Numerical orbitals in DFT and beyond

Patrick Rinke

School of Science Department of Applied Physics Aalto University, Helsinki

An important distinction

Computational Model

- DFT is exact
 We approximate E_{xc}
 The approximation determines the:
 - level of sophistication
 - accuracy of results

Its numerical realisation

- 1. DFT equations need to be discretised.
- 2. Computational parameters determine the accuracy.
- 3. Parameters <u>should</u> not affect the result.

An important distinction

Computational Model

- DFT is exact
 We approximate E_{xc}
 The approximation determines the:
 - level of sophistication
 - accuracy of results

Its numerical realisation

- 1. DFT equations need to be discretised.
- 2. Computational parameters determine the accuracy.
- 3. Parameters <u>should</u> not affect the result.
 - Volker Blum
 - Lixin He

An important distinction

 DFT is exact
 We approximate E_{xc}
 The approximation determines the:

 level of sophistication

accuracy of results

• Igor Ying Zhang

Its numerical realisation

- 1. DFT equations need to be discretised.
- 2. Computational parameters determine the accuracy.
- 3. Parameters <u>should</u> not affect the result.
 - Volker Blum
 - Lixin He

Kohn-Sham equations

Aalto University

School of Science

KS orbitals/wave functions $\left[-\frac{\nabla_{\mathbf{r}}^{2}}{2} + v_{\mathrm{KS}}[n](\mathbf{r})\right]\phi_{i}(\mathbf{r}) = \epsilon_{i}\phi_{i}(\mathbf{r})$ KS potential KS eigenvalues

Density

$$n(\mathbf{r}) = \sum_{i}^{N_e} |\phi_i(\mathbf{r})|^2$$

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

Kohn-Sham equations

Aalto University

School of Science

$$\begin{bmatrix} -\frac{\nabla_{\mathbf{r}}^2}{2} + v_{\mathrm{KS}}[n](\mathbf{r}) \end{bmatrix} \phi_i(\mathbf{r}) = \epsilon_i \phi_i(\mathbf{r})$$
$$h_{\mathrm{KS}}(\mathbf{r}) \phi_i(\mathbf{r}) = \epsilon_i \phi_i(\mathbf{r})$$
$$n(\mathbf{r}) = \sum_{i}^{N_e} |\phi_i(\mathbf{r})|^2$$

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

Kohn-Sham equations in a basis

Pick basis set {φ_i**} and expand:**

$$\phi_n(\mathbf{r}) = \sum_i c_{ni} \varphi_i(\mathbf{r})$$

Solve generalised eigenvalue problem:

$$\mathbf{h}\mathbf{c}_n = \epsilon_n \mathbf{s}\mathbf{c}_n$$
$$h_{ij} = \langle \varphi_i | \hat{h} | \varphi_j \rangle$$
$$s_{ij} = \langle \varphi_i | \varphi_j \rangle$$

Basis function types

$$\phi_n(\mathbf{r}) = \sum_i c_{ni} \varphi_i(\mathbf{r})$$

Many basis choices:

- plane waves or real space
- linear augmented plane waves (LAPW)
- projector augmented plane waves (PAW)
- local orbitals
 - Gaussian orbitals
 - numeric atom centered orbitals (NAOs)

Basis function types

$$\phi_n(\mathbf{r}) = \sum_i c_{ni} \varphi_i(\mathbf{r})$$

Many basis choices:

- plane waves or real space
- linear augmented plane waves (LAPW)
- projector augmented plane waves (PAW)
- local orbitals
 - Gaussian orbitals
 - numeric atom centered orbitals (NAOs)

Atom-centred basis functions

Atom-centred basis functions

Real-space grid for basis functions

Aalto University School of Science

Real-space grid for basis functions

Real-space grid for basis functions

Locality of the basis functions

Aalto University School of Science

Locality of the basis functions

 $s_{ij} = 0$

Locality of the basis functions

Interactions between far away basis functions become less important.

Aalto University School of Science

Problem for Coulomb matrix elements

Problem for Coulomb matrix elements

<ij|v|kl> needed for: hybrid functionals quantum chemistry many-body theory

Please give me your questions after the talks or in the coffee break!

