The FHI-aims All-Electron Framework for Molecular and Materials Simulations

Volker Blum
Department of Mechanical Engineering \& Materials Science - Duke University, Durham, NC http://aims.pratt.duke.edu

Frontiers of Advanced Electronic Structure Methods - Hefei, June 16, 2016

The FHI-aims All-Electron Framework for Molecular and Materials Simulations

Volker Blum
 Department of Mechanical Engineering \& Materials Science - Duke University, Durham, NC

 http://aims.pratt.duke.eduAll-Electron Theory for Large Systems: FHI-aims

Extending the Reach of DFT \& Many-Body Theory

HSE06, GaAs

Tunable Electronic Structure in Organic-Inorganic Hybrids

Many Individuals Contributed to This Work - Thanks!

Many Individuals Contributed to This Work - Thanks!

Victor Yu Electronic Structure Infrastructure (NSF)

Björn Lange Jan Kloppenburg Tiago Botari

FHI-aims team and collaborators: Matthias Scheffler (Berlin), Xinguo Ren (Hefei), over 100 individuals with contributions to the project. Development continues in Berlin, Hefei, Munich, Helsinki, London, Duke, Argonne, and many more.

Dr. Raul Laasner Nuclear Spin States
\& NMR

Tong Zhu PV Materials
GW \& RPA

Garnett Liu
Perovskites
Excitonic Effects

So, We Have a Theory to Model "Everything"

> Schrödinger (Dirac) Equation
> $\hat{\mathcal{H}} \Psi=E \Psi$

Perfect recipe for parameter-free modeling ...

So,We Have a Theory to Model "Everything"

Schrödinger (Dirac) Equation
 $\hat{\mathcal{H}} \Psi=E \Psi$

Perfect recipe for parameter-free modeling but how do we make it practical?
P.A.M.

Dirac

The approximation is accurate but
feasible systems are too small

Feasible systems large enough but approximations are not great

So,We Have a Theory to Model "Everything"

Schrödinger (Dirac) Equation
 $\hat{\mathcal{H}} \Psi=E \Psi$

Perfect recipe for parameter-free modeling...

P.A.M. ... but how do we make it practical?

The approximation is accurate but feasible systems are too small

$\frac{\text { Feasible systems large enough }}{\text { but }}$ approximations are not great
(How?) can we work towards having both?

Current "Workhorse" Electronic Structure Theory

Quantum chemistry \& many-body theory:

$$
E_{\text {tot }} \leq\langle\Psi| \mathrm{H}|\Psi\rangle \quad \text {... successive refinement of } \Psi
$$

Current "Workhorse" Electronic Structure Theory

Quantum chemistry \& many-body theory:

$$
E_{\text {tot }} \leq\langle\Psi| \mathrm{H}|\Psi\rangle \quad \text {... successive refinement of } \Psi
$$

Density functional theory: (Hohenberg-Kohn 1964, Kohn-Sham 1965)

$$
E_{\mathrm{tot}}=E[n(r)]=T_{s}[n]+V[n]+V_{\mathrm{es}}[n]+E_{\mathrm{xc}}[n]
$$

Current "Workhorse" Electronic Structure Theory

Quantum chemistry \& many-body theory:

$$
E_{\mathrm{tot}} \leq\langle\psi| \mathrm{H}|\psi\rangle
$$

... successive refinement of ψ
Density functional theory: (Hohenberg-Kohn 1964, Kohn-Sham 1965)

$$
E_{\text {tot }}=E[n(r)]=T_{s}[n]+V[n]+V_{e s}[n]+E_{\mathrm{x}[}[n]
$$

- Key practical approximation: $E_{x c}$
"Perdew's ladder" to exact solution

Current "Workhorse" Electronic Structure Theory

Quantum chemistry \& many-body theory:

$$
E_{\text {tot }} \leq\langle\Psi| H|\Psi\rangle \quad \text {... successive refinement of } \Psi
$$

Density functional theory: (Hohenberg-Kohn 1964, Kohn-Sham 1965)

$$
E_{\mathrm{tot}}=E[n(r)]=T_{\mathrm{s}}[n]+V[n]+V_{\mathrm{es}}[n]+E_{\mathrm{xc}}[n]
$$

- Key practical approximation: $E_{x c}$ response / many-body terms: RPA, SOSEX, ...
hybrid functionals: non-local exchange meta-GGAs: $\quad \nabla^{2} n(r), \nabla^{2} \varphi(r)$

Generalized gradient approximations (GGAs): $|\nabla n(r)|$ Local-density approximation (LDA): "Perdew's ladder" to exact solution

Current "Workhorse" Electronic Structure Theory

Quantum chemistry \& many-body theory:

$$
E_{\text {tot }} \leq\langle\Psi| \mathrm{H}|\Psi\rangle \quad \text {... successive refinement of } \Psi
$$

Density functional theory: (Hohenberg-Kohn 1964, Kohn-Sham 1965)

$$
E_{\mathrm{tot}}=E[n(r)]=T_{\mathrm{s}}[n]+V[n]+V_{\mathrm{es}}[n]+E_{\mathrm{xc}}[n]
$$

- Key practical approximation: $E_{x c}$ response / many-body terms: RPA, SOSEX, ... + van der Waals hybrid functionals: non-local exchange Generalized gradient approximations (GGAs): $|\nabla n(r)|$ Local-density approximation (LDA): "Perdew's ladder" to exact solution

In 2004,We Began a New Electronic Structure Code ...

Group \rightarrow \downarrow Period	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	$\begin{gathered} 2 \\ \mathrm{He} \end{gathered}$
2	3 Li	4 Be											5 B	6	7 N	8	F	10 Ne
3	$\begin{aligned} & 11 \\ & \mathrm{Na} \end{aligned}$	$\begin{aligned} & 12 \\ & \mathrm{Mg} \end{aligned}$											13 Al	$\begin{aligned} & 14 \\ & \mathrm{Si} \end{aligned}$	$\begin{gathered} 15 \\ P \end{gathered}$	$\begin{gathered} 16 \\ S \end{gathered}$	17 Cl	18 Ar
4	$\begin{gathered} 19 \\ \mathrm{~K} \end{gathered}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \end{aligned}$	$\begin{aligned} & 21 \\ & \mathrm{Sc} \end{aligned}$	22	$\begin{aligned} & 23 \\ & \mathrm{~V} \end{aligned}$	24	$\begin{aligned} & 25 \\ & \mathrm{Mn} \end{aligned}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{aligned} & 27 \\ & \text { Co } \end{aligned}$	$\begin{aligned} & 28 \\ & \mathrm{Ni} \end{aligned}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \end{aligned}$	$\begin{aligned} & 30 \\ & \mathrm{Zn} \end{aligned}$	$\begin{aligned} & 31 \\ & \mathrm{Ga} \end{aligned}$	$\begin{aligned} & 32 \\ & \mathrm{Ge} \end{aligned}$	$\begin{aligned} & 33 \\ & \text { As } \end{aligned}$	$\begin{aligned} & 34 \\ & \mathrm{Se} \end{aligned}$	35 Br	36 Kr
5	$\begin{aligned} & 37 \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & 38 \\ & \mathrm{Sr} \end{aligned}$	$\begin{gathered} 39 \\ Y \end{gathered}$	$\begin{aligned} & 40 \\ & \mathrm{Zr} \end{aligned}$	$\begin{aligned} & 41 \\ & \mathrm{Nb} \end{aligned}$	$\begin{aligned} & 42 \\ & \mathrm{Mo} \end{aligned}$	$\begin{aligned} & 43 \\ & \mathrm{Tc} \end{aligned}$	$\begin{aligned} & 44 \\ & \mathrm{Ru} \end{aligned}$	$\begin{aligned} & 45 \\ & \mathrm{Rh} \end{aligned}$	$\begin{aligned} & 46 \\ & \mathrm{Pd} \end{aligned}$	$\begin{aligned} & 47 \\ & \mathrm{Ag} \end{aligned}$	$\begin{aligned} & 48 \\ & \mathrm{Cd} \end{aligned}$	$\begin{aligned} & 49 \\ & \text { In } \end{aligned}$	$\begin{aligned} & 50 \\ & 5 n \end{aligned}$	$\begin{aligned} & 51 \\ & \mathrm{Sb} \end{aligned}$	$\begin{aligned} & 52 \\ & \mathrm{Te} \end{aligned}$	53 1	54 $\times \mathrm{e}$
6	$\begin{aligned} & 55 \\ & \mathrm{Cs} \end{aligned}$	$\begin{aligned} & 56 \\ & \mathrm{Ba} \end{aligned}$		$\begin{aligned} & 72 \\ & \mathrm{Hf} \end{aligned}$	$\begin{aligned} & 73 \\ & \mathrm{Ta} \end{aligned}$	$\begin{aligned} & \hline 74 \\ & \mathrm{w} \end{aligned}$	$\begin{aligned} & 75 \\ & \mathrm{Re} \end{aligned}$	$\begin{aligned} & 76 \\ & \text { Os } \end{aligned}$	$\begin{aligned} & \hline 77 \\ & \text { Ir } \end{aligned}$	$\begin{aligned} & \hline 78 \\ & \text { Pt } \end{aligned}$	$\begin{aligned} & 79 \\ & \mathrm{Au} \end{aligned}$	$\begin{aligned} & \hline 80 \\ & \mathrm{Hg} \end{aligned}$	$\begin{gathered} 81 \\ \mathrm{TI} \end{gathered}$	$\begin{aligned} & 82 \\ & \mathrm{~Pb} \end{aligned}$	$\begin{aligned} & 83 \\ & \mathrm{Bi} \end{aligned}$	$\begin{aligned} & 84 \\ & \mathrm{Po} \end{aligned}$	85 At	86 Rn
7	$\begin{aligned} & 87 \\ & \mathrm{Fr} \end{aligned}$	$\begin{aligned} & 88 \\ & \mathrm{Ra} \end{aligned}$		$\begin{gathered} 104 \\ \mathrm{Rf} \end{gathered}$	$\begin{gathered} 105 \\ \mathrm{Db} \end{gathered}$	$\begin{gathered} 106 \\ \mathrm{Sg} \end{gathered}$	$\begin{gathered} 107 \\ \mathrm{Bh} \end{gathered}$	$\begin{gathered} 108 \\ \mathrm{Hs} \end{gathered}$	$\begin{gathered} 109 \\ \mathrm{Mt} \end{gathered}$	$\begin{gathered} 110 \\ \text { Ds } \end{gathered}$	$\begin{gathered} \hline 111 \\ \mathrm{Rg} \end{gathered}$	$\begin{gathered} 112 \\ \mathrm{Cn} \end{gathered}$	$\begin{aligned} & 113 \\ & \text { Uut } \end{aligned}$	$\begin{gathered} 114 \\ \mathrm{FI} \end{gathered}$	$\begin{array}{\|l} \hline 115 \\ \text { Uup } \\ \hline \end{array}$	$\begin{gathered} 116 \\ \mathrm{Lv} \end{gathered}$	$\begin{aligned} & 117 \\ & \text { Uus } \end{aligned}$	$\begin{aligned} & 118 \\ & \text { Uuo } \end{aligned}$
		a		$\begin{aligned} & 57 \\ & \text { La } \end{aligned}$	$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 59 \\ & \mathrm{Pr} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$	$\begin{aligned} & \hline 61 \\ & \text { Pm } \end{aligned}$	$\begin{aligned} & 62 \\ & \mathrm{Sm} \end{aligned}$	$\begin{aligned} & 63 \\ & \mathrm{Eu} \end{aligned}$	$\begin{aligned} & 64 \\ & \text { Gd } \end{aligned}$	$\begin{aligned} & 65 \\ & \mathrm{~Tb} \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & 67 \\ & \mathrm{Ho} \end{aligned}$	$\begin{aligned} & 68 \\ & \mathrm{Er} \end{aligned}$	$\begin{aligned} & 69 \\ & \mathrm{Tm} \end{aligned}$	70 Yb	71 Lu
		Acti		$\begin{aligned} & 89 \\ & \text { AC } \end{aligned}$	$\begin{aligned} & 90 \\ & \text { Th } \end{aligned}$	$\begin{aligned} & \hline 91 \\ & \mathrm{~Pa} \end{aligned}$	$\begin{gathered} 92 \\ U \end{gathered}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \end{aligned}$	$\begin{gathered} 95 \\ \text { Am } \end{gathered}$	$\begin{aligned} & 96 \\ & \mathrm{Cm} \end{aligned}$	$\begin{aligned} & \hline 97 \\ & \text { Bk } \end{aligned}$	$\begin{aligned} & 98 \\ & \text { Cf } \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \end{aligned}$	$\begin{gathered} 100 \\ \mathrm{Fm} \end{gathered}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \end{aligned}$	102 No	103 Lr

Universality: Cover full space of materials and chemistry

In 2004,We Began a New Electronic Structure Code ...

Group \rightarrow \downarrow Period	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5	6	7 N	8	F	10 Ne
3	$\begin{aligned} & 11 \\ & \mathrm{Na} \end{aligned}$	$\begin{aligned} & 12 \\ & \mathrm{Mg} \end{aligned}$											13 Al	$\begin{aligned} & 14 \\ & \mathrm{Si} \end{aligned}$	$\begin{gathered} 15 \\ P \end{gathered}$	$\begin{gathered} 16 \\ S \end{gathered}$	$\begin{aligned} & \hline 17 \\ & \mathrm{Cl} \end{aligned}$	18 Ar
4	$\begin{gathered} 19 \\ K \end{gathered}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \end{aligned}$	$\begin{aligned} & 21 \\ & \mathrm{Sc} \end{aligned}$	$\begin{gathered} 22 \\ \mathrm{Ti} \end{gathered}$	$\begin{aligned} & 23 \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{Cr} \end{aligned}$	$\begin{aligned} & 25 \\ & \mathrm{Mn} \end{aligned}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{aligned} & 27 \\ & \text { Co } \end{aligned}$	$\begin{aligned} & 28 \\ & \mathrm{Ni} \end{aligned}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \end{aligned}$	$\begin{aligned} & 30 \\ & \mathrm{Zn} \end{aligned}$	31	$\begin{aligned} & 32 \\ & \mathrm{Ge} \end{aligned}$	$\begin{aligned} & 33 \\ & \text { As } \end{aligned}$	$\begin{aligned} & 34 \\ & \mathrm{Se} \end{aligned}$	$\begin{aligned} & 35 \\ & \mathrm{Br} \end{aligned}$	36 Kr
5	$\begin{aligned} & 37 \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & 38 \\ & \mathrm{Sr} \end{aligned}$	$\begin{gathered} 39 \\ Y \end{gathered}$	$\begin{aligned} & 40 \\ & \mathrm{Zr} \end{aligned}$	$\begin{aligned} & 41 \\ & \mathrm{Nb} \end{aligned}$	$\begin{aligned} & 42 \\ & \text { Mo } \end{aligned}$	$\begin{aligned} & 43 \\ & \mathrm{Tc} \end{aligned}$	$\begin{aligned} & 44 \\ & \mathrm{Ru} \end{aligned}$	$\begin{aligned} & 45 \\ & \mathrm{Rh} \end{aligned}$	$\begin{aligned} & 46 \\ & \mathrm{Pd} \end{aligned}$	$\begin{aligned} & 47 \\ & \mathrm{Ag} \end{aligned}$	$\begin{aligned} & 48 \\ & \mathrm{Cd} \end{aligned}$	$\begin{aligned} & 49 \\ & \text { In } \end{aligned}$	$\begin{aligned} & 50 \\ & \mathrm{Sn} \end{aligned}$	$\begin{aligned} & 51 \\ & \mathrm{Sb} \end{aligned}$	$\begin{aligned} & 52 \\ & \mathrm{Te} \end{aligned}$	53 1	54 $\times \mathrm{e}$
6	$\begin{aligned} & \hline 55 \\ & \mathrm{Cs} \end{aligned}$	$\begin{aligned} & 56 \\ & \mathrm{Ba} \end{aligned}$		$\begin{aligned} & \hline 72 \\ & \mathrm{Hf} \end{aligned}$	$\begin{aligned} & 73 \\ & \mathrm{Ta} \end{aligned}$	$\begin{aligned} & \hline 74 \\ & \mathrm{w} \end{aligned}$	$\begin{aligned} & 75 \\ & \mathrm{Re} \end{aligned}$	$\begin{aligned} & \hline 76 \\ & \text { Os } \end{aligned}$	$\begin{aligned} & \hline 77 \\ & \text { Ir } \end{aligned}$	$\begin{aligned} & \hline 78 \\ & \text { Pt } \end{aligned}$	$\begin{aligned} & 79 \\ & \mathrm{Au} \end{aligned}$	$\begin{aligned} & 80 \\ & \mathrm{Hg} \end{aligned}$	$\begin{gathered} 81 \\ \mathrm{TI} \end{gathered}$	$\begin{aligned} & 82 \\ & \mathrm{~Pb} \end{aligned}$	$\begin{aligned} & 83 \\ & \mathrm{Bi} \end{aligned}$	$\begin{aligned} & 84 \\ & \text { Po } \end{aligned}$	85 At	86 Rn
7	$\begin{aligned} & 87 \\ & \mathrm{Fr} \\ & \hline \end{aligned}$	$\begin{aligned} & 88 \\ & \mathrm{Ra} \\ & \hline \end{aligned}$		$\begin{gathered} 104 \\ \mathrm{Rf} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 105 \\ \mathrm{Db} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 106 \\ \mathrm{Sg} \\ \hline \end{array}$	$\begin{gathered} 107 \\ \mathrm{Bh} \\ \hline \end{gathered}$	$\begin{gathered} 108 \\ \mathrm{Hs} \\ \hline \end{gathered}$	$\begin{gathered} 109 \\ \mathrm{Mt} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 110 \\ \text { Ds } \\ \hline \end{array}$	$\begin{array}{c\|} \hline 111 \\ \mathrm{Rg} \\ \hline \end{array}$	$\begin{gathered} 112 \\ \mathrm{Cn} \\ \hline \end{gathered}$	$\begin{aligned} & 113 \\ & \text { Uut } \\ & \hline \end{aligned}$	$\begin{gathered} 114 \\ \mathrm{FI} \end{gathered}$	$\begin{aligned} & 115 \\ & \text { Uup } \\ & \hline \end{aligned}$	$\begin{gathered} 116 \\ \mathrm{Lv} \end{gathered}$	$\begin{aligned} & \hline 117 \\ & \text { Uus } \\ & \hline \end{aligned}$	$\begin{aligned} & 118 \\ & \text { Uuo } \\ & \hline \end{aligned}$
		an		$\begin{aligned} & 57 \\ & \mathrm{La} \end{aligned}$	$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 59 \\ & \mathrm{Pr} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$	$\begin{aligned} & 61 \\ & \mathrm{Pm} \end{aligned}$	$\begin{aligned} & \hline 62 \\ & \mathrm{Sm} \end{aligned}$	$\begin{aligned} & 63 \\ & \text { Eu } \end{aligned}$	$\begin{aligned} & 64 \\ & \mathrm{Gd} \end{aligned}$	$\begin{aligned} & \hline 65 \\ & \mathrm{~Tb} \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & 67 \\ & \text { Ho } \end{aligned}$	$\begin{aligned} & 68 \\ & \mathrm{Er} \end{aligned}$	$\begin{gathered} 69 \\ \mathrm{Tm} \end{gathered}$	$\begin{aligned} & 70 \\ & \mathrm{Yb} \end{aligned}$	71 Lu
		Actin		$\begin{aligned} & \hline 89 \\ & \mathrm{Ac} \end{aligned}$	$\begin{aligned} & 90 \\ & \text { Th } \end{aligned}$	$\begin{aligned} & 91 \\ & \mathrm{~Pa} \end{aligned}$	$\begin{gathered} 92 \\ U \end{gathered}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \end{aligned}$	$\begin{gathered} 95 \\ \text { Am } \end{gathered}$	$\begin{aligned} & 96 \\ & \mathrm{Cm} \end{aligned}$	$\begin{aligned} & 97 \\ & \mathrm{Bk} \end{aligned}$	$\begin{aligned} & 98 \\ & \text { Cf } \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \end{aligned}$	$\begin{gathered} 100 \\ \mathrm{Fm} \end{gathered}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \end{aligned}$	102 No	103 Lr

Universality: Cover full space of materials and chemistry "Materials and molecules" - periodic (k-space) and non-periodic

In 2004,We Began a New Electronic Structure Code ...

Group \rightarrow \downarrow Period 1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	$\begin{gathered} 18 \\ \hline 2 \\ \mathrm{He} \end{gathered}$
	1 H																	
2	3 Li	$\begin{gathered} 4 \\ \mathrm{Be} \end{gathered}$											5	6	7 N	8 0	F	10 Ne
3	$\begin{aligned} & 11 \\ & \mathrm{Na} \end{aligned}$	$\begin{aligned} & 12 \\ & \mathrm{Mg} \end{aligned}$											$\begin{aligned} & \hline 13 \\ & \mathrm{Al} \end{aligned}$	$\begin{aligned} & 14 \\ & \mathrm{Si} \end{aligned}$	$\begin{gathered} \hline 15 \\ P \end{gathered}$	$\begin{gathered} 16 \\ 5 \end{gathered}$	17 Cl	18 Ar
4	$\begin{gathered} 19 \\ K \end{gathered}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \end{aligned}$	$\begin{aligned} & 21 \\ & \mathrm{Sc} \end{aligned}$	$\begin{gathered} 22 \\ \mathrm{Ti} \end{gathered}$	$\begin{aligned} & 23 \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{Cr} \end{aligned}$	$\begin{aligned} & 25 \\ & \mathrm{Mn} \end{aligned}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{aligned} & 27 \\ & \text { Co } \end{aligned}$	$\begin{aligned} & 28 \\ & \mathrm{Ni} \end{aligned}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \end{aligned}$	$\begin{aligned} & 30 \\ & \mathrm{Zn} \end{aligned}$	$\begin{aligned} & 31 \\ & \mathrm{Ga} \end{aligned}$	$\begin{aligned} & 32 \\ & \mathrm{Ge} \end{aligned}$	$\begin{aligned} & 33 \\ & \text { As } \end{aligned}$	$\begin{aligned} & 34 \\ & \mathrm{Se} \end{aligned}$	35 Br	36 Kr
5	$\begin{aligned} & 37 \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & 38 \\ & \mathrm{Sr} \end{aligned}$	$\begin{gathered} 39 \\ Y \\ \hline \end{gathered}$	$\begin{aligned} & \hline 40 \\ & \mathrm{Zr} \\ & \hline \end{aligned}$	$\begin{aligned} & 41 \\ & \mathrm{Nb} \end{aligned}$	$\begin{aligned} & 42 \\ & \mathrm{Mo} \end{aligned}$	$\begin{aligned} & \hline 43 \\ & \mathrm{Tc} \end{aligned}$	$\begin{aligned} & 44 \\ & \mathrm{Ru} \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & \mathrm{Rh} \end{aligned}$	$\begin{aligned} & 46 \\ & \mathrm{Pd} \\ & \hline \end{aligned}$	$\begin{aligned} & 47 \\ & \mathrm{Ag} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 48 \\ & \mathrm{Cd} \\ & \hline \end{aligned}$	$\begin{aligned} & 49 \\ & \text { In } \end{aligned}$	$\begin{aligned} & 50 \\ & \mathrm{Sn} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 51 \\ & \mathrm{Sb} \end{aligned}$	$\begin{aligned} & 52 \\ & \mathrm{Te} \end{aligned}$	$\begin{gathered} 53 \\ 1 \\ \hline \end{gathered}$	$\begin{aligned} & 54 \\ & \mathrm{Xe} \end{aligned}$
6	$\begin{aligned} & 55 \\ & \mathrm{Cs} \end{aligned}$	$\begin{aligned} & 56 \\ & \mathrm{Ba} \end{aligned}$		$\begin{aligned} & 72 \\ & \mathrm{Hf} \end{aligned}$	$\begin{aligned} & 73 \\ & \mathrm{Ta} \end{aligned}$	$\begin{aligned} & 74 \\ & \mathrm{w} \end{aligned}$	$\begin{aligned} & 75 \\ & \mathrm{Re} \end{aligned}$	$\begin{aligned} & 76 \\ & \text { Os } \end{aligned}$	$\begin{aligned} & 77 \\ & \text { Ir } \end{aligned}$	$\begin{aligned} & 78 \\ & \text { Pt } \end{aligned}$	$\begin{aligned} & 79 \\ & \mathrm{Au} \end{aligned}$	$\begin{aligned} & 80 \\ & \mathrm{Hg} \end{aligned}$	$\begin{aligned} & 81 \\ & \mathrm{TI} \end{aligned}$	$\begin{aligned} & 82 \\ & \mathrm{~Pb} \end{aligned}$	$\begin{aligned} & 83 \\ & \mathrm{Bi} \end{aligned}$	$\begin{aligned} & 84 \\ & \text { Po } \end{aligned}$	$\begin{aligned} & 85 \\ & \text { At } \end{aligned}$	86 Rn
7	$\begin{aligned} & \hline 87 \\ & \mathrm{Fr} \end{aligned}$	$\begin{aligned} & \hline 88 \\ & \text { Ra } \end{aligned}$		$\begin{gathered} \hline 104 \\ \mathrm{Rf} \end{gathered}$	$\begin{gathered} 105 \\ \mathrm{Db} \end{gathered}$	$\begin{gathered} \hline 106 \\ \mathrm{Sg} \end{gathered}$	$\begin{gathered} \hline 107 \\ \text { Bh } \\ \hline \end{gathered}$	$\begin{gathered} \hline 108 \\ \mathrm{Hs} \end{gathered}$	$\begin{gathered} \hline 109 \\ \mathrm{Mt} \end{gathered}$	$\begin{gathered} 110 \\ \text { Ds } \end{gathered}$	$\begin{gathered} \hline 111 \\ \mathrm{Rg} \end{gathered}$	$\begin{gathered} 112 \\ C n \end{gathered}$	$\begin{aligned} & 113 \\ & \text { Uut } \end{aligned}$	$\begin{array}{\|c} \hline 114 \\ \mathrm{FI} \end{array}$	$\begin{aligned} & 115 \\ & \text { Uup } \end{aligned}$	$\begin{gathered} 116 \\ \mathrm{Lv} \end{gathered}$	$\begin{aligned} & \hline 117 \\ & \text { Uus } \end{aligned}$	$\begin{aligned} & \hline 118 \\ & \text { Uuo } \end{aligned}$
Lanthanides				$\begin{aligned} & 57 \\ & \mathrm{La} \end{aligned}$	$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & \hline 59 \\ & \mathrm{Pr} \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$	$\begin{array}{\|c\|} \hline 61 \\ \mathrm{Pm} \\ \hline \end{array}$	$\begin{aligned} & 62 \\ & \mathrm{Sm} \end{aligned}$	$\begin{aligned} & 63 \\ & \mathrm{Eu} \end{aligned}$	$\begin{aligned} & 64 \\ & \mathrm{Gd} \end{aligned}$	$\begin{aligned} & 65 \\ & \mathrm{~Tb} \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \\ & \hline \end{aligned}$	$\begin{aligned} & 67 \\ & \mathrm{Ho} \end{aligned}$	$\begin{aligned} & 68 \\ & \mathrm{Er} \end{aligned}$	$\begin{array}{\|c\|} \hline 69 \\ \mathrm{Tm} \\ \hline \end{array}$	70 Yb	71 Lu
Actinides				$\begin{aligned} & 89 \\ & \mathrm{Ac} \end{aligned}$	$\begin{aligned} & 90 \\ & \text { Th } \end{aligned}$	$\begin{aligned} & 91 \\ & \mathrm{~Pa} \end{aligned}$	$\begin{gathered} 92 \\ u \end{gathered}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \end{aligned}$	$\begin{gathered} 95 \\ \mathrm{Am} \end{gathered}$	$\begin{aligned} & 96 \\ & \mathrm{Cm} \end{aligned}$	$\begin{aligned} & 97 \\ & \mathrm{Bk} \end{aligned}$	$\begin{aligned} & 98 \\ & \mathrm{Cf} \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \end{aligned}$	$\begin{gathered} 100 \\ \mathrm{Fm} \end{gathered}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \end{aligned}$	$\begin{gathered} 102 \\ \text { No } \end{gathered}$	$\begin{gathered} 103 \\ \text { Lr } \end{gathered}$

Universality: Cover full space of materials and chemistry "Materials and molecules" - periodic (k-space) and non-periodic

Accuracy: Hierarchy of methods: DFT and "beyond" (GW, MP2, RPA, rPT2, ...) All-electron

In 2004,We Began a New Electronic Structure Code ...

Group \rightarrow \downarrow Period 1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	$\begin{gathered} 18 \\ \hline 2 \\ \mathrm{He} \end{gathered}$
	1 H																	
2	3 Li	$\begin{gathered} 4 \\ \mathrm{Be} \end{gathered}$											5	6	7 N	8 0	F	10 Ne
3	$\begin{aligned} & 11 \\ & \mathrm{Na} \end{aligned}$	$\begin{aligned} & 12 \\ & \mathrm{Mg} \end{aligned}$											$\begin{aligned} & \hline 13 \\ & \mathrm{Al} \end{aligned}$	$\begin{aligned} & 14 \\ & \mathrm{Si} \end{aligned}$	$\begin{gathered} \hline 15 \\ P \end{gathered}$	$\begin{gathered} 16 \\ 5 \end{gathered}$	17 Cl	18 Ar
4	$\begin{gathered} 19 \\ K \end{gathered}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \end{aligned}$	$\begin{aligned} & 21 \\ & \mathrm{Sc} \end{aligned}$	$\begin{gathered} 22 \\ \mathrm{Ti} \end{gathered}$	$\begin{aligned} & 23 \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{Cr} \end{aligned}$	$\begin{aligned} & 25 \\ & \mathrm{Mn} \end{aligned}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{aligned} & 27 \\ & \text { Co } \end{aligned}$	$\begin{aligned} & 28 \\ & \mathrm{Ni} \end{aligned}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \end{aligned}$	$\begin{aligned} & 30 \\ & \mathrm{Zn} \end{aligned}$	$\begin{aligned} & 31 \\ & \mathrm{Ga} \end{aligned}$	$\begin{aligned} & 32 \\ & \mathrm{Ge} \end{aligned}$	$\begin{aligned} & 33 \\ & \text { As } \end{aligned}$	$\begin{aligned} & 34 \\ & \mathrm{Se} \end{aligned}$	35 Br	36 Kr
5	$\begin{aligned} & 37 \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & 38 \\ & \mathrm{Sr} \end{aligned}$	$\begin{gathered} 39 \\ Y \\ \hline \end{gathered}$	$\begin{aligned} & \hline 40 \\ & \mathrm{Zr} \\ & \hline \end{aligned}$	$\begin{aligned} & 41 \\ & \mathrm{Nb} \end{aligned}$	$\begin{aligned} & 42 \\ & \mathrm{Mo} \end{aligned}$	$\begin{aligned} & \hline 43 \\ & \mathrm{Tc} \end{aligned}$	$\begin{aligned} & 44 \\ & \mathrm{Ru} \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & \mathrm{Rh} \end{aligned}$	$\begin{aligned} & 46 \\ & \mathrm{Pd} \\ & \hline \end{aligned}$	$\begin{aligned} & 47 \\ & \mathrm{Ag} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 48 \\ & \mathrm{Cd} \\ & \hline \end{aligned}$	$\begin{aligned} & 49 \\ & \text { In } \end{aligned}$	$\begin{aligned} & 50 \\ & \mathrm{Sn} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 51 \\ & \mathrm{Sb} \end{aligned}$	$\begin{aligned} & 52 \\ & \mathrm{Te} \end{aligned}$	$\begin{gathered} 53 \\ 1 \\ \hline \end{gathered}$	$\begin{aligned} & 54 \\ & \mathrm{Xe} \end{aligned}$
6	$\begin{aligned} & 55 \\ & \mathrm{Cs} \end{aligned}$	$\begin{aligned} & 56 \\ & \mathrm{Ba} \end{aligned}$		$\begin{aligned} & 72 \\ & \mathrm{Hf} \end{aligned}$	$\begin{aligned} & 73 \\ & \mathrm{Ta} \end{aligned}$	$\begin{aligned} & 74 \\ & \mathrm{w} \end{aligned}$	$\begin{aligned} & 75 \\ & \mathrm{Re} \end{aligned}$	$\begin{aligned} & 76 \\ & \text { Os } \end{aligned}$	$\begin{aligned} & 77 \\ & \text { Ir } \end{aligned}$	$\begin{aligned} & 78 \\ & \text { Pt } \end{aligned}$	$\begin{aligned} & 79 \\ & \mathrm{Au} \end{aligned}$	$\begin{aligned} & 80 \\ & \mathrm{Hg} \end{aligned}$	$\begin{aligned} & 81 \\ & \mathrm{TI} \end{aligned}$	$\begin{aligned} & 82 \\ & \mathrm{~Pb} \end{aligned}$	$\begin{aligned} & 83 \\ & \mathrm{Bi} \end{aligned}$	$\begin{aligned} & 84 \\ & \text { Po } \end{aligned}$	$\begin{aligned} & 85 \\ & \text { At } \end{aligned}$	86 Rn
7	$\begin{aligned} & \hline 87 \\ & \mathrm{Fr} \end{aligned}$	$\begin{aligned} & \hline 88 \\ & \text { Ra } \end{aligned}$		$\begin{gathered} \hline 104 \\ \mathrm{Rf} \end{gathered}$	$\begin{gathered} 105 \\ \mathrm{Db} \end{gathered}$	$\begin{gathered} \hline 106 \\ \mathrm{Sg} \end{gathered}$	$\begin{gathered} \hline 107 \\ \text { Bh } \\ \hline \end{gathered}$	$\begin{gathered} \hline 108 \\ \mathrm{Hs} \end{gathered}$	$\begin{gathered} \hline 109 \\ \mathrm{Mt} \end{gathered}$	$\begin{gathered} 110 \\ \text { Ds } \end{gathered}$	$\begin{gathered} \hline 111 \\ \mathrm{Rg} \end{gathered}$	$\begin{gathered} 112 \\ C n \end{gathered}$	$\begin{aligned} & 113 \\ & \text { Uut } \end{aligned}$	$\begin{array}{\|c} \hline 114 \\ \mathrm{FI} \end{array}$	$\begin{aligned} & 115 \\ & \text { Uup } \end{aligned}$	$\begin{gathered} 116 \\ \mathrm{Lv} \end{gathered}$	$\begin{aligned} & \hline 117 \\ & \text { Uus } \end{aligned}$	$\begin{aligned} & \hline 118 \\ & \text { Uuo } \end{aligned}$
Lanthanides				$\begin{aligned} & 57 \\ & \mathrm{La} \end{aligned}$	$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & \hline 59 \\ & \mathrm{Pr} \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$	$\begin{array}{\|c\|} \hline 61 \\ \mathrm{Pm} \\ \hline \end{array}$	$\begin{aligned} & 62 \\ & \mathrm{Sm} \end{aligned}$	$\begin{aligned} & 63 \\ & \mathrm{Eu} \end{aligned}$	$\begin{aligned} & 64 \\ & \mathrm{Gd} \end{aligned}$	$\begin{aligned} & 65 \\ & \mathrm{~Tb} \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \\ & \hline \end{aligned}$	$\begin{aligned} & 67 \\ & \mathrm{Ho} \end{aligned}$	$\begin{aligned} & 68 \\ & \mathrm{Er} \end{aligned}$	$\begin{array}{\|c\|} \hline 69 \\ \mathrm{Tm} \\ \hline \end{array}$	70 Yb	71 Lu
Actinides				$\begin{aligned} & 89 \\ & \mathrm{Ac} \end{aligned}$	$\begin{aligned} & 90 \\ & \text { Th } \end{aligned}$	$\begin{aligned} & 91 \\ & \mathrm{~Pa} \end{aligned}$	$\begin{gathered} 92 \\ u \end{gathered}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \end{aligned}$	$\begin{gathered} 95 \\ \mathrm{Am} \end{gathered}$	$\begin{aligned} & 96 \\ & \mathrm{Cm} \end{aligned}$	$\begin{aligned} & 97 \\ & \mathrm{Bk} \end{aligned}$	$\begin{aligned} & 98 \\ & \mathrm{Cf} \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \end{aligned}$	$\begin{gathered} 100 \\ \mathrm{Fm} \end{gathered}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \end{aligned}$	$\begin{gathered} 102 \\ \text { No } \end{gathered}$	$\begin{gathered} 103 \\ \text { Lr } \end{gathered}$

Universality: Cover full space of materials and chemistry "Materials and molecules" - periodic (k-space) and non-periodic

Accuracy: Hierarchy of methods: DFT and "beyond" (GW, MP2, RPA, rPT2, ...) All-electron

Efficiency: Scalable (system size, number of CPUs)

In 2004,We Began a New Electronic Structure Code ...

$\text { Group } \rightarrow 1$$\downarrow \text { Period }$		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	$\begin{gathered} 18 \\ \hline 2 \\ \mathrm{He} \end{gathered}$
1	1 H																	
2	3 Li	4 Be											5	6	7 N	8	F	10 Ne
3	$\begin{aligned} & 11 \\ & \mathrm{Na} \end{aligned}$	$\begin{aligned} & 12 \\ & \mathrm{Mg} \end{aligned}$											$\begin{aligned} & 13 \\ & \mathrm{Al} \end{aligned}$	$\begin{aligned} & 14 \\ & \mathrm{Si} \end{aligned}$	$\begin{gathered} 15 \\ P \end{gathered}$	$\begin{gathered} 16 \\ S \end{gathered}$	$\begin{aligned} & \hline 17 \\ & \mathrm{Cl} \end{aligned}$	18 Ar
4	$\begin{gathered} 19 \\ \mathrm{~K} \end{gathered}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \end{aligned}$	$\begin{aligned} & 21 \\ & \mathrm{Sc} \end{aligned}$	22	$\begin{aligned} & 23 \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{Cr} \end{aligned}$	$\begin{aligned} & 25 \\ & \mathrm{Mn} \end{aligned}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{aligned} & 27 \\ & \text { Co } \end{aligned}$	$\begin{aligned} & 28 \\ & \mathrm{Ni} \end{aligned}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \end{aligned}$	$\begin{aligned} & 30 \\ & \mathrm{Zn} \end{aligned}$	$\begin{aligned} & 31 \\ & \mathrm{Ga} \end{aligned}$	$\begin{aligned} & 32 \\ & \mathrm{Ge} \end{aligned}$	$\begin{aligned} & 33 \\ & \text { As } \end{aligned}$	$\begin{aligned} & 34 \\ & \mathrm{Se} \end{aligned}$	$\begin{aligned} & 35 \\ & \mathrm{Br} \end{aligned}$	$\begin{aligned} & 36 \\ & \mathrm{Kr} \end{aligned}$
5	$\begin{aligned} & 37 \\ & \mathrm{Rb} \end{aligned}$	$\begin{aligned} & 38 \\ & \mathrm{Sr} \end{aligned}$	$\begin{gathered} 39 \\ Y \end{gathered}$	$\begin{aligned} & 40 \\ & \mathrm{Zr} \end{aligned}$	$\begin{aligned} & 41 \\ & \mathrm{Nb} \end{aligned}$	$\begin{aligned} & 42 \\ & \mathrm{Mo} \end{aligned}$	$\begin{aligned} & \hline 43 \\ & \mathrm{Tc} \end{aligned}$	$\begin{aligned} & 44 \\ & \mathrm{Ru} \end{aligned}$	$\begin{aligned} & 45 \\ & \mathrm{Rh} \end{aligned}$	$\begin{aligned} & 46 \\ & \mathrm{Pd} \end{aligned}$	$\begin{aligned} & 47 \\ & \mathrm{Ag} \end{aligned}$	$\begin{aligned} & 48 \\ & \mathrm{Cd} \end{aligned}$	$\begin{aligned} & 49 \\ & \text { In } \end{aligned}$	$\begin{aligned} & 50 \\ & \mathrm{Sn} \end{aligned}$	$\begin{aligned} & 51 \\ & \mathrm{Sb} \end{aligned}$	$\begin{aligned} & 52 \\ & \mathrm{Te} \end{aligned}$	53 1	54 Xe
6	55 Cs	$\begin{aligned} & 56 \\ & \mathrm{Ba} \end{aligned}$		$\begin{aligned} & 72 \\ & \mathrm{Hf} \end{aligned}$	$\begin{aligned} & 73 \\ & \mathrm{Ta} \end{aligned}$	$\begin{aligned} & \hline 74 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 75 \\ & \mathrm{Re} \end{aligned}$	$\begin{aligned} & 76 \\ & \text { Os } \end{aligned}$	$\begin{aligned} & \hline 77 \\ & \text { Ir } \end{aligned}$	$\begin{aligned} & \hline 78 \\ & \text { Pt } \end{aligned}$	$\begin{aligned} & 79 \\ & \mathrm{Au} \end{aligned}$	$\begin{aligned} & 80 \\ & \mathrm{Hg} \end{aligned}$	$\begin{gathered} 81 \\ \mathrm{TI} \end{gathered}$	$\begin{aligned} & 82 \\ & \mathrm{~Pb} \end{aligned}$	$\begin{aligned} & 83 \\ & \mathrm{Bi} \end{aligned}$	$\begin{aligned} & 84 \\ & \text { Po } \end{aligned}$	85 At	86 Rn
7	$\begin{aligned} & 87 \\ & \mathrm{Fr} \end{aligned}$	$\begin{aligned} & 88 \\ & \mathrm{Ra} \end{aligned}$		$\begin{gathered} 104 \\ \mathrm{Rf} \end{gathered}$	$\begin{gathered} 105 \\ \mathrm{Db} \end{gathered}$	$\begin{gathered} 106 \\ \mathrm{Sg} \end{gathered}$	$\begin{gathered} 107 \\ \mathrm{Bh} \end{gathered}$	$\begin{gathered} 108 \\ \mathrm{Hs} \end{gathered}$	$\begin{gathered} 109 \\ \mathrm{Mt} \end{gathered}$	$\begin{gathered} 110 \\ \text { Ds } \end{gathered}$	$\begin{gathered} \hline 111 \\ \mathrm{Rg} \end{gathered}$	$\begin{gathered} \hline 112 \\ \mathrm{Cn} \end{gathered}$	$\begin{aligned} & 113 \\ & \text { Uut } \end{aligned}$	$\begin{gathered} 114 \\ \mathrm{FI} \end{gathered}$	$\begin{aligned} & \hline 115 \\ & \text { Uup } \end{aligned}$	$\begin{gathered} 116 \\ \mathrm{Lv} \end{gathered}$	$\begin{aligned} & 117 \\ & \text { Uus } \end{aligned}$	$\begin{aligned} & 118 \\ & \text { Uuo } \end{aligned}$
Lanthanides				$\begin{aligned} & 57 \\ & \mathrm{La} \end{aligned}$	$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 59 \\ & \mathrm{Pr} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$	$\begin{aligned} & 61 \\ & \mathrm{Pm} \end{aligned}$	$\begin{aligned} & 62 \\ & \mathrm{Sm} \end{aligned}$	$\begin{aligned} & \hline 63 \\ & \text { Eu } \end{aligned}$	$\begin{aligned} & 64 \\ & \mathrm{Gd} \end{aligned}$	$\begin{aligned} & 65 \\ & \mathrm{~Tb} \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & 67 \\ & \mathrm{Ho} \end{aligned}$	$\begin{aligned} & 68 \\ & \mathrm{Er} \end{aligned}$	$\begin{gathered} 69 \\ \mathrm{Tm} \end{gathered}$	70 Yb	$\begin{aligned} & 71 \\ & \mathrm{Lu} \end{aligned}$
Actinides				$\begin{aligned} & 89 \\ & \mathrm{Ac} \end{aligned}$	$\begin{aligned} & 90 \\ & \text { Th } \end{aligned}$	$\begin{aligned} & 91 \\ & \mathrm{~Pa} \end{aligned}$	$\begin{gathered} 92 \\ U \end{gathered}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \end{aligned}$	$\begin{gathered} 95 \\ \text { Am } \end{gathered}$	$\begin{aligned} & 96 \\ & \mathrm{Cm} \end{aligned}$	$\begin{aligned} & 97 \\ & \mathrm{Bk} \end{aligned}$	$\begin{aligned} & 98 \\ & \text { Cf } \end{aligned}$	$\begin{aligned} & \hline 99 \\ & \text { Es } \end{aligned}$	$\begin{aligned} & 100 \\ & \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \end{aligned}$	102 No	103 Lr

Universality: Cover full space of materials and chemistry "Materials and molecules" - periodic (k-space) and non-periodic

Accuracy: Hierarchy of methods: DFT and "beyond" (GW, MP2, RPA, rPT2, ...) All-electron

Efficiency: Scalable (system size, number of CPUs)

Efficient (I,000s of atoms), but do not sacrifice accuracy!

Central Decision: How to Discretize the Problem?

$$
\left[-\frac{\nabla^{2}}{2}+v_{\mathrm{ext}}(\boldsymbol{r})+v_{\mathrm{es}}(\boldsymbol{r})+v_{\mathrm{xc}}(\boldsymbol{r})\right] \psi_{k}(\boldsymbol{r})=\epsilon_{k} \psi_{k}(\boldsymbol{r})
$$

"Basis set expansion":
$\psi_{k}(\boldsymbol{r})=\sum_{i} c_{k i} \varphi_{i}(\boldsymbol{r})$

Central Decision: How to Discretize the Problem?

$$
\left[-\frac{\nabla^{2}}{2}+v_{\mathrm{ext}}(\boldsymbol{r})+v_{\mathrm{es}}(\boldsymbol{r})+v_{\mathrm{xc}}(\boldsymbol{r})\right] \psi_{k}(\boldsymbol{r})=\epsilon_{k} \psi_{k}(\boldsymbol{r})
$$

Kohn, Sham 1965
"Basis set expansion":

$$
\psi_{k}(\boldsymbol{r})=\sum_{i} c_{k i} \varphi_{i}(\boldsymbol{r})
$$

Generalized eigenvalue problem:

$$
\underline{\underline{h}} \underline{c}_{k}=\epsilon_{k} \underline{\underline{s}} \underline{c}_{k}
$$

$$
\begin{gathered}
h_{i j}=\left\langle\varphi_{i}\right| \hat{h}_{\mathrm{KS}}\left|\varphi_{j}\right\rangle \\
s_{i j}=\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle
\end{gathered}
$$

Central Decision: How to Discretize the Problem?

$$
\left[-\frac{\nabla^{2}}{2}+v_{\mathrm{ext}}(\boldsymbol{r})+v_{\mathrm{es}}(\boldsymbol{r})+v_{\mathrm{xc}}(\boldsymbol{r})\right] \psi_{k}(\boldsymbol{r})=\epsilon_{k} \psi_{k}(\boldsymbol{r})
$$

Kohn, Sham 1965

"Basis set expansion":

$$
\psi_{k}(\boldsymbol{r})=\sum_{i} c_{k i} \varphi_{i}(\boldsymbol{r})
$$

\downarrow
Generalized eigenvalue problem:

$$
\underline{\underline{h}} \underline{c}_{k}=\epsilon_{k} \underline{\underline{s}} \underline{c}_{k}
$$

$$
\begin{gathered}
h_{i j}=\left\langle\varphi_{i}\right| \hat{h}_{\mathrm{KS}}\left|\varphi_{j}\right\rangle \\
s_{i j}=\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle
\end{gathered}
$$

Many good options:

- Plane waves (VASP, abinit, ...)

$$
\varphi_{\underline{k}}(\boldsymbol{r})=\frac{1}{N} e^{i \underline{k r}}
$$

Central Decision: How to Discretize the Problem?

$$
\left[-\frac{\nabla^{2}}{2}+v_{\mathrm{ext}}(\boldsymbol{r})+v_{\mathrm{es}}(\boldsymbol{r})+v_{\mathrm{xc}}(\boldsymbol{r})\right] \psi_{k}(\boldsymbol{r})=\epsilon_{k} \psi_{k}(\boldsymbol{r})
$$

Kohn, Sham 1965

"Basis set expansion":

$$
\psi_{k}(\boldsymbol{r})=\sum_{i} c_{k i} \varphi_{i}(\boldsymbol{r})
$$

\downarrow
Generalized eigenvalue problem:

$$
\underline{\underline{h}} \underline{c}_{k}=\epsilon_{k} \underline{\underline{s}} \underline{c}_{k}
$$

$$
\begin{gathered}
h_{i j}=\left\langle\varphi_{i}\right| \hat{h}_{\mathrm{KS}}\left|\varphi_{j}\right\rangle \\
s_{i j}=\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle
\end{gathered}
$$

Many good options:

- Plane waves (VASP, abinit, ...)

$$
\varphi_{\underline{k}}(\boldsymbol{r})=\frac{1}{N} e^{i \underline{k r}}
$$

- Gaussian-type orbitals

$$
\varphi_{l m n}(\boldsymbol{r})=\frac{1}{N} x^{l} y^{m} z^{n} e^{-\alpha r^{2}}
$$

Central Decision: How to Discretize the Problem?

$$
\left[-\frac{\nabla^{2}}{2}+v_{\mathrm{ext}}(\boldsymbol{r})+v_{\mathrm{es}}(\boldsymbol{r})+v_{\mathrm{xc}}(\boldsymbol{r})\right] \psi_{k}(\boldsymbol{r})=\epsilon_{k} \psi_{k}(\boldsymbol{r})
$$

Kohn, Sham 1965

"Basis set expansion":

$$
\psi_{k}(\boldsymbol{r})=\sum_{i} c_{k i} \varphi_{i}(\boldsymbol{r})
$$

Generalized eigenvalue problem:

$$
\underline{\underline{h}} \underline{c}_{k}=\epsilon_{k} \underline{\underline{s}} \underline{c}_{k}
$$

$$
\begin{gathered}
h_{i j}=\left\langle\varphi_{i}\right| \hat{h}_{\mathrm{KS}}\left|\varphi_{j}\right\rangle \\
s_{i j}=\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle
\end{gathered}
$$

Many good options:

- Plane waves (VASP, abinit, ...)

$$
\varphi_{\underline{k}}(\boldsymbol{r})=\frac{1}{N} e^{i \underline{k r}}
$$

- Gaussian-type orbitals

$$
\varphi_{l m n}(\boldsymbol{r})=\frac{1}{N} x^{l} y^{m} z^{n} e^{-\alpha r^{2}}
$$

- Many others:"Augmented plane waves", wavelets, finite elements, numeric atom-centered functions, ...
Our choice!

$$
\varphi_{i[l m]}(\boldsymbol{r})=\frac{u_{i}(r)}{r} \cdot Y_{l m}(\Omega)
$$

Numeric Atom-Centered Basis Functions: Some Advantages

$$
\varphi_{i[l m]}(\boldsymbol{r})=\frac{u_{i}(r)}{r} \cdot Y_{l m}(\Omega)
$$

Many popular implementations:
DMol ${ }^{3}$ (Delley), FPLO (Eschrig et al.) PLATO (Horsfield et al.), ADF, BDF, PAOs (Siesta, Conquest, OpenMX², Fireball, ...)

Numeric Atom-Centered Basis Functions: Some Advantages

$$
\varphi_{i[l m]}(\boldsymbol{r})=\frac{u_{i}(r)}{r} \cdot Y_{l m}(\Omega)
$$

- Flexible shape
- "Naturally" all-electron
- Strictly localizable - $O(N)$ computational scaling for most expensive steps
- Rather compact basis sets for converged results

Many popular implementations: DMol^{3} (Delley), FPLO (Eschrig et al.) PLATO (Horsfield et al.), ADF, BDF, PAOs (Siesta, Conquest, OpenMX², Fireball, ...)

Accuracy in Community Wide Benchmark - "Delta Test"

S. Cottenier and coworkers (Ghent University): https://molmod.ugent.be/deltacodesdft
$E(V)$ for 7 I elemental solids - Reference: Full-Potential LAPW (Wien2k).

Accuracy in Community Wide Benchmark - "Delta Test"

S. Cottenier and coworkers (Ghent University): https://molmod.ugent.be/deltacodesdft

E(V) for 7 I elemental solids - Reference: Full-Potential LAPW (Wien2k).
Comparing Solid State DFT Codes, Basis Sets and Potentials | Center for Molecular Modeling

https molmod.ugent.be/deltacodesdft
Comparing Solid State DFT Codes, Basis Sets and Potentials | Center for Molecular Modeling

Similar High Precision Achievable for Band Structures

Root-mean-square deviation between calculated band structures:
 FHI-aims (tier 2) vs.Wien2k, scalar relativistic, valence bands, DFT-PBE

Dr.William Huhn (Duke Univ.)

0

All-Electron Accuracy for Large Systems: FHI-aims

- Accurate, efficient quantum mechanics for molecules, materials
- Numerical Foundation: Numeric atom-centered basis functions Seamless from "light" to basis-converged results, from light to heavy elements
- Non-periodic and periodic structure models, same framework
- Density Functional Theory (semilocal, global and rangeseparated hybrid functionals, van der Waals corrections)
- Beyond DFT (non-periodic): RPA, GW, MP2,TD-LDA, ...
- Scalable (I,000s of atoms on I(00),000s of CPU cores)
- Properties (charged and neutral excitations, IR spectra, transport, dielectric functions, dynamics \& transition states, ...)
~ 100 contributors to date, over 100 licensing groups. Active development in Berlin, Duke, Munich, Hefei, Helsinki, London, Argonne, ...
New stable release " 160328 "
Blum, Gehrke, Hanke, Havu, Havu, Ren, Reuter, Scheffler, Computer Physics Communications I80, 2I75(2009) Ren, Rinke, Blum, Wieferink, Tkatchenko, Sanfilippo, Reuter, Scheffler, New J. Phys. I4, 053020 (2012)
... But How to Push an All-Electron Approach to Large Systems?
I. Kohn-Sham DFT Eigenvalue Problem ($O\left(N^{3}\right)$)

$$
\underline{\underline{h}} \underline{c}_{k}=\epsilon_{k} \underline{\underline{s}} \underline{c}_{k}
$$

2. Exact Exchange \& Hybrid Functionals

$$
E_{\mathrm{x}}^{\mathrm{HF}}=\frac{1}{2} \sum_{i j \sigma} D_{i j}^{\sigma} K_{i j}^{\sigma}=\frac{1}{2} \sum_{i j k l} D_{i j}^{\sigma} D_{k l}^{\sigma}(i k \mid l j)
$$

3. Many-Body Perturbation Theory "Beyond DFT"

$$
\Sigma_{\sigma}^{G W}\left(\mathbf{r}, \mathbf{r}^{\prime}, \epsilon\right)=\frac{i}{2 \pi} \int d \epsilon^{\prime}\left[G_{\sigma}\left(\mathbf{r}, \mathbf{r}^{\prime}, \epsilon+\epsilon^{\prime}\right) W\left(\mathbf{r}, \mathbf{r}^{\prime}, \epsilon^{\prime}\right) e^{i \eta \epsilon^{\prime}}\right]
$$

Cost

Scalability: 3-Layer Graphene on 3C-SiC(000I)

Structure: Nemec et al., PRL I I I, 065502 (20I3).
Benchmark: Björn Lange, Duke University 2014

Scalability: 3-Layer Graphene on 3C-SiC(000I)

Structure: Nemec et al., PRL I I I, 065502 (20I3).
Benchmark: Björn Lange, Duke University 2014

Scalability: 3-Layer Graphene on 3C-SiC(000I)

Structure: Nemec et al., PRL I I I, 065502 (20I3).
Benchmark: Björn Lange, Duke University 2014

Parallel Eigenvalue Solvers - the Problem

IBM BlueGene (MPG, Garching) 16384 CPU cores

Parallel Eigenvalue Solvers - the Problem

α-helical Ala। 100 (1000 atoms), high accuracy

IBM BlueGene (MPG, Garching) 16384 CPU cores

Parallel Eigenvalue Solvers - the Problem

Bottleneck:Tridiagonalization

"Conventional" reduction:

Key Step in ELPA:Two-Step MPI-Parallel Tridiagonalization

Two-stage reduction algorithm, ELPA:

Larger fraction of efficient matrix-matrix operations Efficient compute kernels for added backtransform step (4)

Note: Hard to beat dense linear algebra for small to midsized problems, many EVs

Auckenthaler, Blum, Bungartz, Huckle, Johanni, Krämer, Lang, Lederer, Willems, Parallel Computing 37, 783 (20I I)
A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang,T.Auckenthaler, A. Heinecke, H.-J. Bungartz, H. Lederer, The Journal of Physics: Condensed Matter 26, 21320 I (2014).

ELPA, Two-Step Solver

ELPA, Two-Step Solver

... However, $O\left(N^{3}\right)$ Still Limits Us to $\sim 1,000$ s of Atoms

... what to do?
I) Further reduce prefactor of dense linear algebra based approach?
\rightarrow new hardware? (GPU, MIC)

... However, $O\left(N^{3}\right)$ Still Limits Us to $\sim 1,000$ s of Atoms

... what to do?
I) Further reduce prefactor of dense linear algebra based approach?
\rightarrow new hardware? (GPU, MIC)
2) Switch to "traditional" $O(N)$ approach (density matrix based)?
\rightarrow well understood, but still some system-specificity

... However, $O\left(N^{3}\right)$ Still Limits Us to $\sim 1,000$ s of Atoms

... what to do?

I) Further reduce prefactor of dense linear algebra based approach?
\rightarrow new hardware? (GPU, MIC)
2) Switch to "traditional" $O(N)$ approach (density matrix based)?
\rightarrow well understood, but still some system-specificity
3) Orbital minimization method $O\left(N^{3}\right)$ approach focused on density matrix, naturally iterative in s.c.f. \rightarrow lower prefactor Recently reimplemented by Corsetti, Comput. Phys. Commun. I85, 273 (2014).

... However, $O\left(N^{3}\right)$ Still Limits Us to $\sim 1,000$ s of Atoms

... what to do?

I) Further reduce prefactor of dense linear algebra based approach?
\rightarrow new hardware? (GPU, MIC)
2) Switch to "traditional" $O(N)$ approach (density matrix based)?
\rightarrow well understood, but still some system-specificity
3) Orbital minimization method
$O\left(N^{3}\right)$ approach focused on density matrix, naturally iterative in s.c.f. \rightarrow lower prefactor Recently reimplemented by Corsetti, Comput. Phys. Commun. I85, 273 (2014).
4) Pole Expansion and Selective Inversion (PEXSI)

Reduced-scaling approach focused on density matrix, at most $O\left(N^{2}\right)$ for 3D semilocal DFT. Lin, Lu, Ying, Car, E, Commun. Math. Sci. 7, 755 (2009); Lin, Chen, Yang, He, J. Phys. Condens. Matter 25, 29550 (2013).
... and certainly many more.

... However, $O\left(N^{3}\right)$ Still Limits Us to $\sim 1,000$ s of Atoms

... what to do?

I) Further reduce prefactor of dense linear algebra based approach?
\rightarrow new hardware? (GPU, MIC)
2) Switch to "traditional" $O(N)$ approach (density matrix based)?
\rightarrow well understood, but still some system-specificity
3) Orbital minimization method
$O\left(N^{3}\right)$ approach focused on density matrix, naturally iterative in s.c.f. \rightarrow lower prefactor Recently reimplemented by Corsetti, Comput. Phys. Commun. I85, 273 (2014).
4) Pole Expansion and Selective Inversion (PEXSI)

Reduced-scaling approach focused on density matrix, at most $O\left(N^{2}\right)$ for 3D semilocal DFT. Lin, Lu, Ying, Car, E, Commun. Math. Sci. 7, 755 (2009); Lin, Chen, Yang, He, J. Phys. Condens. Matter 25, 29550 (2013).
... and certainly many more.
All these are feasible but optimal choice depends on system size, system character, required electronic structure output, ... complex. Can we simplify this task?

... However, $O\left(N^{3}\right)$ Still Limits Us to $\sim 1,000$ s of Atoms

... what to do?

I) Further reduce prefactor of dense linear algebra based approach?
\rightarrow new hardware? (GPU, MIC)
2) Switch to "traditional" $O(N)$ approach (density matrix based)?
\rightarrow well understood, but still some system-specificity
3) Orbital minimization method
$O\left(N^{3}\right)$ approach focused on density matrix, naturally iterative in s.c.f. \rightarrow lower prefactor Recently reimplemented by Corsetti, Comput. Phys. Commun. I85, 273 (2014).
4) Pole Expansion and Selective Inversion (PEXSI)

Reduced-scaling approach focused on density matrix, at most $O\left(N^{2}\right)$ for 3D semilocal DFT. Lin, Lu, Ying, Car, E, Commun. Math. Sci. 7, 755 (2009); Lin, Chen, Yang, He, J. Phys. Condens. Matter 25, 29550 (2013).
... and certainly many more.
All these are feasible but optimal choice depends on system size, system character, required electronic structure output, ... complex. Can we simplify this task?

ELSI: Solving or Circumventing the Eigenvalue Problem

... in one infrastructure
\& for "any" code?
... and many other "stakeholders" from the community

ELSI: Solving or Circumventing the Eigenvalue Problem

... in one infrastructure \& for "any" code?

Work in Progress:
"ELSI" - Electronic Structure Infrastructure (NSF-SI2)

HPC platform optimization (distrib. SMP, GPU, manycore)
http://elsi-interchange.org
... and many other "stakeholders" from the community
... But How to Push an All-Electron Approach to Large Systems?
I. Kohn-Sham DFT Eigenvalue Problem ($O\left(N^{3}\right)$)

$$
\underline{\underline{h}} \underline{c}_{k}=\epsilon_{k} \underline{\underline{s}} \underline{c}_{k}
$$

2. Exact Exchange \& Hybrid Functionals

$$
E_{\mathrm{x}}^{\mathrm{HF}}=\frac{1}{2} \sum_{i j \sigma} D_{i j}^{\sigma} K_{i j}^{\sigma}=\frac{1}{2} \sum_{i j k l} D_{i j}^{\sigma} D_{k l}^{\sigma}(i k \mid l j)
$$

3. Many-Body Perturbation Theory "Beyond DFT"

$$
\Sigma_{\sigma}^{G W}\left(\mathbf{r}, \mathbf{r}^{\prime}, \epsilon\right)=\frac{i}{2 \pi} \int d \epsilon^{\prime}\left[G_{\sigma}\left(\mathbf{r}, \mathbf{r}^{\prime}, \epsilon+\epsilon^{\prime}\right) W\left(\mathbf{r}, \mathbf{r}^{\prime}, \epsilon^{\prime}\right) e^{i \eta \epsilon^{\prime}}\right]
$$

Cost

Beyond DFT-LDA/GGA:Two-Electron Integrals

Common bottleneck:Two-electron interactions, e.g.:

$$
\int d^{3} r d^{3} r^{\prime} \phi_{i}(r) \phi_{j}\left(r^{\prime}\right) \frac{1}{\left|r-r^{\prime}\right|} \phi_{k}\left(r^{\prime}\right) \phi_{l}(r)
$$

Beyond DFT-LDA/GGA:Two-Electron Integrals

Common bottleneck:Two-electron interactions, e.g.:

$$
\int d^{3} r d^{3} r^{\prime} \phi_{i}(r) \phi_{j}\left(r^{\prime}\right) \frac{1}{\left|r-r^{\prime}\right|} \phi_{k}\left(r^{\prime}\right) \phi_{l}(r)
$$

Early Solution:"Resolution of the identity"

[Boys and Shavitt (1950s), Whitten (1974), Dunlap et al. (I979),Vahtras et al. (1993), many others]

1. Expand pair products in smaller auxiliary basis set $\left\{P_{\mu}\right\}$
$\varphi_{i}(\boldsymbol{r}) \varphi_{j}(\boldsymbol{r})=\sum_{\mu} C_{i j}^{\mu} P_{\mu}(\boldsymbol{r})$
2. Use "Coulomb metric" V to cancel linear error terms

$$
\begin{aligned}
& C_{i j}^{\mu}=\sum_{\nu}(i j \mid \nu) V_{\nu \mu}^{-1} \\
& (i j \mid \nu)=\int d^{3} r d^{3} r^{\prime} \frac{\varphi_{i}(\boldsymbol{r}) \varphi_{j}(\boldsymbol{r}) P_{\nu}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}
\end{aligned}
$$

\rightarrow The rest is matrix algebra - works with NAO basis sets! Hartree-Fock, hybrid functionals, MP2, GW, RPA, LR-TDLDA, ...

Ren, Rinke, Blum, Wieferink, Tkatchenko, Sanfilippo, Reuter, Scheffler, New J. Phys. I4, 053020 (2012)

Localized "Resolution of Identity" (RI) for Two-Electron Terms

$$
\begin{aligned}
& \qquad(i j \mid k l)=\int d^{3} r d^{3} r^{\prime} \frac{\varphi_{i}(\boldsymbol{r}) \varphi_{j}\left(\boldsymbol{r}^{\prime}\right) \varphi_{k}(\boldsymbol{r}) \varphi_{l}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \\
& \varphi_{i}(\boldsymbol{r}) \varphi_{j}(\boldsymbol{r})=\sum_{\mu} C_{i j}^{\mu} P_{\mu}(\boldsymbol{r}) \\
& C_{i j}^{\mu}=\sum_{\nu}(i j \mid \nu) V_{\nu \mu}^{-1} \\
& \text { Problem: Full RI-V delocalizes } C \\
& \text { across entire system }
\end{aligned}
$$

Localized "Resolution of Identity" (RI) for Two-Electron Terms

$$
\begin{aligned}
& \qquad(i j \mid k l)=\int d^{3} r d^{3} r^{\prime} \frac{\varphi_{i}(\boldsymbol{r}) \varphi_{j}\left(\boldsymbol{r}^{\prime}\right) \varphi_{k}(\boldsymbol{r}) \varphi_{l}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \\
& \varphi_{i}(\boldsymbol{r}) \varphi_{j}(\boldsymbol{r})=\sum_{\mu} C_{i j}^{\mu} P_{\mu}(\boldsymbol{r}) \\
& C_{i j}^{\mu}=\sum_{\nu}(i j \mid \nu) V_{\nu \mu}^{-1} \\
& \begin{array}{l}
\text { Problem: Full RI-V delocalizes } C
\end{array} \\
& \begin{array}{l}
\text { Scross entire system } \\
\text { Solution: For each } C_{i j^{\prime}}, \text { restrict } \mu \\
\hline \text { only to atoms } I \text { and } J \text { at which } i \text { and } \\
j \text { are centered! }
\end{array}
\end{aligned}
$$

Ihrig,Wieferink, Zhang, Ropo, Ren, Rinke, Scheffler, Blum, New J. Phys. I7, 093020 (2015)

Hybrid Functionals: Scalability, Large Systems

Levchenko, Ren, Wieferink, Rinke, Johanni, Blum, Scheffler, Comp. Phys. Commun. I92, 60-69 (2015).
$\mathrm{O}(\mathrm{N})$ scaling implementation, localized resolution of identity.

Note: Localized RI also works for MP2, RPA, GW, etc. (but not $O(N)$)

Zincblende GaAs

Computational Scaling of Periodic GaAs, HSE06 Hybrid Density-Functional Theory
... But How to Push an All-Electron Approach to Large Systems?
I. Kohn-Sham DFT Eigenvalue Problem ($O\left(N^{3}\right)$)

$$
\underline{\underline{h}} \underline{c}_{k}=\epsilon_{k} \underline{\underline{s}} \underline{c}_{k}
$$

2. Exact Exchange \& Hybrid Functionals

$$
E_{\mathrm{x}}^{\mathrm{HF}}=\frac{1}{2} \sum_{i j \sigma} D_{i j}^{\sigma} K_{i j}^{\sigma}=\frac{1}{2} \sum_{i j k l} D_{i j}^{\sigma} D_{k l}^{\sigma}(i k \mid l j)
$$

3. Many-Body Perturbation Theory "Beyond DFT"

$$
\Sigma_{\sigma}^{G W}\left(\mathbf{r}, \mathbf{r}^{\prime}, \epsilon\right)=\frac{i}{2 \pi} \int d \epsilon^{\prime}\left[G_{\sigma}\left(\mathbf{r}, \mathbf{r}^{\prime}, \epsilon+\epsilon^{\prime}\right) W\left(\mathbf{r}, \mathbf{r}^{\prime}, \epsilon^{\prime}\right) e^{i \eta \epsilon^{\prime}}\right]
$$

Cost

Scaling Limitations for Many-Body Theory: GW

GoW0:Widely used to obtain accurate quasiparticle energies (molecules and materials)

Central: Self-Energy

$$
\Sigma_{\sigma}^{G W}\left(\mathbf{r}, \mathbf{r}^{\prime}, \epsilon\right)=\frac{i}{2 \pi} \int d \epsilon^{\prime}\left[G_{\sigma}\left(\mathbf{r}, \mathbf{r}^{\prime}, \epsilon+\epsilon^{\prime}\right) W\left(\mathbf{r}, \mathbf{r}^{\prime}, \epsilon^{\prime}\right) e^{i \eta \epsilon^{\prime}}\right]
$$

Scaling Limitations for Many-Body Theory: GW

GoW0:Widely used to obtain accurate quasiparticle energies (molecules and materials)

Central: Self-Energy

$$
\Sigma_{\sigma}^{G W}\left(\mathbf{r}, \mathbf{r}^{\prime}, \epsilon\right)=\frac{i}{2 \pi} \int d \epsilon^{\prime}\left[G_{\sigma}\left(\mathbf{r}, \mathbf{r}^{\prime}, \epsilon+\epsilon^{\prime}\right) W\left(\mathbf{r}, \mathbf{r}^{\prime}, \epsilon^{\prime}\right) e^{i \eta \epsilon^{\prime}}\right]
$$

However, G_{0}, W_{0} not easy to converge -
known by different terminologies in different communities:

- "Slow-converging sums over states"
- "Slow convergence with basis set size"
- "Slow convergence of the electron-electron cusp" (Quantum Chemistry)

Result: Notoriously Tedious Convergence (Any Basis Set!)

RPA@PBE Total Energy Convergence of Free Atoms:

Igor Ying Zhang, Xinguo Ren, Patrick Rinke,Volker Blum, and Matthias Scheffler, New Journal of Physics I5, I23033 (20I3).

Result: Notoriously Tedious Convergence (Any Basis Set!)

RPA@PBE Total Energy Convergence of Free Atoms:

New NAO-VCC-nZ basis sets (H-Ar):
More systematic convergence of unoccupied state sums* *not a problem in occupied-state based DFT

Igor Ying Zhang, Xinguo Ren, Patrick Rinke,Volker Blum, and Matthias Scheffler, New Journal of Physics I5, I23033 (20I3).

Basis Set Extrapolation for $G_{0} W_{0}$?

Example: Naphthalene, Go Wo@PBE HOMO / LUMO

Tong Zhu

Basis Set Extrapolation for $G_{0} W_{0}$?

Example: Naphthalene,GoWo@PBE HOMO / LUMO

NAO-VCC-nZ (NAO) aug-CC-pVnZ (AUG) CC-pVnZ (CC)

Can We Extrapolate Smaller (Cheaper) Basis Sets?

2Z-3Z Extrapolation (T. Zhu): $\underline{5 Z}$ quality, but at the price of $3 Z$. Works for valence and low-lying conduction levels, light-element molecules. However, not for core states, unbound states; restricted to H-Ar.

Summary

$$
\hat{\mathcal{H}} \Psi=E \Psi
$$

P.A.M. Dirac

High-accuracy platform for predictive molecular, materials simulations Scalable to large systems, advanced electronic structure approximations

Ongoing frontier:Accurate, affordable many-body perturbation theory towards excited states for real materials

Crystalline tunable organic-inorganic hybrid materials - predictive approach to truly "new" materials, close integration with experiment

ALCF
National Science Foundation

Constructing a Basis Set Library for DFT

Goal: Element-dependent, transferable basis sets
from fast qualitative to meV-converged total energy accuracy (ground-state DFT)

Can't we have the computer pick good basis sets for us?

Constructing a Basis Set Library for DFT

Goal: Element-dependent, transferable basis sets from fast qualitative to meV-converged total energy accuracy (ground-state DFT)

Can't we have the computer pick good basis sets for us?

Robust iterative selection strategy:

(e.g., Delley 1990)

Initial basis $\{u\}^{(0)}$:
Occupied free atom orbitals $u_{\text {free }}$

Constructing a Basis Set Library for DFT

Goal: Element-dependent, transferable basis sets from fast qualitative to meV-converged total energy accuracy (ground-state DFT)

Can't we have the computer pick good basis sets for us?

Robust iterative selection strategy:

(e.g., Delley 1990)

Initial basis $\{u\}^{(0)}$:
Occupied free atom orbitals $u_{\text {free }}$

Search large pool of

 candidates $\left\{u_{\text {trial }}(r)\right\}$:Find $u_{\text {opt }}{ }^{(n)}$ to minimize $E^{(n)}=E\left[\{u\}^{(n-1)} \oplus u_{\text {trial }}\right]$

Constructing a Basis Set Library for DFT

Goal: Element-dependent, transferable basis sets from fast qualitative to meV-converged total energy accuracy (ground-state DFT)

Can't we have the computer pick good basis sets for us?

Robust iterative selection strategy:

(e.g., Delley 1990)

Initial basis $\{u\}^{(0)}$:
Occupied free atom orbitals $u_{\text {free }}$

Search large pool of candidates $\left\{u_{\text {trial }}(r)\right\}$:
Find $u_{\text {opt }}{ }^{(n)}$ to minimize

$$
\{u\}^{(n)}=\{u\}^{(n-1)} \oplus u_{\text {opt }}{ }^{(n)}
$$

$$
\mathrm{E}^{(\mathrm{n})}=\mathrm{E}\left[\{u\}^{(\mathrm{n}-\mathrm{I})} \oplus \mathrm{u}_{\text {trial }}\right]
$$

Constructing a Basis Set Library for DFT

Goal: Element-dependent, transferable basis sets from fast qualitative to meV-converged total energy accuracy (ground-state DFT)

Can't we have the computer pick good basis sets for us?

Robust iterative selection strategy:

(e.g., Delley 1990)

Initial basis $\{u\}^{(0)}$:
Occupied free atom orbitals $u_{\text {free }}$

Search large pool of candidates $\left\{u_{\text {trial }}(r)\right\}$:
Find $u_{\text {opt }}{ }^{(n)}$ to minimize $E^{(n)}=E\left[\{u\}^{(n-1)} \oplus u_{\text {trial }}\right]$

until $E^{(n-I)}-E^{(n)}<$ threshold

Iterative Selection of NAO Basis Functions

```
"Pool" of trial basis functions:
    2+ ionic u(r)
Hydrogen-like u(r) for z=0.I-20
```

> Optimization target: Non-selfconsistent symmetric dimers, averaged for different d

Pick basis functions one by one, up to complete total energy convergence

Iterative Selection of NAO Basis Functions

```
"Pool" of trial basis functions:
    2+ ionic u(r)
Hydrogen-like u(r) for z=0.I-20
```

Optimization target:
Non-selfconsistent symmetric dimers, averaged for different d

Pick basis functions one by one, up to complete total energy convergence

Result: Hierarchical Basis Set Library for All Elements

	H	C	O	Au	Systematic hierarchy of basis (sub)sets, iterative
minimal	$1 s$	$[\mathrm{He}]+2 s 2 p$	$[\mathrm{He}]+2 s 2 p$	$[\mathrm{Xe}]+6 s 5 d 4 f$	
Tier 1	$\mathrm{H}(2 s, 2.1)$	$\mathrm{H}(2 p, 1.7)$	H(2p,1.8)	$\mathrm{Au}^{2+}(6 \mathrm{p})$	automated construction based on dimers
	$\mathrm{H}(2 p, 3.5)$	$\mathrm{H}(3 d, 6.0)$	$\mathrm{H}(3 d, 7.6)$	$\mathrm{H}(4 f, 7.4)$	
		$\mathrm{H}(2 s, 4.9)$	H(3s,6.4)	$\mathrm{Au}^{2+}(6 \mathrm{~s})$ \}	"First tier (level)"
				$\mathrm{H}(5 g, 10)$	'First tier (level)
				H(6h, 12.8)	
				$\mathrm{H}(3 d, 2.5) \quad$)	
Tier 2	$\mathrm{H}(1 s, 0.85)$	$\mathrm{H}(4 f, 9.8)$	$\mathrm{H}(4 f, 11.6)$	$\mathrm{H}(5 f, 14.8)$	"Second tier"
	$\mathrm{H}(2 p, 3.7)$	$\mathrm{H}(3 p, 5.2)$	H(3p,6.2)	H(4d,3.9)	
	$\mathrm{H}(2 s, 1.2)$	$\mathrm{H}(3 s, 4.3)$	H(3d,5.6)	$\mathrm{H}(3 p, 3.3)$	
	$\mathrm{H}(3 d, 7.0)$	H($5 g, 14.4)$	$\mathrm{H}(5 g, 17.6)$	$\mathrm{H}(1 s, 0.45)$	
		$\mathrm{H}(3 d, 6.2)$	$\mathrm{H}(1 s, 0.75)$	$\mathrm{H}(5 \mathrm{~g}, 16.4)$	
				H(6h,13.6)	
Tier 3	$\mathrm{H}(4 f, 11.2)$	H(2p,5.6)	$\mathrm{O}^{2+}(2 p)$	$\mathrm{H}(4 f, 5.2)^{*} 7$	
	$\mathrm{H}(3 p, 4.8)$	$\mathrm{H}(2 s, 1.4)$	$\mathrm{H}(4 f, 10.8)$	$\mathrm{H}(4 d, 5.0)$	
	"Third tier"

Accuracy: $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ Hydrogen Bond Energy

Using Numeric Atom-Centered Basis Functions: Pieces

- Numerical Integration

$$
h_{i j}=\int d^{3} r \varphi_{i}(\boldsymbol{r}) \hat{h}_{\mathrm{KS}} \varphi_{\cdot j} .(\boldsymbol{r})
$$

- Electron density update
- All-electron electrostatics

$$
\begin{aligned}
n(\boldsymbol{r}) & =\sum_{k} f_{k}\left|\psi_{k}(\boldsymbol{r})\right|^{2} \\
v_{\mathrm{es}}(\boldsymbol{r}) & =\int d^{3} r^{\prime} \frac{n\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}
\end{aligned}
$$

- Eigenvalue solver

$$
\underline{\underline{h}} \underline{c}_{k}=\epsilon_{k} \underline{\underline{s}} \underline{c}_{k}
$$

Using Numeric Atom-Centered Basis Functions: Pieces

- Numerical Integration
- Electron density update
- All-electron electrostatics
- Eigenvalue solver
- Relativity?

$$
h_{i j}=\int d^{3} r \varphi_{i}(\boldsymbol{r}) \hat{h}_{\mathrm{KS}} \varphi_{\cdot j} .(\boldsymbol{r})
$$

$$
n(\boldsymbol{r})=\sum_{k} f_{k}\left|\psi_{k}(\boldsymbol{r})\right|^{2}
$$

$$
v_{\mathrm{es}}(\boldsymbol{r})=\int d^{3} r^{\prime} \frac{n\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}
$$

$$
\underline{\underline{h}} \underline{c}_{k}=\epsilon_{k} \underline{\underline{s}} \underline{c}_{k}
$$

needed for heavy elements

- Periodic systems? need suitable basis, electrostatics
- Coulomb operator?

$$
(i j \mid k l)=\int d^{3} r d^{3} r^{\prime} \frac{\varphi_{i}(\boldsymbol{r}) \varphi_{j}\left(\boldsymbol{r}^{\prime}\right) \varphi_{k}(\boldsymbol{r}) \varphi_{l}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}
$$

Numeric Atom-Centered Basis Functions: Integration

$$
h_{i j}=\int d^{3} r \varphi_{i}(\boldsymbol{r}) \hat{h}_{\mathrm{KS}} \varphi_{j}(\boldsymbol{r})
$$

- Discretize to integration grid: $\quad \int d^{3} r f(\boldsymbol{r}) \rightarrow \sum_{\boldsymbol{r}} w(\boldsymbol{r}) f(\boldsymbol{r})$
... but even-spaced integration grids are out:
$f(r)$ strongly peaked near all nuclei!

Numeric Atom-Centered Basis Functions: Integration

$$
h_{i j}=\int d^{3} r \varphi_{i}(\boldsymbol{r}) \hat{h}_{\mathrm{KS}} \varphi_{j}(\boldsymbol{r})
$$

- Discretize to integration grid: $\quad \int d^{3} r f(\boldsymbol{r}) \rightarrow \sum_{r} w(\boldsymbol{r}) f(\boldsymbol{r})$
but even-spaced integration grids are out: $f(r)$ strongly peaked near all nuclei!
- Overlapping atom-centered integration grids:
- Radial shells (e.g., H, light: 24;Au, tight: I47)
- Specific angular point distribution ("Lebedev") exact up to given integration order l ($50,110,194,302, \ldots$. points per shell)

Pioneered by
Becke JCP 88, 2547 (I988), Delley, JCP 92, 508 (I990), MANY others!

All-Electron Integrals: Rather Benign for NAOs

$$
\int d^{3} r \phi_{1 s}(\boldsymbol{r}) \hat{H} \phi_{1 s}(\boldsymbol{r})=\int d r[f(r)] \times \text { angular integral. }
$$

$f(r)$ for
NAO radial function:

All-Electron Integrals: Rather Benign for NAOs

$$
\int d^{3} r \phi_{1 s}(\boldsymbol{r}) \hat{H} \phi_{1 s}(\boldsymbol{r})=\int d r[f(r)] \times \text { angular integral. }
$$

$f(r)$ for
NAO radial function:

$f(r)$ for contracted Gaussian radial function:

Overlapping Atom-Centered Grids:"Partitioning of Unity"

$$
h_{i j}=\int d^{3} r \varphi_{i}(\boldsymbol{r}) \hat{h}_{\mathrm{KS}} \varphi_{j}(\boldsymbol{r})
$$

Becke, 1988

- Rewrite to atom-centered integrands:

$$
\begin{aligned}
& \int d^{3} r f(\boldsymbol{r})=\sum_{\text {atoms }} \int d^{3} r p_{\text {atom }}(\boldsymbol{r}) f(\boldsymbol{r}) \\
& \text { exact: } \quad \sum_{\text {atoms }} p_{\text {atom }}(\boldsymbol{r})=1 \\
& \text { through } \quad p_{\text {atom }}(\boldsymbol{r})=\frac{g_{\text {atom }}(\boldsymbol{r})}{\sum_{\text {atom }^{\prime}} g_{\text {atom }^{\prime}(\boldsymbol{r})}}
\end{aligned}
$$

Overlapping Atom-Centered Grids:"Partitioning of Unity"

$$
h_{i j}=\int d^{3} r \varphi_{i}(\boldsymbol{r}) \hat{h}_{\mathrm{KS}} \varphi_{j}(\boldsymbol{r})
$$

Becke, 1988

- Rewrite to atom-centered integrands:

$$
\begin{aligned}
& \int d^{3} r f(\boldsymbol{r})= \\
& \sum_{\text {atoms }} \int d^{3} r p_{\text {atom }}(r) \\
& \text { exact: } \quad \sum_{\text {atoms }} p_{\text {atom }}(\boldsymbol{r})=1
\end{aligned}
$$

through $\quad p_{\text {atom }}(\boldsymbol{r})=\frac{g_{\text {atom }}(\boldsymbol{r})}{\sum_{\text {atom }^{\prime}} g_{\text {atom }^{\prime}}(\boldsymbol{r})}$

- e.g.: $g_{\text {atom }}=\frac{\rho_{\text {atom }}(r)}{r^{2}}$ (Delley 1990)
many alternatives:
Becke 1988, Stratmann 1996, Koepernik I999, ...

Integration in Practice: Large Systems, Small Errors!

Fully extended Polyalanine peptide molecule Ala ${ }_{20}$, DFT-PBE (203 atoms)

Hartree Potential (Electrostatics): Overlapping Multipoles

$$
v_{\mathrm{es}}(\boldsymbol{r})=\int d^{3} r^{\prime} \frac{n\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}
$$

- Partitioning of Unity: (same trick as used for integrals)

$$
n(\boldsymbol{r})=\sum_{\text {atoms }} p_{\text {atom }}(\boldsymbol{r}) n(\boldsymbol{r}) \quad \begin{gathered}
\frac{\text { Delley }}{J C P 92,} \\
508(1990)
\end{gathered}
$$

Hartree Potential (Electrostatics): Overlapping Multipoles

$$
v_{\mathrm{es}}(\boldsymbol{r})=\int d^{3} r^{\prime} \frac{n\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}
$$

- Partitioning of Unity: (same trick as used for integrals)

$$
n(\boldsymbol{r})=\sum_{\text {atoms }} p_{\text {atom }}(\boldsymbol{r}) n(\boldsymbol{r}) \quad \begin{gathered}
\frac{\text { Delley }}{\text { JCP 92, }} \\
508(1990)
\end{gathered}
$$

- Multipole expansion: $\quad n_{\text {atom }, l m}(r)=\int_{s=\left|r^{\prime}-R_{\text {atom }}\right|} p_{\text {atom }}\left(\boldsymbol{r}^{\prime}\right) n\left(\boldsymbol{r}^{\prime}\right) Y_{l m}(\Omega)$

Hartree Potential (Electrostatics): Overlapping Multipoles

$$
v_{\mathrm{es}}(\boldsymbol{r})=\int d^{3} r^{\prime} \frac{n\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}
$$

- Partitioning of Unity: (same trick as used for integrals)

$$
n(\boldsymbol{r})=\sum_{\text {atoms }} p_{\text {atom }}(\boldsymbol{r}) n(\boldsymbol{r})
$$

Delley
JCP 92,
508 (1990)

- Multipole expansion: $\quad n_{\text {atom }, l m}(r)=\int_{s=\left|r^{\prime}-R_{\text {atom }}\right|} p_{\text {atom }}\left(\boldsymbol{r}^{\prime}\right) n\left(\boldsymbol{r}^{\prime}\right) Y_{l m}(\Omega)$
- Classical electrostatics:

$$
v_{\mathrm{es}}(\boldsymbol{r})=\sum_{\text {atoms }} \sum_{l m}^{l_{\text {max }}} v_{\text {atom }, l m}\left(\left|\boldsymbol{r}-\boldsymbol{R}_{\text {atom }}\right|\right) Y_{l m}\left(\Omega_{\text {atom }}\right)
$$

Electrostatics: Multipole expansion

$$
v_{\mathrm{es}}(\boldsymbol{r})=\sum_{\text {atoms }} \sum_{l m}^{l_{\mathrm{max}}} v_{\text {atom }, l m}\left(\left|\boldsymbol{r}-\boldsymbol{R}_{\text {atom }}\right|\right) Y_{l m}\left(\Omega_{\text {atom }}\right)
$$

Polyalanine Ala ${ }_{20}$, DFT-PBE (203 atoms)
α-helical vs. extended:Total energy convergence with $l_{\max }$

