Random-phase approximation and beyond for

materials: concepts, practice, and future
perspectives

Xinguo Ren

University of Science and Technology of China, Hefei

USTC-FHI workshop on frontiers of Advanced Electronic Structure Methods

Hefei, June 14-18, 2016



Success and limitations of DFT In
computational materials science

Density functional theory (DFT) in its semi-local approximations is

enormously successful in simulating materials’ properties and in materials
designs, but has certain (intrinsic) limitations.

Typical situations:
® Systems with mixed bonding characteristics
® Systems with near degeneracy (“strong correlation”)

® Systems where both ground-state energies and charge
excitation energy gaps are important.

® Heterogeneous systems
(different dielectric property in different subsystems)



Jacob’s ladder of DFT

Heaven

J. Perdew & K. Schmidt, Density functional theory and its application to
materials, edited by V. Van Doren et al. (2001)



A zoo of electronic-structure methods
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Brief history of RPA

« Correlation energy of homogeneous electron gas (HES):
-- Divergence problem of “order-by-order” perturbation theory

« Separation of collective modes and quasiparticle modes:
-- First appearance of the RPA concept (Bohm & Pines, 1950)

o Self-consistent field approach to HES
-- Lindhard function (Lindhard, 1954)

« RPA = “sum of ring diagrams to infinite order”
-- (Brueckner & Gell-Mann, 1957)

« The concept of screened Coulomb interaction W
-- (Hubbard, 1957)

« The GW approximation to the self-energy >=iGW
-- (Hedin, 1965)



RPA as a first-principles method
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s With the framework of adiabatic-connection fluctuation-dissipation
(ACFD) theorem, RPA can be formulated as an approximate, but fully
nonlocal exchange-correlation (XC) energy functional.

The XC energy The density response function
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The coupling constant Coulomb interaction

Langreth & Perdew, Phys. Rev. B 15, 2884 (1977).
Gunnarsson & Lundqvist, Phys. Rev. B 13, 4274 (1976).

Dyson equation for the response function:

20 SRV
N

Explicitly known in terms of KS orbitals (both occupied and virtual)
and orbital energies

— Ec:RPA:EfPA[EwV/f]



RPA as a first-principles method
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s With the framework of adiabatic-connection fluctuation-dissipation
(ACFD) theorem, RPA can be formulated as an approximate, but fully
nonlocal exchange-correlation (XC) energy functional.

The XC en ergy The RPA density response function
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The Coup//ng constant Coulomb interaction

Langreth & Perdew, Phys. Rev. B 15, 2884 (1977).
Gunnarsson & Lundqvist, Phys. Rev. B 13, 4274 (1976).

** First application to real molecules.

Furche, Phys. Rev. B 64, 195120 (2001).
Fuchs & Gonze, Phys. Rev. B 65 235109 (2002).

s Applications to molecules, solids, surfaces, and layered materials
(2006-present).

For a review, see XR, P. Rinke, C. Joas, and M. Scheffler, J. Mater. Sci. 47, 7447 (2012)



Why is RPA interesting?

Automatic and seamless inclusion of van der Waals (vdW)
interactions; non-additive, anisotropic, and many-body
screening effects are properly accounted for.

Self-interaction (delocalization) errors are reduced, by
including exact-exchange.

Different bonding (ionic, covalent, metallic, vdW
situations are treated on equal footings.

Static correlation (partly) captured => excellent chemical
reaction barrier heights



Theoretical description of vdW interactions
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 vdW (dispersion) stems from the coupling between
spontaneous quantum charge fluctuations at a distance.

The leading term AEp — R%B' for large Rp

First principles description of vdW interactions is (computationally) a challenge!
CCSD(T) treats vdW accurately, but way too expensive.

Within the DFT context:

*DFT+ pairwise C,/R® summation; DFT+ many-body dispersion
*Explicitly non-local density functionals: vd W-DF
*Orbital-dependent functionals, via the ACFD frameworks, e.g., RPA



RPA description of vdW interactions

RAB
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O @ OO RPA=
""" “summation of ring diagrams”

* RPA captures the non-local coupling between spontaneous
guantum charge fluctuations separated in space.

* It can be shown analytically

AERPAS CRPA/RG for large R 2
CRPAZS 3 fdwaf”(zw)aﬁ”(lw) “Dispersion consistent”

J. Dobson, in “Topics in Condensed Matter Physics”, Ed. M. P. Das (Nova, New York, 1994)



RPA at the long range: quality of C, at the RPA level
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Basic formalism behind RPA

1. Kohn-Sham eigenvalues and eigenfunctions

hKSl//n (r) — gan (r)
2. Independent-particle (Kohn-Sham) response function

ZO(r’ r |C()) _ ZZ( 1:m B fn)Wm*(r)l//n(r)l//n*(rl)l//m(r')

En—&, — 1@
3. Basis representation
2°(rrio) = P,(Nx,, (io)P,(r')
1y
4. RPA correlation energy calculation

ECRPA = iJ‘oaa)Tr[ln(l - X0 (lw)V) + %, (Io)V]
27 Jo



RPA calculations in practice (so far ... )

In practical calculations, RPA is done perturbatively on a LDA/GGA
reference (e.g., RPA@GPBE)

The “standard” RPA scheme:
FRPAGPBE  _  pPBE _ [PBE | (Exexact I ECRPA) OPBE

— (Ban + Eoxt + Evtarree + EZ° 4 EF™) OPBE
EEX@PBE 4+ ECRPA@'PBE

EEXCPBE. hon-self-consistent Hartree-Fock energy

(exchange-only total energy) evaluated with PBE orbitals.

ERPACPBE. RPA correlation energy evaluated with PBE orbitals.



First-Principles code package

The Fritz Haber Institute ab-initio molecular simulations
(FHI-aims) package

Numeric atom-centered basis functions

Dipimy (F) = U (N)Y, (F)

Conventional DFT (LDA, GGASs) “Beyond-DFT” methods
® All-electron, full potential ® Hybrid functionals, MP2, RPA
® Periodic and finite systems on and beyond
equal footing ® Quasiparticle excitation energies:
® Favorable scaling G,W,, scGW, MP2, and beyond

(w.r.t system size and CPU cores)

V. Blum et al., Comp. Phys. Comm. X. Ren et al., New J. Phys.
180, 2175 (2009) 14, 053020 (2012)



RPA for Ar,
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Reference: Tang and Toennies, J. Chem. Phys. 118, 4976 (2003)

+ Correct asymptotic behavior, crucial for large molecules

— Underbinding around the equilibrium distance



RPA for S22 test set
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XR, A. Tkatchenko, P. Rinke, and M. Scheffler, Phys. Rev. Lett.
106, 153003 (2011)

S22 test set: P. Jureéka, J. époner, J. (V:ernjr, and P. Hobza, Phys.
Chem. Chem. Phys. 8, 1985 (2006).




RPA applied to the "CO adsorption puzzle”

= on-top site
hollow site

0.0_ I I l |

LDA PBE PBEO RPA@PB

CO@Cu(111)

LDA/GGA => hollow site

XR, P. Rinke, and M. Scheffler, Exp/RPA => on-top site
Phys. Rev. B 80, 045402 (2009)

See also L. Schimka et al., Nature Materials 9, 741 (2010).



RPA for Chemical reaction barrier heights

38 hydrogen transfer chemical reaction barrier Height (HTBH38)
and 38 non-hydrogen transferChemical reaction barrier height

(NHTBH38) Ref. Data: Zhao,Gonzalez-Garcia, Truhlar, J. Phys. Chem. A 109, 2012 (2005)
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XR, P. Rinke, G.E. Scuseria, M. Scheffler, Phys Rev. B 88, 035120 (2013).



Beyond RPA: insights from the Diagrammatic
representation

ERPA _ O@ + _‘_‘_‘_‘é:io .
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Screened second-order exchange

Diagrammatic representation (originally motivated from the coupled cluster
context)

ERPA+SOSEX =
C

MP2

3rd—order

- 00 - I

@ Arising from the anti-symmetric nature of many-body wave function
@ RPA+SOSEX is one-electron self-correlation free

D. L. Freeman, Phys. Rev. B 15, 5512 (1977). A. Gruneis et al., J. Chem. Phys. 131, 154115
(2009). J. Paier et al., J. Chem. Phys. 132, 094103 (2010); Erratum: 133, 179902 (2010).



Screened second-order exchange

Diagrammatic representation (originally motivated from the coupled cluster
context) N

The SOSEX improves the atomization energy of
covalently bound molecules, but does very little
for vdW complexes.

D. L. Freeman, Phys. Rev. B 15, 5512 (1977). A. Gruneis et al., J. Chem. Phys. 131, 154115
(2009). J. Paier et al., J. Chem. Phys. 132, 094103 (2010); Erratum: 133, 179902 (2010).



Decomposing the RPA binding energy for Ar,
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Exact-exchange with Kohn-Sham orbitals has too strong
Pauli repulsion!



There Is yet another contribution: the singles

A A ~ A N VZ I
He — H(;<S + Hl’ H(lJ<S :Z[_2k+vext(rk)+Vch(rk)} HOKS‘(DH> = ErEO)‘CDn>

k=1

= = (0 RJOE). € - (01 Aol

EO% —EQ +E

Now

E¢? =




There Is yet another contribution: the singles

Fock operator

/
ESE Ozm:unsz< |l//a>

a g_ga\

Kohn-Sham orbitals

2

® Originally derived within the framework of Rayleigh-Schrodinger

perturbation theory
XR, A. Tkatchenko, P. Rinke, M. Scheffler, PRL 106, 153003 (2011)

® Rederived within the framework of Adiabatic-connection
fluctuation dissipation theorem without freezing the density

J. Klimes, M. Kaltak, E. Maggio, and G. Kresse, JCP 143, 102816 (2015)



RPA+SE for Ar,
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Singles contributions correct the too strong Pauli repulsion arising
from the too extended GGA charge density.

XR, A. Tkatchenko, P. Rinke, and M. Scheffler, Phys. Rev. Lett. 106, 153003 (2011).



Renormalized Singles Excitation (rSE) Contributions

/T'&"X o
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foqg = (p\l?|q) . Hartree-Fock operator evaluated within Kohn-Sham orbitals

OCC uUnocc

@ E>F = Z Z (€7, €5 : Kohn-Sham orbital energies)
€; — €,

d

2
o “full [SE” :  EFE = Z Z ; | )f

“Semi-canonicalization”: Dlagonallze fi and fap blocks separately — fi, fa,
and transform f, — fi,

XR, P. Rinke, G.E. Scuseria, M. Scheffler, Phys Rev. B 88, 035120 (2013).



The concept of renormalized second-order
perturbation theory (rPT2)

RPA+SOSEX+rSE — /N7 /" \ |
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XR, P. Rinke, G.E. Scuseria, M. Scheffler,
rPT2 = “RPA+SOSEX+rSE” Phys Rev. B 88, 035120 (2013).



rPT2 for Ar,
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XR, P. Rinke, G.E. Scuseria, M. Scheffler,

Phys. Rev. B 88, 035120 (2013).



The performance of rPT2

Van der Waals Cohesive energy Bond length Barrier heights

N AN R

N HTBH38 NHTBH38
Method (%) (kcal/mol) (A) (kcal/mo ccal/mol)
PBE 57.8 8.2 0.044 0.7 8.9
PBEO 55.2 3.0 0.056 4.4 3.6
MP2 18.7 6.5 0.020 3.9 5.2
RPA 16.1 10.5 0.032 [.5 1.9
RPA +SE 1.7 7.1 0.018 4.3 5.8
RPA + SOSEX 10.5 5.7 0.038 5.6 4.3
rPT2 7.1 3.1 0.019 1.9 3.0

rPT2: most balanced approach for atomization energy, van der Waals
Interaction, and chemical reaction barrier heights



RPA + Singles for Solids

THE JOURNAL OF CHEMICAL PHYSICS 143, 102816 (2015)

Singles correlation energy contributions in solids

Jiti Klimeg,2 Merzuk Kaltak,® Emanuele Maggio.® and Georg Kresse®?

The random phase approximation to the correlation energy often yields highly accurate results for
condensed matter systems. However, ways how to improve 1ts accuracy are being sought and here
we explore the relevance of singles contributions for prototypical solid state systems. We set out
with a derivation of the random phase approximation using the adiabatic connection and fluctuation
dissipation theorem, but contrary to the most commonly used derivation, the density 1s allowed to
vary along the coupling constant integral. This yields results closely paralleling standard perturbation
theory. We re-derive the standard singles of Gorling-Levy perturbation theory [A. Gorling and M.
Levy, Phys. Rev. A 50, 196 (1994)], highlight the analogy of our expression to the renormalized
singles introduced by Ren and coworkers [Phys. Rev. Lett. 106, 153003 (2011)], and introduce a
new approximation for the singles using the density matrix in the random phase approximation. We
discuss the physical relevance and importance of singles alongside illustrative examples of simple
weakly bonded systems, including rare gas solids (Ne, Ar, Xe), ice, adsorption of water on NaCl,
and solid benzene. The effect of singles on covalently and metallically bonded systems 1s also
discussed. © 2015 Author(s). All article content. excent where otherwise noted. is licensed under

rSE fixed the problem of RPA!




What prevents RPA-based methods from
widespread use?

® Computationally RPA is 2-3 orders of magnitude more expensive
that semi-local GGA DFT, for a system with O(100) atoms.
— severely limited in the systems that can be tackled

® Need to mind about unoccupied states
— tough basis set convergence problem

® RPA Gradient is not readily available
— Production RPA calculations are only done with fixed geometry
(I'd love to have the RPA geometry of molecules on metal surfaces!)

® No uniquely defined self-consistency scheme
- No well-defined RPA orbitals or RPA densities

We will work on these issues in the Partner Group !
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*FHI-aims “tier 2” basis set.
*The situation gets more severe since RPA needs bigger basis set to converge.



Kohn-Sham theory versus Green function theory

Kohn-Sham theory

Basic variable

n(r)

Green-Function theory

G(r,r',w)

Harris-Foulkes functional

El[n]= iai —E [n]- J.vm (rn(r)+E_[n]

Luttinger-Ward functional

E[G]=-Tiln(-G™)]- E,,[n]- Tr[EG]+ ®[G]

OF[n]

on
2
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Dyson Eq.
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Self-consistency issue
IS

A self-consistent Green function theory can be formulated and implemented at
the GW level, that gives both ground-state energy and quasiparticle spectrum.

(see, e.g., F. Caruso, P. Rinke, XR, A. Rubio, M. Scheffler, Phys. Rev. B 88, 075105 (2012))
However,
* too expensive for materials

* binding energies are not great
* very difficult to go beyond GW

Practical way to go:

Formulating self-consistent theory in terms of the density matrix.



A dreamed theory (?)

A self-adapted vdW-inclusive hybrid functional

v'Computationally similar to the HSE-type hybrid functional.

v'The “mixing” and “screening” parameters are adjusted “on-the-fly” based on
the dielectric property of the system.

v Including seamlessly a vdW part
(a non-local vdW functional based on density matrix should be possible,
as Langreth-Lundquist vdW-DF is only based density)

Applicable to most materials of mixed bonding characters?
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