA) 

 

• structural phase transitions are extremely difficult (and extremely 

difficult to realize experimentally) 

• interlayer binding (sometimes double minima is found) 

• adsorption (binding and site preference) 

• weak interactions in molecules, biomolecules  

• reaction energies of certain kinds (self-interaction exposed) 
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RPA in the density functional context 

DC. Langreth, and JP. Perdew, Phys. Rev B. 15, 2884, (1977) 

Eshuis, Bates, and Furche, Theor. Chem. Acc. 131, 1084 (2012) 

Ren et al., J. Mater. Sci. 47, 7447 (2012) 3 

• Zero-temperature fluctuation-dissipation theorem: 

•  Adiabatic connection: density is constrained to physical (λ=1) 

value. Φ0 is a single-determinant of Kohn-Sham orbitals 

The total energy is computed as Exc = EXX + Ec, where EXX is the 

Hartree-Fock exact-exchange energy evaluated using KS orbitals. 
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Density-density Response Function 
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Petersilka, Gossmann, and Gross, Phys. Rev. Lett. 76, 1212 (1996) 

Lein, Gross, and Perdew, Phys. Rev. B 61, 13431 (2000) 
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 Poles of  χλ at excitations of interacting system 
 

 Exact fxc
λ : spatially nonlocal complicated ω behavior 

 

  Approximate fxc  obtained from semilocal functionals or a model 
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• Atomization energies were too low by typically 10 kcal/mol, in 

comparison to experiment. 

 

• vdW interactions 

S22 data set, adsorption of organic molecules, i.e., benzene on metal 

surfaces, CO adsorption problem, graphene on metal surfaces 

 

Although RPA  is known for capturing vdW interactions, binding and  

cohesive energies are underestimated. 
 

 

 

 

 
 

Applications of RPA 
 

F. Furche, Phys. Rev. B 64, 195120 (2001). 

J. Harl, L. Schimka, and G. Kresse, Phys. Rev. B 81, 115126 (2010) 

S. Lebègue, J. Harl, Tim Gould, J. G. Ángyán, G. Kresse, and J. F. Dobson, Phys. Rev. Lett. 105, 196401 (2010) 

X. Ren, P. Rinke, C. Joas, and M. Scheffler, J. Mater, Sci. 47, 7447 (2012) 
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Question: 
 

 

• How does the overall underestimation of binding by RPA affect 

structural properties and structural phase transitions ? 

 

• How much a beyond RPA treatment improves these properties? 
 

B. Xiao, J. Sun, A. Ruzsinszky, J. Feng and J.P. Perdew,. Phys. Rev. B 86, 094109 (2012) 

J.E. Bates, S. Laricchia, and A. Ruzsinszky, Phys. Rev. B, 93, 045119, (2016) 
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Local field corrections  

 

An intrinsic way to remedy the drawbacks of RPA is to 

restore the kernel within the ACFDT framework. 

 

How to approach the kernel? 

 

• derive the kernel from microscopic theory 

 

• satisfy exact, known constraints 

Most models use the paradigm of the uniform electron gas 

M. Corradini, R. Del Sole, G. Onida, and M. Palummo, Phys. Rev. B, 57, 14569, (1998) 

L.A. Constantin, and J.M. Pitarke,  Phys. Rev. B, 75, 245127, (2007) 

P.E. Trevisannuto, A. Terentjevs, L.A. Constantin, V. Olevano,  and F. Della Sala, Phys. Rev. B, 87, 205143, (2013) 

J.E. Bates, S. Laricchia, and A. Ruzsinszky, Phys. Rev. B, 93, 045119, (2016) 



• The ALDA is the next-simplest approximation for the kernel: 
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ALDA kernel 
 

•  ALDA is not exact for the homogeneous electron gas 

•  ALDA gives reasonable accuracy for low-frequency, long-wavelength excitations, 

but is not the right choice for a correction to RPA.  

•  Lein, Gross and Perdew studied the correlation energy per particle of the uniform 

gas using various kernels. They found that RPA and ALDA-corrected RPA make 

errors of about 0.5 eV, of opposite sign. 

•  ALDA is divergent in its correlation hole 

 M. Lein, E.K.U. Gross, and J.P. Perdew, Phys. Rev. B 61, 13431 (2000). 

F. Furche, T Van Voorhis, J. Chem. Phys. 122 , 164106, (2005). 

 

E.K.U. Gross, W. Kohn, Adv. Quant. Chem. 21,255 (1990).  
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What is known about the exchange-correlation kernel? 

   

 

(1) Why does the ALDA kernel fail even for the uniform electron gas? 

            is not exact even for the static exchange-correlation kernel of the uniform 

 electron gas.   

             arbitrary small density variations around the uniform density requires a    

 two- point density functional or double integral over the three-

 dimensional space, while LDA is only a one-point density functional or 

 single integral.  

(2) Can a static kernel give accurate exchange-correlation energies?  

   Ghosez, Gonze, and Godby had shown that the static kernel in an insulator 

 at  the exchange-only level has “ultranonlocality”, decaying at large u like 

 a negative constant over u.  

(3)  Can we neglect the correlation part of the kernel? 

  it is exact by construction in the high-density limit  

(4)  Error cancellation between exchange and correlation 

       the kernel can be ultranonlocal for insulators and molecules as well   

 

 

 

Ph. Ghosez, X. Gonze, and R.W. Godby,. Phys. Rev. B 56, 12811 (1997) 
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Three state-of-the-art features: 

 

  

 

self-interaction correction  

 

energy-optimization 

 

ultranonlocality  

 

   Introducing the NEO (nonlocal energy-optimized) kernel 
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   NEO kernel: Short-range correction to the RPA correlation energy,  

    for solid metals 

Based on the knowledge of the uniform electron gas. 

The exact xc kernel in the uniform electron gas is known to be nonlocal but 

short-ranged, and our initial version of a NEO kernel also has these features: 
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The “c” parameter in NEO provides a unique fit to the exact second-order 

correlation energy for the spin-unpolarized electron gas. It can be evaluated from 

explicit expressions given by von Barth and Hedin for RPA  and by Langreth and 

Perdew  beyond RPA. It is designed to yield the exact second-order exchange 

energy of the uniform gas, which is itself an average over frequencies  

 

D.C. Langreth and J.P. Perdew, Solid State Commun. 17, 1425 (1975)   
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Fitting to the second-order correlation energy 

 

J.F. Dobson and J. Wang, Phys. Rev. B, 62, 10038 (2000). 

J.E. Bates, S. Laricchia, and A. Ruzsinszky, Phys. Rev. B, 93, 045119, (2016) 

 

U. von Barth and L. Hedin, J. Phys. C 5, 1629 

(1972), and references therein. 
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Structural parameters 
 

Average errors: 
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RPA Renormalization 

 

:ˆ
 RPA response function 

first order approximation =  

RPAr1 with the NEO kernel 
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Replacing      ̂ 0by 

ACSOSEX with the NEO kernel 

Both RPAr1 and ACSOSEX yield the exact second-order,  

unscreened perturbative correlation energy when the exact first-

order kernel is used, but differ in their higher-order contributions. 

J.E. Bates, and F. Furche, J. Chem. Phys,  139, 171103, (2013) 
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H. Jiang, and E. Engel, J. Chem. Phys, 125, 184108, (2006) 
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ACSOSEX vs. RPAr1: homogeneous electron gas 

The error from PW92 as a function of 

rs for c  = 0.264. 



16 

ACSOSEX vs. RPAr1: inhomogeneous systems 

Structural properties 
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J.E. Bates, N. Sengupta, and A. Ruzsinszky, in 

preparation. 
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Phase Transition in Silicon from Diamond to β-tin 
 

RPAr1: NEO in RPAr1 

ACSOSEX: NEO in RPAr1-ACSOSEX  

Equation of state: 
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Higher order terms (HOT) 
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RPA renormalization contributions to the RPA correlation energy  with NEO, 

rALDA and CP07 kernels  for the uniform electron gas at rs = 4. 

The HOT correction is plotted for comparison with RPAr2-4. 
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Another paradigm in condensed matter physics: 

Jellium surface 

Metal surface energies can be treated within the jellium 

model: valence electrons are neutralized by a positive 

background. 
 

The ACFDT formalism was used for the jellium surface energy 

by Pitarke and Eguiluz.  
J.M. Pitarke, and A. Eguiluz, Phys. Rev. B, 57, 6329, (1998) 

In 2000, Yan, Perdew and Kurth argued that the correction to RPA, 

although large (about +0.5 eV per electron), would tend to cancel 

almost completely out of energy differences for processes that 

conserve electron number. 
Z. Yan, J.P. Perdew, S. Kurth, C. Fiolhais, and, L. Almeida, Phys. Rev. B,61, 2595, (2000) 

 

 
RPA can be expected to much better for the surface energy than 

for the bulk energy of a solid. 
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Jellium surface 

The surface energy of jellium is the work invested to create a unit 

area of new surface: 

The xc  energy contributions to the slab and surface 
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Jellium surface energy within RPA 
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J. Pitarke and A. Eguiluz, Physical Review B 63, 045116 (2001) 
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NEO kernel for jellium surface 
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Problem for jellium:  it produces a long-ranged exchange kernel in 

the tail of the density of a jellium surface, since Z → 1 and kF → 0 

there.  
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1) Regions of one- and two-electron density: 

 

2)  Regions of uniform density: 

                                                                                  (metallic bonds)             

3)  Regions of density overlap between closed shells: 

                                                                                  (weak bonds) 
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Only α can  recognize these three regions and  treat them differently. 

W  03/5 21 st 1Z

G.K.H. Madsen.; L. Ferrighi.; and B. Hammer,. J. Phys.Chem. Lett., 1, 515 (2010) 

 Y. Zhao, and D.G. Truhlar, J. Chem.Phys. 125, 194101 (2006) 

A.D. Becke and K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990) 
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The relevance of the meta-GGA ingredients 

 

(single bonds) 
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Solution: make use of our knowledge of recent meta-GGA’s 

Replace  21 Z by .33 32

   NEO-II This leads to: 
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We do not refit parameter “c” when switch from NEO-I to NEO-II 

properly diverges in the tail 

A. Ruzsinszky, L.A. Constantin, and J.M. Pitarke, to be submitted. 
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Correlation kernel: NEO-III 
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• Parameters b and c come from fitting to the uniform electron 

gas over a wide range of densities. 

 

• The expression correctly reduces to the high-density limit. 
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NEO-II leaves unchanged the correct NEO behaviors for one- and 

two-electron densities (α = 0) and slowly-varying densities  

(α = 1 + O(∇2)), but kills of the kernel in the tail of the surface 

density (α → ∞) 

Comparison between k2F (1−Z2) and k2F (α−3α2+α3) at a jellium surface of bulk 

parameter rs = 6. The surface is at z = 0, the bulk is at z < 0, and the vacuum is at z  →∞ 
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Two-dimensional wavevector analysis 

of the correlation energy per particle of 

the jellium slab with width = 2.23λF 

(λF=2π/kF), and rs = 2.07 for ISTLS, 

RPA, and the NEO kernels. 

 

rs = 2.07 corresponds to Al(100) surface 

Two-dimensional wavevector 

analysis of the jellium surface 

energy with rs = 2.07 for ISTLS, 

RPA, and the NEO kernels. 

Surface energy is the area below the 

curves. 

Wavevector resolution of the correlation energy for the jellium slab 

and surface 
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Jellium correlation surface energies with different approaches 

at background parameter rs = 2.07 

 

Method Correlation surface energy 

(erg/cm2) 

ISTLS 714 

RPA 743 

NEO-I-Gaussian 687 

NEO-I-erf 723 

NEO-II 678 

NEO-III 698 

LDA 293 

PBEsol 604 

DMC 697±45 
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Exchange-correlation and correlation energies along the “z” direction 

in the jellium slab 
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Conclusions 

 

• RPA energies require a substantial kernel correction. 

 

• The standard ALDA kernel used in TDDFT is as bad as no kernel 

at all. 

 

• The kernel can be modelled by satisfaction of exact constraints, 

e.g.; the NEO kernel. 

 

• The kernel can be included exactly to all orders, but RPA 

renormalization is less expensive and almost as accurate. 

 

• The kernel has a major effect on the correlation energy of bulk 

jellium, but much less effect on the jellium surface energy. 
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