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(*) Work performed in collaboration with 

Luca Ghiringhelli, Jan Vybiral, Claudia Draxl, et al.

o crystal-structure prediction

o figure of merit of thermoelectrics (as function of T)

o turn-over frequency of catalytic                                
materials (as function of T and p)

o efficiency of photovoltaic systems

o etc.

Dmitri Mendeleev
(1834-1907)

From the periodic table of the elements to a chart (a map) of mate-
rials: Organize materials according to their properties and functions.

Patterns, Correlations, and Causality in Big Data of
Materials: Analytics for Novel Materials Discovery
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https://nomad-repository.eu
also described at youtube.com

http://NOMAD-CoE.eu

NOVEL MATERIALS DISCOVERY

The NoMaD Repository accepts (and requests) in-
and output files of all important codes. Currently, 
the NoMaD Repository contains 3,026,745 entries.

The NOMAD Laboratory
A European Centre of Excellence

http://v.youku.com/v_show/id_XMTM0NDA0NDIxMg==.html
https://www.youtube.com/watch?v=L-nmRSH4NQM
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also described at youtube.com

http://NOMAD-CoE.eu

NOVEL MATERIALS DISCOVERY

The NoMaD Repository accepts (and requests) in-
and output files of all important codes. Currently, 
the NoMaD Repository contains 3,026,745 entries.

The NOMAD Laboratory
A European Centre of Excellence

There are 30-40 important codes used in 
computational materials science.

Nomenclature, data representation, and 
file formats of the input and output files 
of these codes are different. The 
heterogeneity could hardly be worse.

https://nomad-repository.eu
also described at youtube.com

http://NOMAD-CoE.eu

NOVEL MATERIALS DISCOVERY

The NOMAD Laboratory
A European Centre of Excellence

The NoMaD Repository accepts (and requests) in-
and output files of all important codes. Currently, 
the NoMaD Repository contains 3,026,745 entries.
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https://nomad-repository.eu
also described at youtube.com

http://NOMAD-CoE.eu

NOVEL MATERIALS DISCOVERY

The NOMAD Laboratory
A European Centre of Excellence

Why do we consider “all” electronic structure theory codes in our 
NOMAD repository and data base?

There are millions of data already. Do science with the data!             
Select the studied systems more intelligently.

The NoMaD Repository accepts (and requests) in-
and output files of all important codes. Currently, 
the NoMaD Repository contains 3,026,745 entries.

The Big-Data Challenge

Volume (amount of data), 

Variety (heterogeneity of form 
and meaning of data),

Velocity at which data may 
change or new data arrive,

Veracity (uncertainty of quality).

The Four V and an A !

The Amount of Data Created Every Day Is Significant

Most Data Are Not Used And Even Thrown Away
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The Big-Data Challenge

Volume (amount of data), 

Variety (heterogeneity of form 
and meaning of data),

Velocity at which data may 
change or new data arrive,

Veracity (uncertainty of quality).

Query and
read out
what was 
stored; 
high-throughput screening. 

The Four V and an A !

The NOMAD Laboratory CoE deals 
with the four V and, in particular, it 
will complement them by an “A”,

the Big-Data Analytics:

• Identify (so far) hidden trends.

• What is the next most promising 
candidate that should be studied?

• Identify anomalies.

• Use the data for science and 
engineering, for R & D.

The Amount of Data Created Every Day Is Significant

Most Data Are Not Used And Even Thrown Away

Science 351, aad3000 (2016)

Science 351, aad3000 (2016)
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Science 351, aad3000 (2016)

Science 351, aad3000 (2016)

An exhaustive test set
(71 elemental solids)

Δ-Value Project in Materials Science

Science 351, aad3000 (2016)
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Comparing Solid State DFT Codes, Basis Sets, and 
Potentials (K. Lejaeghere et al.)

Code Version Basis Electron treatment Δ-value
meV/atom

WIEN2k 13.1 LAPW/APW+lo all-electron 0

FHI-aims 081213 tier2                           all-electron (relativistic 0.2
numerical orbitals atomic_zora scalar) 

Exciting development   LAPW+xlo all-electron 0.2
version

Quantum 5.1 plane waves SSSP Accuracy (mixed 0.3
ESPRESSO NC/US/PAW potential lib.)
Elk 3.1.5 APW+lo all-electron 0.3
VASP 5.2.12 plane waves PAW 2015 0.4
FHI-aims 081213 tier2 all-electron (relativistic 0.4

numerical orbitals zora scalar 1e-12)
CASTEP 9.0 plane waves OTFG CASTEP 9.0 0.5

https://molmod.ugent.be/deltacodesdft
Science 351, aad3000 (2016)

O2-crystal

Science 351, aad3000 (2016)

Comparing Solid State DFT Codes, Basis Sets, and 
Potentials (K. Lejaeghere et al.)
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Comparing Solid State DFT Codes, Basis Sets, and 
Potentials (K. Lejaeghere et al.)

Science 351, aad3000 (2016)

Comparing Solid State DFT Codes, Basis Sets, and 
Potentials (K. Lejaeghere et al.)

Code Version Basis Electron treatment Δ-value
meV/atom

WIEN2k 13.1 LAPW/APW+lo all-electron 0

FHI-aims 081213 tier2                           all-electron (relativistic 0.2
numerical orbitals atomic_zora scalar) 

Exciting development   LAPW+xlo all-electron 0.2
version

Quantum 5.1 plane waves SSSP Accuracy (mixed 0.3
ESPRESSO NC/US/PAW potential lib.)
Elk 3.1.5 APW+lo all-electron 0.3
VASP 5.2.12 plane waves PAW 2015 0.4
FHI-aims 081213 tier2 all-electron (relativistic 0.4

numerical orbitals zora scalar 1e-12)
CASTEP 9.0 plane waves OTFG CASTEP 9.0 0.5

https://molmod.ugent.be/deltacodesdft
Science 351, aad3000 (2016)

Use a code and settings (pseudopotentials (if necessary), 
basis set, etc.) that survived the Delta test.
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Find Structure in Big Data That Is A Priori “Not Visible”
Data Fitting, Statistical Learning, Machine Learning
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Calculation #                                        Descriptor D

Arrange/organize materials with respect to a property and a set of 
simple descriptive parameters (a descriptor).

Find Structure in Big Data That Is A Priori “Not Visible”
Data Fitting, Statistical Learning, Machine Learning

The descriptor can be 
designed: Rupp, von 
Lilienfeld, Behler, 
Csanyi, Seko, Tsuda, …

The descriptor can be 
selected out of a large 
set of candidates: 
Ozolins, Ghiringhelli. 
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Calculation #                                        Descriptor D

Arrange/organize materials with respect to a property and a set of 
simple descriptive parameters (a descriptor).
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More data means a better representation. Will we ever have enough data?

Find Structure in Big Data That Is A Priori “Not Visible”
Data Fitting, Statistical Learning, Machine Learning

The descriptor can be 
designed: Rupp, von 
Lilienfeld, Behler, 
Csanyi, Seko, Tsuda, …

The descriptor can be 
selected out of a large 
set of candidates: 
Ozolins, Ghiringhelli. 
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Calculation #                                        Descriptor D

Arrange/organize materials with respect to a property and a set of 
simple descriptive parameters (a descriptor).

Big-Data-Driven Science vs. 
Model-Driven Science

• Find structure in big data that is probably invisible by standard tools. 

• Offer many (thousands) of optional models and 

• employ applied mathematics/information theory to find out which 
model is best (e.g. compressed sensing, statistical learning).

Traditional approach in the empirical sciences (e.g. physics, chemistry): 

• Study a few systems

• Build a model, 

• Improve the model when needed 

(e.g. strength of transition metals  Ti, … Fe, … Cu: d-band occupation, etc.).

The new option offered by Big-Data Analytics (and big-data-driven science): 
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Can we predict not yet calculated structures from ZA and ZB? Can we create a 
map: “The ZB/W community lives here and the RS community there?” 

Energy differences 
between different 
structures are very small. 

For Si: 0.01% of the ener-
gy of a Si atom, or 0.1% of 
the 4 valence electrons.

Complexity: Ts[n] and Exc.

RS    

Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

Crystal-structure prediction was and is one of the most important, basic challenges 
in materials science and engineering.

ZB

Can we predict not yet calculated structures from ZA and ZB? Can we create a map: “The 
ZB/W community lives here and the RS community there?” 

Can we predict not yet calculated structures from ZA and ZB? Can we create a 
map: “The ZB/W community lives here and the RS community there?” 

RS    

Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

Crystal-structure prediction was and is one of the most important, basic challenges 
in materials science and engineering.

ZB

RS                   ZB
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Only DFT-LDA: Can we predict not yet calculated LDA structures from ZA and ZB? 

82 octet AB binary compounds

We need to arrange the data such that statistical learning is 
efficient. We need a good set of descriptive parameters.

d1

d2

RS J. A. van Vechten, Phys. 
Rev. 182, 891 (1969).
J. C. Phillips, Rev. Mod. 
Phys. 42, 317 (1970).
A. Zunger, Phys. Rev. B 
22, 5839 (1980).
D. G. Pettifor, Solid 
State Commun. 51, 31 
(1984).
Y. Saad, D. Gao, T. Ngo, 
S. Bobbitt, J. R. 
Chelikowsky, and 
W. Andreoni, Phys. Rev. 
B 85, 104104 (2012).

?

Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite or Rocksalt?”

How to find d1, d2?
In reality the representation will be higher than 2-dimensional.

kernel ridge regression                                                        linear

+ +
minimize

least absolute shrinkage and selection 
operator (LASSO) for feature selection

R. Tibshirani, J. Royal Statist. Soc. B 58, 267 (1996)

l2 norm: sqrt(x1
2 + y1

2 )
x1

y1

l1 norm:  | x1| + | y1| Manhattan (taxi cab) 
distance

Statistical Learning  (Machine Learning), Compressed Sensing
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1) Primary Features,     2) Feature Space,     3) Descriptors

free atoms

free dimers

LASSO finds the descriptors:

We start with 23 primary features
and build    > 10,000 non linear combinations

1) 

2)

3)

The complexity and science is 
in the descriptor (identified 
from >10,000 features).

RS

ZB

“The Map”  -- Compressed Sensing  --
LASSO, 2-Dim. Descriptor

L.M. Ghiringhelli, J. Vybiral, 
S.V. Levchenko, C. Draxl, M.S., 
PRL 114, 105503 (2015).



6/17/2016

14

The complexity and science is 
in the descriptor (identified 
from >10,000 features).

L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, 
C. Draxl, and M. Scheffler, 
Phys. Rev. Lett. 114, 105503 (2015).

Statistical Learning  (Machine Learning): LASSO, 2-Dim. 
Descriptor

Using our approach and no
information on BN and C we would
have predicted the existence and
unusual stability of these materials.

ZB

“The Map”  -- Compressed Sensing  --
LASSO, 2-Dim. Descriptor

L.M. Ghiringhelli, J. Vybiral, 
S.V. Levchenko, C. Draxl, M.S., 
PRL 114, 105503 (2015).

Statistical Learning (Machine Learning): Descriptor

Descriptor   ZA, ZB ZA*, ZB*   1D       2D      3D     5D

MAE                1*10-4           3*10-3 0.12  0.08  0.07 0.05

MaxAE 8*10-4 0.03      0.32   0.32   0.24   0.20

MAE, CV           0.13       0.14     0.12    0.09   0.07   0.05

MaxAE, CV       0.43      0.42     0.27    0.18    0.16   0.12

Mean absolute error (MAE), and maximum absolute error (MaxAE), in eV, (first two 

lines) and for a leave-10%-out cross validation (CV), averaged over 150 random 

selections of the training set (last two lines). For (ZA*, ZB*), each atom is identified by 
a string of three random numbers.
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Statistical Learning (Machine Learning): Descriptor

Descriptor   ZA, ZB ZA*, ZB*   1D       2D      3D     5D

MAE                1*10-4           3*10-3 0.12  0.08  0.07 0.05

MaxAE 8*10-4 0.03      0.32   0.32   0.24   0.20

MAE, CV           0.13       0.14     0.12    0.09   0.07   0.05

MaxAE, CV       0.43      0.42     0.27    0.18    0.16   0.12

Mean absolute error (MAE), and maximum absolute error (MaxAE), in eV, (first two 

lines) and for a leave-10%-out cross validation (CV), averaged over 150 random 

selections of the training set (last two lines). For (ZA*, ZB*), each atom is identified by 
a string of three random numbers.

Statistical Learning (Machine Learning): Descriptor
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Other Statistical Learning Projects

• Determine the best, correlation-consistent basis functions from a pool of 10,000 
Gaussians

• Metastabilities of binary compounds, at first considering 5 structures:

Rocksalt                CrB CsCl NiAs Zincblende

• Subgroup discovery algorithms: find structure 
in big data and analyze what is behind.

There are four possibilities (types of causality) behind P(d):

1. d → P :   P “listens” to d

2. A → d and  A → P : There is no direct connection between d and P, but
d and P both “listen” to a third “actuator”

3. P → d :  d “listens” to P

4. There is no direct connection between d and P, but they have a 
common effect that listens to both and screams: “I occurred“ (Berkson
bias; Judea Pearl)

(*) Construct d with scientific knowledge (prejudice?), or use “big data” for {Pi }.

Drawing Causal Inference from Big Data
(Scientific Insight) -- can we trust a prediction?

Correlation between d and P , i.e. P is a function of d, P(d), 
reflects causal inference

if it is based on sufficient information(*)
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Drawing Causal Inference from Big Data
(Scientific Insight) -- can we trust a prediction?

LASSO has provided us with an equation for the quantitative energy difference:

This is an equation, not a scientific law:

a mapping exists, even a physical intuition exist, but ΔE
does not listen directly to the descriptor (intricate causality)

Case #2:
Nuclear numbers ZA, ZB our descriptor

many-body Hamiltonian → energy differences

The NOMAD Laboratory
A European Centre of Excellence

Reality

big-data analytics in 
materials science
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big-data analytics in 
materials science

NOMAD develops a Materials Encyclopedia and Big-Data 
Analytics and Advanced Graphics Tools for materials science 

and engineering. 

The amount of different materials is huge. 
However, the number of materials that exhibit a 
certain function, is rather small, i.e. the space of 
chemical compounds is sparsely populated.

We need to develop domain-specific compressed-
sensing and machine-learning tools. 
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Reality

big-data analytics in 
materials science
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Reality

Perception

we are probably here

big-data analytics in 
materials science

NOMAD develops a Materials Encyclopedia and Big-Data 
Analytics and Advanced Graphics Tools for materials science 

and engineering. 

The amount of different materials is huge. 
However, the number of materials that exhibit a 
certain function, is rather small, i.e. the space of 
chemical compounds is sparsely populated.

We need to develop domain-specific compressed-
sensing and machine-learning tools. 


