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• Our proposal for the first 50 fs: 
Laser-induced charge excitation followed by spin-orbit-driven 
demagnetization of the remaining d-electrons
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Cr monolayer in ground state



Basic 1-1 correspondence:
The time-dependent density determines uniquely
the time-dependent external potential and hence all
physical observables for fixed initial state.
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Time-dependent density-functional theory 

KS theorem:
The time-dependent density of the interacting system of interest can
be calculated as density

of an auxiliary non-interacting (KS) system

with the local potential
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(E. Runge, E.K.U.G., PRL 52, 997 (1984))

Theoretical approach:
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Generalization: Real-time TDDFT with SOC
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• Wave length of laser in the visible regime
(very large compared to unit cell)

Dipole approximation is made
(i.e. electric field of laser is assumed to be spatially constant)

Laser can be described by a purely time-dependent vector potential

• Periodicity of the TDKS Hamiltonian is preserved!

• Implementation in ELK code (FLAPW) (http://elk.sourceforge.net/)
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ELK = Electrons in K-Space
or
Electrons in Kay's Space 
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Analysis of  the results



components of spin moment

Calculation without spin-orbit coupling
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spin current tensor

Exact equation of motion



Note: Ground state of bulk Fe, Co, Ni is collinear





Demagnetization occurs in two steps:

- Initial excitation by laser moves magnetization from atomic region
into interstitial region. Total Moment is basically conserved
during this phase.

- Spin-Orbit term drives demagnetization of the more localized 
electrons until stabilization at lower moment is achieved 



Playing with laser parameters







Influence of approximation for xc functional



The four steps of any functional theory

Step 1: Basic Theorems (Hohenberg-Kohn-Sham/ Runge-Gross)

Step 2: Find approximate functionals for

Step 3: Write code that solves the KS equations efficiently

Step 4: Run code for interesting systems/questions

( ) ( )xcv r ' t ' rt ρ 



Problem: In all standard approximations of Exc (LSDA, GGAs)
m(r) and Bxc(r) are locally parallel 

S. Sharma, J.K. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N. Helbig, S. Pittalis, 
S. Shallcross, L. Nordstroem E.K.U.G., Phys. Rev. Lett. 98, 196405 (2007)



Why is that important?

Ab-initio description of spin dynamics:

microscopic equation of motion (following from TDSDFT)

XC Sm(r, t) m(r, t) B (r, t) J (r, t) SOC= × − ∇⋅ +
       

in absence of external magnetic field

Consequence of local collinearity:  m×Bxc = 0: 
→ possibly wrong spin dynamics
→ how important is this term in real-time dynamics?



Construction of a novel GGA-type functional

Traditional LSDA:  Start from uniform electron gas 
in collinear magnetic state.  Determine  
from QMC or MBPT and parametrize                     to
use in LSDA.

New non-collinear functional: Start from spin-spiral
phase of e-gas. Determine                     from MBPT and
parametrize                       to use as non-collinear GGA.

XCe [n,m]

XCe [n,m]

XCe [n, m]
XCe [n, m]

F.G. Eich and E.K.U. Gross, Phys. Rev. Lett. 111, 156401 (2013)
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Magnetisation of a spin-spiral state in the uniform electron gas

SSW SSW
xc xc (n,m,q,s)ε = ε

Illustration of spin spiral waves 
along one spatial coordinate for two 
different choices of wavevector
q=k1/2.
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Beyond 3D bulk 



Cr  monolayer 
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Streamlines for Jx, the spin-current vector field of the x component of spin, around a Ni 
atom in bulk (left) and for the outermost Ni atom in the slab (right).
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Heusler compounds



Ga
Mn

Mn3Ga



Laser parameters: ω=2.72eV Ipeak= 1x1015 W/cm2 J = 935 mJ/cm2 FWHM = 2.42 fs  

Global moment |M(t)| preserved
Local moments around each atom change 

Mn3Ga

P. Elliott, T. Mueller, K. Dewhurst, S. Sharma, E.K.U.G., arXiv 1603.05603





Ga 0.02 μB
Mn -3.14 μB
Ni -0.37 μB

Ni2MnGa



See loss in global moment

Laser parameters: ω=2.72eV Ipeak= 1x1015 W/cm2 J = 935 mJ/cm2 FWHM = 2.42 fs  

Ni2MnGa



Also change in local moments
Transfer of moment from Mn to Ni (does not require SOC)
Followed by spin-orbit mediated demagnetization on Ni

Ni2MnGa



P. Elliott, T. Mueller, K. Dewhurst, S. Sharma, E.K.U.G., arXiv 1603.05603



Summary

• No demagnetization without Spin-Orbit coupling

• Demagnetization in first  fs is a two-step process:
1. Initial excitation of electrons into highly excited states 

(without much of a change in the total magnetization)
2.  Spin-orbit coupling drives demagnetization of localized 

electrons (mainly d electrons)

• No significant change in Mx and My

• New xc functional derived from spin-spiral phase of uniform e-gas
yields results very similar to non-collinear LSDA

• Ultrafast transfer of spin moment between sublattices of Heusler
compounds: Easily understood on the basis of the ground-state DOS
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