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So, We Have a Theory to Model “Everything”

ĤΨ = EΨ

Schrödinger (Dirac) Equation

Perfect recipe for parameter-free modeling ...

(How?) can we work towards having both?

... but how do we make it practical?

The approximation is accurate
but

feasible systems are too small

Feasible systems large enough
but

approximations are not great

P.A.M. 
Dirac
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In 2004, We Began a New Electronic Structure Code ...

Efficient (1,000s of atoms), but do not sacrifice accuracy!

Universality: Cover full space of materials and chemistry

“Materials and molecules” - periodic (k-space) and non-periodic

All-electron

Hierarchy of methods: DFT and “beyond” (GW, MP2, RPA, rPT2, ...)Accuracy:

Scalable (system size, number of CPUs)Efficiency:
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Central Decision: How to Discretize the Problem?

“Basis set expansion”:

• Many others: “Augmented plane waves”, 
                    wavelets, finite elements, 
                    numeric atom-centered functions, ...

Kohn, Sham
1965

Generalized eigenvalue 
problem:

Our choice!

Many good options:

• Plane waves (VASP, abinit, ...)

• Gaussian-type orbitals

'lmn(r) =
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Many popular implementations:
DMol3 (Delley), FPLO (Eschrig et al.) 
PLATO (Horsfield et al.), ADF, BDF, 
PAOs (Siesta, Conquest, OpenMX2, 
Fireball, ...)

 Blum, Gehrke, Hanke, Havu, Havu, Ren, Reuter, Scheffler, Computer Physics Communications 180, 2175 (2009) 
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Numeric Atom-Centered Basis Functions: Some Advantages

Many popular implementations:
DMol3 (Delley), FPLO (Eschrig et al.) 
PLATO (Horsfield et al.), ADF, BDF, 
PAOs (Siesta, Conquest, OpenMX2, 
Fireball, ...)

• Flexible shape 

• ”Naturally” all-electron

• Strictly localizable - O(N) 
computational scaling for most 
expensive steps

• Rather compact basis sets for 
converged results

We have a basis set library for all 
elements (1-102), from fast qualitative 
to meV-converged calculations.
(total energy, DFT).

 Blum, Gehrke, Hanke, Havu, Havu, Ren, Reuter, Scheffler, Computer Physics Communications 180, 2175 (2009) 
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Accuracy in Community Wide Benchmark - “Delta Test”

S.  Cottenier and coworkers (Ghent University): 
https://molmod.ugent.be/deltacodesdft

E(V) for 71 elemental solids - Reference: Full-Potential LAPW (Wien2k).

FHI-aims, really tight / tier 2 basis sets:
Δ=0.2 meV (!)

Dr. Marcin Dulak, DTU

FHI-aims, standard “tight” defaults:
Δ=0.6 meV

Reproducibility in Density-Functional Calculations of Solids,
K. Lejaeghere, ... 68 coauthors! ..., S. Cottenier,

Science 351, aad3000 (2016).

https://molmod.ugent.be/deltacodesdft
https://molmod.ugent.be/deltacodesdft


Similar High Precision Achievable for Band Structures

Dr. William Huhn
(Duke Univ.)

Root-mean-square deviation between
calculated band structures:

FHI-aims (tier 2) vs. Wien2k, scalar 
relativistic, valence bands, DFT-PBE

50 elemental structures,
35 compound semiconductors,
21 strongly ionic compounds; 
69 elements included



All-Electron Accuracy for Large Systems: FHI-aims

• Accurate, efficient quantum mechanics for molecules, materials               

• Numerical Foundation: Numeric atom-centered basis functions                          
Seamless from “light” to basis-converged results,                 
from light to heavy elements

• Non-periodic and periodic structure models, same framework

• Density Functional Theory (semilocal, global and range-
separated hybrid functionals, van der Waals corrections)

• Beyond DFT (non-periodic): RPA, GW, MP2, TD-LDA, ... 

• Scalable (1,000s of atoms on 1(00),000s of CPU cores)

• Properties (charged and neutral excitations, IR spectra, 
transport, dielectric functions, dynamics & transition states, ...)

http://aims.fhi-
berlin.mpg.de

~100 contributors to date, over 100 licensing groups.  
Active development in Berlin, Duke, Munich, Hefei, 

Helsinki, London, Argonne, ...
New stable release “160328” 

 Blum, Gehrke, Hanke, Havu, Havu, Ren, Reuter, Scheffler, Computer Physics Communications 180, 2175(2009) 
 Ren, Rinke, Blum, Wieferink, Tkatchenko, Sanfilippo, Reuter, Scheffler, New J. Phys. 14, 053020 (2012)

http://aims.fhi-berlin.mpg.de
http://aims.fhi-berlin.mpg.de
http://aims.fhi-berlin.mpg.de
http://aims.fhi-berlin.mpg.de


... But How to Push an All-Electron Approach to Large Systems?

1. Kohn-Sham DFT Eigenvalue Problem (O(N3))

2. Exact Exchange & Hybrid Functionals
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Scalability: 3-Layer Graphene on 3C-SiC(0001)

(6√3×6√3)-R30°
Top View

Benchmark: Björn Lange, Duke University 2014
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(6√3×6√3)-R30°, 3-layer graphene
Side View

DFT-PBE, “tight”

Structure: Nemec et al., PRL 111, 065502 (2013). 
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Scalability: 3-Layer Graphene on 3C-SiC(0001)

(6√3×6√3)-R30°
Top View

Benchmark: Björn Lange, Duke University 2014

Open Source 
Scalable Eigensolver:

ELPA 
http://elpa.rzg.mpg.de

...

(6√3×6√3)-R30°, 3-layer graphene
Side View

DFT-PBE, “tight”

Structure: Nemec et al., PRL 111, 065502 (2013). 

http://elpa.rzg.mpg.de
http://elpa.rzg.mpg.de
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Parallel Eigenvalue Solvers - the Problem

IBM BlueGene (MPG, Garching)
16384 CPU cores

α-helical Ala100 (1000 atoms),
high accuracy

...

...

Total time/s.c.f. iteration

Eigenvalue solver 
(ScaLapack, 2008)
Matrix dim.: 27069

grid-based
operations

1000

100

El
ap

se
d 

tim
e 

[s
]



Bottleneck: Tridiagonalization

“Conventional” reduction:

⎧
｜
｜

⎩
｜

⎫
｜
｜

⎭
｜

⎧
｜
｜

⎩
｜

⎫
｜
｜

⎭
｜

full matrix tridiagonal matrix

Householder transform

Matrix-vector operations
➀ ➁

➂

Solution

Back-transformation



Key Step in ELPA: Two-Step MPI-Parallel Tridiagonalization

Two-stage reduction algorithm, ELPA:

Back-transformation: tridiagonal to banded form  
Back-transformation: banded to full form  

Transformation: full to banded matrix
Transformation: banded to tridiagonal matrix
Solve the eigenvalue problem for tridiagonal matrix (D&C)

Auckenthaler, Blum, Bungartz, Huckle, Johanni, Krämer, Lang, Lederer, Willems, Parallel Computing 37, 783 (2011)

A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler, A. Heinecke, H.-J. Bungartz, H. Lederer,
The Journal of Physics: Condensed Matter 26, 213201 (2014).

Note: Hard to beat dense linear algebra for small to midsized problems, many EVs

Larger fraction of efficient matrix-matrix operations

Efficient compute kernels for added backtransform step ➃ 



ELPA, Two-Step Solver

α-helical Polyalanine Ala100

N=27069, M=3410
NAO basis set (FHI-aims)

...

...
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Scalapack

2-step

Auckenthaler, Blum, Bungartz, 
Huckle, Johanni, Krämer, Lang,

Lederer, Willems, Parallel 
Computing 37, 783 (2011)
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ELSI: Solving or Circumventing the Eigenvalue Problem

... in one infrastructure
& for “any” code?

Work in Progress:
“ELSI” - Electronic Structure Infrastructure (NSF-SI2)

VB, Duke

Jianfeng Lu, Duke

Lin Lin, Berkeley

Chao Yang, LBL
Alvaro Vazquez-
Mayagoitia, ANL

Electronic Structure Code

H, S, ... ε, c, D
ELSI interface

ELPA Orbital Minimi- 
zation Method

PEXSI
Dense Eigensolver
O(N3)
up to ~1,000s of 
atoms

O
th

er
s 

(F
ut

ur
e)

Sparse or dense
O(N3)
1,000s of atoms

Density matrix & 
reduced scaling
O(N2) at most
>1,000s of atoms

ε, c D D, DOS

HPC platform optimization (distrib. SMP, GPU, manycore)

http://elsi-interchange.org

Fabiano Corsetti, 
London

... and many other “stakeholders” from the
community

http://elsi-interchange.org
http://elsi-interchange.org


... But How to Push an All-Electron Approach to Large Systems?

1. Kohn-Sham DFT Eigenvalue Problem (O(N3))

2. Exact Exchange & Hybrid Functionals

3. Many-Body Perturbation Theory “Beyond DFT”

Cost
Accuracy?
Difficulty!
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Beyond DFT-LDA/GGA: Two-Electron Integrals

Common bottleneck: Two-electron interactions, e.g.:

 Ren, Rinke, Blum, Wieferink, Tkatchenko, Sanfilippo, Reuter, Scheffler, New J. Phys. 14, 053020 (2012)



Beyond DFT-LDA/GGA: Two-Electron Integrals

Common bottleneck: Two-electron interactions, e.g.:

 Ren, Rinke, Blum, Wieferink, Tkatchenko, Sanfilippo, Reuter, Scheffler, New J. Phys. 14, 053020 (2012)

Early Solution: “Resolution of the identity”
[Boys and Shavitt (1950s), Whitten (1974), Dunlap et al. (1979), Vahtras et al. (1993), many others]

→ The rest is matrix algebra - works with NAO basis sets! 
Hartree-Fock, hybrid functionals, MP2, GW, RPA, LR-TDLDA, ...

2. Use “Coulomb metric” V to cancel 
linear error terms

1. Expand pair products in 
smaller auxiliary basis set {Pµ}



Localized “Resolution of Identity” (RI) for Two-Electron Terms

Ihrig, Wieferink, Zhang, Ropo, Ren, Rinke, Scheffler, Blum, New J. Phys. 17, 093020 (2015)

Problem: Full RI-V delocalizes C
across entire system



Localized “Resolution of Identity” (RI) for Two-Electron Terms

Solution: For each Cijµ, restrict µ 
only to atoms I and J at which i and 
j are centered!

Ihrig, Wieferink, Zhang, Ropo, Ren, Rinke, Scheffler, Blum, New J. Phys. 17, 093020 (2015)

Problem: Full RI-V delocalizes C
across entire system



Hybrid Functionals: Scalability, Large Systems

 Levchenko, Ren, Wieferink, Rinke, Johanni, Blum, Scheffler, 
Comp. Phys. Commun. 192, 60-69 (2015). 

Zincblende GaAs

Computational Scaling of Periodic GaAs,
HSE06 Hybrid Density-Functional Theory

O(N) scaling implementation,
localized resolution of identity.

Note: Localized RI also works for MP2, 
RPA, GW, etc. (but not O(N))
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Scaling Limitations for Many-Body Theory: GW

G0W0: Widely used to obtain accurate quasiparticle energies 
(molecules and materials)

⌃GW
� (r, r0, ✏) =

i

2⇡

Z
d✏0

h
G�(r, r

0, ✏+ ✏0)W (r, r0, ✏0)ei⌘✏
0
i

Central: Self-Energy



Scaling Limitations for Many-Body Theory: GW

G0W0: Widely used to obtain accurate quasiparticle energies 
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Central: Self-Energy

However, G0, W0 not easy to converge - 
known by different terminologies in different communities:

• “Slow-converging sums over states” 

• “Slow convergence with basis set size”

• “Slow convergence of the electron-electron cusp”
   (Quantum Chemistry)

⟷ Large basis set requirement and formal O(N4) scaling: Doubly challenging. 



Result: Notoriously Tedious Convergence (Any Basis Set!)

Igor Ying Zhang, Xinguo Ren, Patrick Rinke, Volker Blum, and Matthias Scheffler,
New Journal of Physics 15, 123033 (2013).

RPA@PBE Total Energy Convergence of Free Atoms:

Known issue in quantum chemistry. 
Light elements: Correlation consistent
Gaussian basis sets (Dunning) + 
“complete basis set” (CBS) extrapolation



Result: Notoriously Tedious Convergence (Any Basis Set!)

Igor Ying Zhang, Xinguo Ren, Patrick Rinke, Volker Blum, and Matthias Scheffler,
New Journal of Physics 15, 123033 (2013).

RPA@PBE Total Energy Convergence of Free Atoms:

New NAO-VCC-nZ basis sets (H-Ar):
More systematic convergence of unoccupied state sums*

*not a problem in occupied-state based DFT



Basis Set Extrapolation for G0W0?

Example: Naphthalene,G0W0@PBE HOMO / LUMO

NAO-VCC-nZ (NAO) aug-CC-pVnZ (AUG) CC-pVnZ (CC)

Tong Zhu



Basis Set Extrapolation for G0W0?

[4Z-5Z] NAO
[4Z-5Z] AUG
[4Z-6Z] CC

[4Z-5Z] NAO
[4Z-5Z] AUG
[4Z-6Z] CC

CBS extrapolation:
Halkier et al., Chem. Phys. Lett. 
302, 437 (1999); Helgaker et al., 
J. Chem. Phys. 106, 9639 (1997)

Example: Naphthalene,G0W0@PBE HOMO / LUMO

NAO-VCC-nZ (NAO) aug-CC-pVnZ (AUG) CC-pVnZ (CC)



Can We Extrapolate Smaller (Cheaper) Basis Sets?

2Z-3Z Extrapolation (T. Zhu): 5Z quality, but at the price of 3Z.
Works for valence and low-lying conduction levels, light-element molecules.

However, not for core states, unbound states; restricted to H-Ar.

Method
5Z
M2[4Z-5Z]
M5[2Z-3Z]

Tong Zhu

Reference:
4Z-5Z CBS

2Z-3Z extrap.

5Z (no extrap.)



Summary

P.A.M. Dirac

High-accuracy platform for predictive molecular, materials simulations

Scalable to large systems, advanced electronic structure approximations

ALCF

National Science Foundation

ĤΨ = EΨ

Crystalline tunable organic-inorganic hybrid materials - predictive approach 
to truly “new” materials, close integration with experiment 

Ongoing frontier: Accurate, affordable many-body perturbation theory 

                          towards excited states for real materials
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Constructing a Basis Set Library for DFT

Robust iterative selection strategy:  
(e.g., Delley 1990)

Initial basis {u}(0):
Occupied free 

atom orbitals ufree

Search large pool of 
candidates {utrial(r)}:

Find uopt(n) to minimize 
E(n) = E[{u}(n-1)⊕utrial]

{u}(n)={u}(n-1)⊕uopt(n)

until E(n-1)−E(n) < threshold

Goal: Element-dependent, transferable basis sets
from fast qualitative to meV-converged total energy accuracy (ground-state DFT)

Can’t we have the computer pick 
good basis sets for us?
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“Pool” of trial basis functions:
2+ ionic u(r)

Hydrogen-like u(r) for z=0.1-20

Optimization target:
Non-selfconsistent symmetric 
dimers, averaged for different d

Pick basis functions one by one, up to complete total energy convergence

 Blum et al., Comp. Phys. Commun. 180, 2175-2196 (2009) 



Iterative Selection of NAO Basis Functions

“Pool” of trial basis functions:
2+ ionic u(r)

Hydrogen-like u(r) for z=0.1-20

Optimization target:
Non-selfconsistent symmetric 
dimers, averaged for different d

Pick basis functions one by one, up to complete total energy convergence

Remaining
basis set error
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Systematic buildup of basis set for:

 Blum et al., Comp. Phys. Commun. 180, 2175-2196 (2009) 



Systematic hierarchy of 
basis (sub)sets, iterative 
automated construction

based on dimers

“First tier (level)”

“Second tier”

“Third tier”
...

H C O Au

minimal 1s [He]+2s2p [He]+2s2p [Xe]+6s5d4f

Tier 1 H(2s,2.1) H(2p,1.7) H(2p,1.8) Au2+(6p)

H(2p,3.5) H(3d,6.0) H(3d,7.6) H(4f ,7.4)

H(2s,4.9) H(3s,6.4) Au2+(6s)

H(5g,10)

H(6h,12.8)

H(3d,2.5)

Tier 2 H(1s,0.85) H(4f ,9.8) H(4f ,11.6) H(5f ,14.8)

H(2p,3.7) H(3p,5.2) H(3p,6.2) H(4d,3.9)

H(2s,1.2) H(3s,4.3) H(3d,5.6) H(3p,3.3)

H(3d,7.0) H(5g,14.4) H(5g,17.6) H(1s,0.45)

H(3d,6.2) H(1s,0.75) H(5g,16.4)

H(6h,13.6)

Tier 3 H(4f ,11.2) H(2p,5.6) O2+(2p) H(4f ,5.2)∗

H(3p,4.8) H(2s,1.4) H(4f ,10.8) H(4d,5.0)

H(4d,9.0) H(3d,4.9) H(4d,4.7) H(5g,8.0)

H(3s,3.2) H(4f ,11.2) H(2s,6.8) H(5p,8.2)

H(6d,12.4)

H(6s,14.8)

... ... ...

Table 4
Radial functions selected during the basis optimization for H, O, and Au, as il-

lustrated in Fig. 2. “H(nl,z)” denotes a hydrogen-like basis function for the bare
Coulomb potential z/r, including its radial and angular momentum quantum num-
bers, n and l. X2+(nl) denotes a n, l radial function of a doubly positive free ion of
species X. The asterisk denotes one radial function that is listed out of sequence to
retain the otherwise consistent ordering into successive angular momentum shells
(“tiers”; see text).

ments: H, C, O, and Au. In each case, we show the convergence of the average
non-selfconsistent total energy error of the sets of Nd symmetric dimers, ∆basis

[Eq. (11)], as the basis size increases. The initial full symbol indicates the min-
imal basis of occupied atomic radial functions. Each open symbol corresponds
to one more selected radial function [with (2l + 1) angular momentum func-
tions]. According to the general prescription stated above, the LDA binding
curves for H2, C2, N2, and Au2 lead to di/Å={0.5, 0.7, 1.0, 1.5, 2.5} for H,

15

... ... ... ...

Result: Hierarchical Basis Set Library for All Elements



Accuracy: (H2O)2 Hydrogen Bond Energy

↔ 2 (          )

Basis set limit (independent):
EHb = −219.8 meV

H C,N,OC,N,O

minimal 1s [He]+2s2p[He]+2s2p

tier 1 s,p s,p,ds,p,d

tier 2 s,p,s,d s,p,d,f,gs,p,d,f,g

tier 3 s,p,d,fs,p,d,f s,p,d,f

Basis sets: Radial fn. character

DFT-PBE
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Using Numeric Atom-Centered Basis Functions: Pieces

• Numerical Integration , ...

• Electron density update

• All-electron electrostatics

• Eigenvalue solver

• Periodic systems?

• Relativity? needed for heavy elements

need suitable basis, electrostatics

• Coulomb operator?
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Numeric Atom-Centered Basis Functions: Integration

• Discretize to integration grid:

... but even-spaced integration grids are out:
f(r) strongly peaked near all nuclei!

Pioneered by
Becke JCP 88, 2547 (1988), Delley, JCP 92, 508 (1990), MANY others!

• Overlapping atom-centered integration grids:

- Radial shells (e.g., H, light: 24; Au, tight: 147)

- Specific angular point distribution (“Lebedev”)
  exact up to given integration order l
  (50, 110, 194, 302, .... points per shell)

+
+
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f(r) for 
NAO radial function:

“tight”
radial grid
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All-Electron Integrals: Rather Benign for NAOs  

f(r) for 
NAO radial function:

f(r) for 
contracted Gaussian

radial function:

“tight”
radial grid
for NAOs
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through

Becke, 1988



Overlapping Atom-Centered Grids: “Partitioning of Unity”

• Rewrite to atom-centered integrands:

exact:

through

• e.g.: (Delley 1990)

many alternatives:
Becke 1988, Stratmann 1996, Koepernik 1999, ...

Becke, 1988



Integration in Practice: Large Systems, Small Errors!

Integration error 
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gat(r): Delley 1990

gat(r): Stratmann et al. 1996

Fully extended Polyalanine peptide molecule Ala20, DFT-PBE (203 atoms)
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Hartree Potential (Electrostatics): Overlapping Multipoles

• Partitioning of Unity:
(same trick as used for integrals)

• Multipole expansion:

• Classical electrostatics:

Delley
 JCP 92, 

508 (1990)



Electrostatics: Multipole expansion

Polyalanine Ala20, DFT-PBE (203 atoms)
α-helical vs. extended: Total energy convergence with lmax

α extended


