First-principles Study of 2D van der Waals Heterojunctions

Jinlong Yang

Email: jlyang@ustc.edu.cn

Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China

Outline

- Introduction
- Our works
 - Graphene/Silicene, g-ZnO, BP, MoS₂
 - $g-C_3N_4/MoS_2$, C_2N
 - Phosphorene nanoflake heterojunctions
- Conclusions

Introduction

> From 3D to 2D materials

monocrystalline silicon

graphene

Free electron DOS (per volume) in 2D and 3D

Superiority of graphene

Nature 2005, 438, 7065; *Phys. Rev. Lett.* 2006, 96, 136806; *Nature* 2007, 448, 571; *Nature Mater.* 2007, 6, 183; *Science* 2008, 320, 5881; *Science* 2008, 321, 385; *Nano Lett.* 2008, 8, 902; *Phys. Rev. B* 2009, 80, 245406; *Adv. Funct. Mater.* 2009, 19, 3077; *Science* 2013, 340, 6139.

Other 2D materials

¹ Phys. Rev. Lett.
 2012, 108, 155501;
 ² Nature Nanotech.
 2014, 9, 372;
 ³ Phys. Rev. Lett.
 2007, 99, 026102;
 ⁴ Phys. Rev. Lett.
 2010, 105, 136805;
 ⁵ Nature Mater.
 2009, 8, 76;
 ⁶ Nature Mater.
 2004, 3, 404.

Why 2D van der Waals heterojunctions?

- Simplest junction. Interface is clean and controllable
 - Junction -> element of devices
- Extend properties of 2D materials
 - Bandgap opening, electric field response
- New phenomena and applications
 - Schottky and ohmic contacts, tunable self-doping
 - Water splitting, solar cells

Classification

- Metal/Metal
 - Graphene/Silicene
- Metal/Semiconductor
 - Graphene/Phosphorene, Graphene/g-ZnO, Graphene/MoS₂
- Semiconductor/Semiconductor
 - g-C₃N₄/MoS₂, Bi-layer blue phosphorus
 - Phosphorene Nanoflake Heterojunctions

Metal/Semiconductor

Semiconductor/Semiconductor

Our works

- Graphene/Silicene, g-ZnO, BP, MoS₂
 - Tuning properties of Graphene
- $g-C_3N_4/MoS_2$, C_2N
 - Visible light-driven water splitting
- Phosphorene nanoflake heterojunctions
 - Highly efficient solar cells

I. Tuning properties of graphene

- Graphene/Silicene
- Graphene/g-ZnO
- Graphene/Black phosphorus
- Graphene/MoS₂

Graphene/Silicene

Graphene/Silicene

Tunable self-doping with the interfacial distance increases:

- Silicene p-type -> n-type
- Graphene n-type -> p-type

Doping charge carrier concentrations as a function of interfacial distance D(Å).

Graphene/g-ZnO

Graphene/Pristine g-ZnO

- Fermi level remains in the induced gap
- > No charge transfer

Graphene/Al doped g-ZnO

Al doped g-ZnO

Graphene

Al doped g-ZnO

Graphene/Al doped g-ZnO

- > Al doped n-type g-ZnO
- Dirac point below the Fermi level
- Electron doping in graphene

Graphene/Li doped g-ZnO

Graphene

Li doped g-ZnO

Graphene/Li doped g-ZnO

- Li doped p-type g-ZnO
- Dirac point above the Fermi level
- Hole doping in graphene

Graphene/Phosphorene

Tunable Schottky barriers with the interlayer distance increases: D < 3.5 Å, p-type Schottky contact D > 3.5 Å, n-type Schottky contact

 Φ_{Bn} : n-type Schottky barrier Φ_{Bp} : p-type Schottky barrier

Graphene/MoS₂

Applying electric fields perpendicular to graphene/MoS₂, tunable p-type doping of graphene is very easy to achieve.

Graphene/MoS₂/Graphene

Applying electric fields perpendicular to graphene/MoS₂/graphene, tunable p-type doping of graphene is very easy to achieve, while graphene on the other side is weak n-type doped.

Summary

- Tunable self-doping can be obtained in graphene/silicene by
 - > Interlayer distance
- Tuning properties of graphene can be achieved in graphene/semiconductor composites by
 - > Doping type of semiconductor
 - > Interlayer distance
 - > Vertical electric fields

Review: Hu-Yang, Comput. Mat. Sci. 112, 518 (2016)

II. Visible light-driven water splitting

g-C₃N₄/MoS₂
 g-C₃N₄/C₂N

Challenge: Separation of electron and hole

Wang, Maeda, Thomas, et al., *Nat. Mater.* **2008**, *8*, 76; Maeda, Wang, Nishihara, et al., *J. Phys. Chem. C* **2009**, *113*, 4940; Di, Wang, Thomas, Anonietti, *ChemCatChem* **2010**, *2*, 834; Hou, Laursen, Zhang, et al., *Angew. Chem. Int. Ed.* **2013**, *52*, 3621.

Monolayer of g-C₃N₄

- $> d_{C-N1} = 1.47 \text{ Å}, d_{C-N2} = 1.33 \text{ Å}$
- Direct band gap of 2.7 eV
- > VBM is dominated by N2
- CBM is contributed by C and N2

Monolayer of MoS₂

- $> d_{Mo-S} = 2.42 \text{ Å}, d_{S-S} = 3.13 \text{ Å}$
- Direct band gap of 2.0 eV
- VBM and CBM are all mainly contributed by Mo 4d orbitals and S 3p

Geometry and band structure

Interlayer distance is 2.97 Å
 Direct band gap of 1.89 eV at the Γ points

Total and partial DOS

VBM is mainly contributed by g-C₃N₄

 \succ CBM is dominated by MoS₂

Type II heterostructure is constructed.

Charge transfer

Charge transfer from $g-C_3N_4$ to MoS_2

Red and blue regions represent charge accumulation and depletion, respectively.

MoS₂

Optical absorption

 $g-C_3N_4/MoS_2$ nanocomposite exhibits more effective UV absorption and enhanced low-energy visible light response than $g-C_3N_4$ monolayer.

Carrier transfer and separation

- ➤ The VB offset is 0.15 eV
- The CB offset is 0.83 eV
- Electrons transfer from CB of g-C₃N₄ to CB of MoS₂
- Holes transfer from VB of MoS₂ to VB of g-C₃N₄

> Direct band gap of monolayer C_2N is 2.47 eV

Stacking order	Δz (Å)	Δa (Å)	∆b (Å)	E _b (meV/Å ²)
AA	2.66	1.08	0.36	-16.1
AB	2.64	0.98	0.32	-16.2
AC	2.56	0.93	0.28	-16.9

AC stacking is the most stable
 The buckling of g-C₃N₄

Charge redistribution & band alignment

- g-C₃N₄ layer induces electronrich and hole-rich regions in the C₂N layer
- VBM is mainly contributed by g-C₃N₄
- > CBM is dominated by C_2N

Type II band alignment

- Three paths of separation: 1) photo-generated electrons in CBM of g-C₃N₄ migrate to CBM of C₂N, 2) photo-generated holes in VBM of C₂N transfer to VBM of g-C₃N₄, 3) electrons in VBM of g-C₃N₄ can be directly excited to CBM of C₂N due to interlayer coupling.
- > $g-C_3N_4/C_2N$ nanocomposite exhibits significantly enhanced UV and visible light absorption than $g-C_3N_4$ monolayer.

Summary

- The g-C₃N₄/MoS₂ (C₂N) nanocomposite constructs type II band alignment heterojunction.
- With the benefit of type II heterojunction, the separation of electron and hole will be more efficient.

Wang-Guan-Huang-Li-Yang, J. Mater. Chem. A 2, 7960 (2014) Wang-Li-Yang, ChemPhysChem, 10.1002/cphc.201600209(2016)

Phosphorene nanoflake heterojunctions

Edge-modified PNF heterobilayer

Edge dipole induced potential shift

Type-II band alignment

 ΔE_v

Acceptor

LUMO

(+) (+) (+) (+) (+)

HOMO

FPNFs

 E_g

 ΔE_c \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

Edge states and energy gaps

No edge states in HOMO/LUMO in PNFs
Edge decoration has little effect on gaps

HOMO/LUMO energy

Edge decoration has strong effect

Hybrid molecular orbital diagram

- P-H and P-F bonds are more stable
- HOMO/LUMO states are from inner P atoms

HPNF/FPNF heterobilayer

- Small HOMO/LUMO energy gaps
- Separated HOMO/LUMO states
- Enhanced light absorption

PNF heterojunction solar cells

Power conversion efficiency ~ 20%
 Energy gap (1.5 eV) and conduction band offset (0.15 eV)

$$\eta = \frac{0.65(E_{g} - \Delta E_{c} - 0.3) \int_{E_{g}}^{\infty} \frac{P(\hbar \varpi)}{\hbar \varpi} d(\hbar \varpi)}{\int_{0}^{\infty} P(\hbar \varpi) d(\hbar \varpi)}$$

- Phosphorene/MoS₂ (16-18%)
- PCBM/CBN (10-20%)
- g-SiC₂ (12-20%)

Summary

- Propose edge-modified PNFs as donor and acceptor heterojunction solar cells
- No edge states in HOMO/LUMO in PNFs
- Edge decoration has little effect on gaps
- Small HOMO/LUMO energy gaps
- Separated HOMO/LUMO states
- Enhanced light absorption

Hu-Lin-Yang-Dai-Yang, Nano Lett. 16, 1675 (2016)

Conclusions

- Weak interlayer van der Waals interactions in 2D heterojunctions can induce new properties and phenomena:
 - Bandgap opening, charge transfer and new optical absorption;
 - Self-doping, Schottky and ohmic contacts and electric field response.
- With excellent structural, electronic, electrical and optical properties combined, 2D van der Waals heterojunctions are expected to be applied in efficient electronic, electrochemical, photocatalytic, photovoltaic, photoresponsive and memory devices.

Acknowledgement

- Collaborators:
- W. Hu, T. Wang, J. Wang, Z. Guan, L. Hu, H. Wang
- Profs. Zhenyu Li, Jin Zhao, Qunxiang Li

Supports:

- NSFC, MOST, MOE, CAS
- USTCSCC, SCCAS, Tianjin and Shanghai Supercomputer Centers

THANK YOU!

