Ultrafast laser-induced demagnetization of solids: Understanding the mechanism with real-time TDDFT simulations

E.K.U. Gross

Max-Planck Institute of Microstructure Physics Halle (Saale)

First experiment on ultrafast laser induced demagnetization

Beaurepaire et al, PRL 76, 4250 (1996)

• Direct interaction of spins with the magnetic component of the laser Zhang, Huebner, PRL **85**, 3025 (2000)

- Direct interaction of spins with the magnetic component of the laser Zhang, Huebner, PRL **85**, 3025 (2000)
- Spin-flip electron-phonon scattering (ultimately leading to transfer of spin angular momentum to the lattice) Koopmans et al, PRL **95**, 267207 (2005)

- Direct interaction of spins with the magnetic component of the laser Zhang, Huebner, PRL **85**, 3025 (2000)
- Spin-flip electron-phonon scattering (ultimately leading to transfer of spin angular momentum to the lattice) Koopmans et al, PRL **95**, 267207 (2005)
- Super-diffusive spin transport Battiato, Carva, Oppeneer, PRL **105**, 027203 (2010)

- Direct interaction of spins with the magnetic component of the laser Zhang, Huebner, PRL **85**, 3025 (2000)
- Spin-flip electron-phonon scattering (ultimately leading to transfer of spin angular momentum to the lattice) Koopmans et al, PRL **95**, 267207 (2005)
- Super-diffusive spin transport Battiato, Carva, Oppeneer, PRL **105**, 027203 (2010)
- **Our proposal for the first 50 fs:**

Laser-induced charge excitation followed by spin-orbit-driven demagnetization of the remaining d-electrons

Quantity of prime interest: vector field of spin magnetization

Cr monolayer in ground state

Theoretical approach:

Time-dependent density-functional theory (E. Runge, E.K.U.G., PRL 52, 997 (1984))

Basic 1-1 correspondence:

The time-dependent density determines uniquely $v(rt) \leftarrow \rightarrow p(rt)$ **the time-dependent external potential and hence all physical observables for fixed initial state.**

KS theorem:

The time-dependent density of the interacting system of interest can be calculated as density

$$
\rho\big(\,rt\big) = \sum_{j=1}^N \bigg| \phi_j\big(\,rt\big)\bigg|^2
$$

of an auxiliary non-interacting (KS) system

$$
i\hbar \frac{\partial}{\partial t} \varphi_j (rt) = \left(-\frac{\hbar^2 \nabla^2}{2m} + v_s [\rho](rt) \right) \varphi_j (rt)
$$

with the local potential

$$
v_s \left[\rho(r't') \right](rt) = v(rt) + \int d^3r' \frac{\rho(r't)}{|r-r'|} + v_{xc} \left[\rho(r't') \right](rt)
$$

Generalization: Real-time TDDFT with SOC

$$
i\frac{\partial}{\partial t}\varphi_{k}(r,t) = \left[\frac{1}{2}\left(-i\nabla - A_{laser}(t)\right)^{2} + v_{S}\left[\rho, \mathbf{m}\right](r,t) - \mu_{B}\sigma \cdot B_{S}\left[\rho, \mathbf{m}\right](r,t)\right] + \frac{\mu_{B}}{2c}\sigma \cdot \left(\nabla v_{S}\left[\rho, \mathbf{m}\right](r,t)\right) \times \left(-i\nabla\right)\right]\varphi_{k}(r,t)
$$

$$
v_{S} [\rho, \mathbf{m}](r, t) = v_{lattice}(r) + \int \frac{\rho(r', t)}{|r - r'|} d^{3}r' + v_{xc} [\rho, \mathbf{m}](r, t)
$$

$$
B_{S} [\rho, \mathbf{m}](r, t) = B_{external}(r, t) + B_{xc} [\rho, \mathbf{m}](r, t)
$$

where $\varphi_k(r,t)$ are Pauli spinors

Demagnetisation in Fe, Co and Ni

K. Krieger, K. Dewhurst, P. Elliott, S. Sharma, E.K.U.G., JCTC 11, 4870 (2015)

Aspects of the implementation

• Wave length of laser in the visible regime (very large compared to unit cell)

> \Longrightarrow Dipole approximation is made (i.e. electric field of laser is assumed to be spatially constant)

 \Longrightarrow Laser can be described by a purely time-dependent vector potential

- **Periodicity of the TDKS Hamiltonian is preserved!**
- **Implementation in ELK code (FLAPW) (http://elk.sourceforge.net/)**

Aspects of the implementation

• Wave length of laser in the visible regime (very large compared to unit cell)

Dipole approximation is made (i.e. electric field of laser is assumed to be spatially constant)

 \Rightarrow Laser can be described by a purely time-dependent vector potential

- **Periodicity of the TDKS Hamiltonian is preserved!**
- **Implementation in ELK code (FLAPW) (http://elk.sourceforge.net/)**

ELK = Electrons in K-Space or Electrons in Kay's Space

Kay Dewhurst **Sangeeta Sharma**

Aspects of the implementation

• Wave length of laser in the visible regime (very large compared to unit cell)

Dipole approximation is made (i.e. electric field of laser is assumed to be spatially constant)

 \Rightarrow Laser can be described by a purely time-dependent vector potential

- **Periodicity of the TDKS Hamiltonian is preserved!**
- **Implementation in ELK code (FLAPW) (http://elk.sourceforge.net/)**

Algorithm for time propagation

\n- 1. Set
$$
\psi_j(\mathbf{r}, t) = \sum_i c_{ij}(t) \chi_i(\mathbf{r})
$$
\n- 2. Compute $\rho(\mathbf{r}, t)$ and $\mathbf{m}(\mathbf{r}, t)$
\n- 3. Compute $v_s(\mathbf{r}, t)$, $\mathbf{B}_s(\mathbf{r}, t)$, $\mathbf{A}_s(\mathbf{r}, t)$ to give $\hat{H}_{KS}(t)$
\n- 4. Compute $H_{ij} \equiv \langle \chi_i | \hat{H}_{KS}(t) | \chi_j \rangle$
\n

5. Solve $H_{ik}d_{ki} = \epsilon_i d_{ij}$ for d and ϵ

6. Compute $c_{ij}(t + \Delta t) = \sum_{kl} d_{jk}^* d_{lk} e^{-i\epsilon_k \Delta t} c_{il}(t)$

7. Goto 1

Demagnetisation in Fe, Co and Ni

Analysis of the results

Calculation without spin-orbit coupling

components of spin moment

Exact equation of motion

$$
\frac{\partial}{\partial t} M_z(t) = \frac{i}{\hbar} \langle \left[\hat{H}_{KS}, \hat{\sigma}_z \right] \rangle
$$

\n
$$
= \int d^3 r \left\{ M_x(r, t) B_{KS, y}(rt) - M_y(r, t) B_{KS, x}(rt) \right\}
$$

\n
$$
+ \int d^3 r \frac{1}{2c^2} \left\{ \hat{x} \cdot \left[\nabla v_s(r, t) \times j_y(r, t) \right] - \hat{y} \cdot \left[\nabla v_s(r, t) \times j_z(r, t) \right] \right\}
$$

\n
$$
\vec{j}(r, t) = \langle \hat{\sigma} \otimes \hat{p} \rangle \quad \text{spin current tensor}
$$

 $B_{\text{KS}}(rt) = B_{\text{ext}}(rt) + B_{\text{XC}}(rt)$

Exact equation of motion

$$
\frac{\partial}{\partial t} M_z(t) = \frac{i}{\hbar} \langle \left[\hat{H}_{KS}, \hat{\sigma}_z \right] \rangle
$$
\n**Global torque**
\n
$$
= \int d^3 r \left\{ M_x(r, t) B_{KS, y}(rt) - M_y(r, t) B_{KS, x}(rt) \right\} \longrightarrow
$$
\n
$$
+ \int d^3 r \frac{1}{2c^2} \left\{ \hat{x} \cdot \left[\nabla v_s(r, t) \times j_y(r, t) \right] - \hat{y} \cdot \left[\nabla v_s(r, t) \times j_z(r, t) \right] \right\}
$$
\n
$$
\vec{j}(r, t) = \langle \hat{\sigma} \otimes \hat{p} \rangle \quad \text{spin current tensor}
$$

 $B_{\text{KS}}(\text{rt}) = B_{\text{ext}}(\text{rt}) + B_{\text{XC}}(\text{rt})$

Exact equation of motion

$$
\frac{\partial}{\partial t} M_z(t) = \frac{i}{\hbar} \langle \left[\hat{H}_{KS}, \hat{\sigma}_z \right] \rangle
$$
\n**Global torque
\n
$$
= \int d^3 r \left\{ M_x(r, t) B_{KS, y}(rt) - M_y(r, t) B_{KS, x}(rt) \right\} \longrightarrow
$$
\n
$$
+ \int d^3 r \frac{1}{2c^2} \left\{ \hat{x} \cdot \left[\nabla v_s(r, t) \times j_y(r, t) \right] - \hat{y} \cdot \left[\nabla v_s(r, t) \times j_z(r, t) \right] \right\}
$$
\n
$$
\vec{j}(r, t) = \left\langle \hat{\sigma} \otimes \hat{p} \right\rangle \quad \text{spin current tensor}
$$**

 $B_{\text{KS}}(rt) = B_{\text{ext}}(rt) + B_{\text{xc}}(rt)$

<u>Global torque</u> = 0, if $B_{ext} = 0$ **(due to zero-torque theorem for Bxc)**

Demagnetization occurs in two steps:

- Initial excitation by laser *moves* magnetization from atomic region into interstitial region. Total Moment is basically conserved during this phase.
- Spin-Orbit term drives demagnetization of the more localized electrons until stabilization at lower moment is achieved

Playing with laser parameters

Influence of approximation for xc functional

The four steps of any functional theory

Step 1: Basic Theorems (Hohenberg-Kohn-Sham/ Runge-Gross)

Step 2: Find approximate functionals for $v_{\text{xc}} [\rho(r't')] (rt)$

Step 3: Write code that solves the KS equations efficiently

Step 4: Run code for interesting systems/questions

Problem: In all standard approximations of E_{xc} (LSDA, GGAs) m(r) and B_{xc}(r) are locally parallel

S. Sharma, J.K. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N. Helbig, S. Pittalis, S. Shallcross, L. Nordstroem E.K.U.G., Phys. Rev. Lett. 98, 196405 (2007)

Why is that important?

Ab-initio description of spin dynamics:

microscopic equation of motion (following from TDSDFT)

$$
\dot{\vec{m}}(\vec{r},t) = \vec{m}(\vec{r},t) \times \vec{B}_{XC}(\vec{r},t) - \vec{\nabla} \cdot \vec{J}_S(\vec{r},t) + SOC
$$

in absence of external magnetic field

Consequence of local collinearity: m×B_{xc} = 0:

- → **possibly wrong spin dynamics**
- → **how important is this term in real-time dynamics?**

Construction of a novel GGA-type functional

Traditional LSDA: Start from uniform electron gas in collinear magnetic state. Determine $e_{\text{xc}}[{\text{n}}, {\text{m}}]$ from QMC or MBPT and parametrize $e_{\text{xc}}[n,m]$ to use in LSDA.

New non-collinear functional: Start from spin-spiral New non-commear runctional: Start from spin-spiral
phase of e-gas. Determine $e_{\text{\scriptsize xc}}[n,\vec{m}]$ from MBPT and phase of e-gas. Determine $e_{XC}[n, m]$ from wide rand
parametrize $e_{XC}[n, \vec{m}]$ to use as non-collinear GGA.

F.G. Eich and E.K.U. Gross, Phys. Rev. Lett. 111, 156401 (2013)

Illustration of spin spiral waves along one spatial coordinate for two different choices of wavevector $q = k_{1/2}$.

Magnetisation of a spin-spiral state in the uniform electron gas

$$
m(\mathbf{r}) = m \begin{pmatrix} s\cos(\mathbf{q} \cdot \mathbf{r}) \\ s\sin(\mathbf{q} \cdot \mathbf{r}) \\ \sqrt{1 - s^2} \end{pmatrix} \qquad \qquad \varepsilon_{xc}^{SSW} = \varepsilon_{xc}^{SSW} (n, m, q, s)
$$

$$
E_{xc}^{GGA}[n,\vec{m}] = \int d^{3}r n(\mathbf{r}) \varepsilon_{xc}^{SSW}(n(\mathbf{r}),m(\mathbf{r}),q(\mathbf{r}),s(\mathbf{r}))
$$

$$
s^{2}(\mathbf{r}) = \frac{D_{T}^{2}(\mathbf{r})}{D_{T}^{2}(\mathbf{r}) + m^{4}(\mathbf{r})d_{T}(\mathbf{r})} \quad q^{2}(\mathbf{r}) = \frac{D_{T}^{2}(\mathbf{r}) + m^{4}(\mathbf{r})d_{T}(\mathbf{r})}{m^{4}(\mathbf{r})D_{T}(\mathbf{r})}
$$

$$
D_{T}(\mathbf{r}) = \left| \vec{m}(\mathbf{r}) \times (\nabla \otimes \vec{m}(\mathbf{r})) \right|^{2} d_{T}(\mathbf{r}) = \left| \vec{m}(\mathbf{r}) \times (\nabla^{2} \vec{m}(\mathbf{r})) \right|^{2}
$$

F.G. Eich and E.K.U. Gross, Phys. Rev. Lett. 111, 156401 (2013)

Beyond 3D bulk

Cr monolayer

Streamlines for J_{x} , the spin-current vector field of the x component of spin, around a Ni atom in bulk (left) and for the outermost Ni atom in the slab (right).

Heusler compounds

$Mn₃Ga$

Ga Mn

$Mn₃Ga$

Laser parameters: ω =2.72eV Ipeak= 1x1015 W/cm2 J = 935 mJ/cm2 FWHM = 2.42 fs

Global moment |M(t)| preserved Local moments around each atom change

P. Elliott, T. Mueller, K. Dewhurst, S. Sharma, E.K.U.G., arXiv 1603.05603

Ga 0.02 μB Mn -3.14 μB Ni -0.37 μB

$Ni₂MnGa$

Laser parameters: ω =2.72eV Ipeak= 1x1015 W/cm2 J = 935 mJ/cm2 FWHM = 2.42 fs

See loss in global moment

$Ni₂MnGa$

Also change in local moments

Transfer of moment from Mn to Ni (does not require SOC) Followed by spin-orbit mediated demagnetization on Ni

P. Elliott, T. Mueller, K. Dewhurst, S. Sharma, E.K.U.G., arXiv 1603.05603

Summary

- No demagnetization without Spin-Orbit coupling
- Demagnetization in first fs is a two-step process:
	- 1. Initial excitation of electrons into highly excited states (without much of a change in the total magnetization)
	- 2. Spin-orbit coupling drives demagnetization of localized electrons (mainly d electrons)
- No significant change in M_x and M_y
- New xc functional derived from spin-spiral phase of uniform e-gas yields results very similar to non-collinear LSDA
- Ultrafast transfer of spin moment between sublattices of Heusler compounds: Easily understood on the basis of the ground-state DOS

Kay Dewhurst

Florian Eich

Peter Elliott