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Patterns, Correlations, and Causality in Big Data of

Materials: Analytics for Novel Materials Discovery

NOVEL MATERIALS DISCOVERY

From the periodic table of the elements to a chart (a map) of mate-
rials: Organize materials according to their properties and functions.

o crystal-structure prediction

Dmitri Mendeleev

o figure of merit of thermoelectrics (as function of T) (1834-1907)

o turn-over frequency of catalytic = PERIODIC TABLE OF THE ELEMENTS
materials (as function of T and p) B T ‘ TET| e

o efficiency of photovoltaic systems { 7 -~ i

o etc.

.
/

(*) Work performed in collaboration with
Luca Ghiringhelli, Jan Vybiral, Claudia Draxl, et al.
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NOMAD ‘ THE NOMAD LABORATORY

A EUROPEAN CENTRE OF EXCELLENCE

PROJECT TEAM CODES NEWS PRESSKIT CONTACT US

The Novel Materials Discovery (NOMAD) Laboratory develops MATERIALS SCIENCE AND ENGINEERING
a Materials Encyclopedia and Bjg-Data Analytics and Advanced
Graphics Tools for materials science and engineering.

Eight complementary computational materials science groups
and four high-performance computing centers form the
synergetic core of this Centre of Excellence.

SCIENTIFIC

DEVICES PHENOMENA

Walter Kohn died April 19, 2016 at the age of 93. &

The work of the NOMAD Laboratory largely builds on the legacy of Walter Kohn:
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The NOMAD Laboratory
A European Centre of Excellence

The NoMaD Repository accepts (and requests) in-
and output files of all important codes. Currently,
the NoMaD Repository contains 3,026,745 entries.

AT y 3
https://nomad-repository.eu
also described at youtube.com

http://NOMAD-CoE.eu

https://www.youtube.com/watch?v=L-nmRSH4NQM
http://v.youku.com/v_show/id_XMTMONDAONDIxMg==.html

NoMaD

The Novel Materials
Discovery Repository
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P, P, A European Centre of Excellence
NOVEL MATERIALS DISCOVERY

NoNIan

The NoMaD Repository accepts (and requests) in-
and output files of all important codes. Currently,

the NoMaD Repository contains 3,026,745 entries.

A
There are 30-40 important codes used in ‘
computational materials science.

https:/ nomad reposntory eu .
also described at youtube.com Nomenclature, data representation, and

flle formats of the input and output files
. of these codes are different. The

heterogeneity could hardly be worse.

http://NOMAD-CoE.eu

The NOMAD Laboratory

: A European Centre of Excellence
NOVEL MATERIALS DISCOVERY

NoMa[5 - ¥ The NoMaD Repository accepts (and requests) in-
Repdg|t ' N . and output files of all important codes. Currently,
; N - » l the NoMaD Repository contains 3,026,745 entries.

https:I/ nomad-‘feposito‘ry.eu
also described at youtube.com

@9

http://NOMAD-CoE.eu
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The NOMAD Laboratory

.. 2 A European Centre of Excellence
NOVEL MATERIALS DISCOVERY

NoMan , o 3 The NoMaD Repository accepts (and requests) in-
OSi ! R XN and output files of all important codes. Currently,
2 4 the NoMaD Repository contains 3,026,745 entries.

https:/ nomad-treposito‘ry.eu
also described at youtube.com

Why do we consider “all” electronic structure theory codes in our
NOMAD repository and data base?

There are millions of data already. Do science with the data!
Select the studied systems more intelligently.

The Big-Data Challenge
The Amount of Data Created Every Day Is Significant

Most Data Are Not Used And

NOVEL MATERIALS DISCOVERY

The FourVandanA'!

Volume (amount of data),

@eterogeneity of form
a eaning of data),

Velocity at which data may

change or new data arrive, 00 e 01110000111011 1
@mcertainty of quality). ' 77007¢ °1°°1"°010101m1 1
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The Big-Data Challenge
The Amount of Data Created Every Day Is Significant

Most Data Are Not Used And Even Thrown Away

NOVEL MATERIALS DISCOVERY

The FourVandanA'!

Volume (amount of data),

@eterogeneity of form
a eaning of data),

Velocity at which data may
change or new data arrive,

¢ The NOMAD Laboratory CoE deals
=l with the four V and, in particular, it

: . _ L will complement them by an “A”,
@Jncertamty of quality). i[ the Big-Data Analytics:
' § * Identify (so far) hidden trends. 7

) © What is the next most promising |
candidate that should be studied? J

< what was * Identify anomalies.

2%~ T~ stored; * Use the data for science and
high-throughput screening. engineering, for R & D.

Query and
read out

Science 351, aad3000 (2016)

NOVEL MATERIALS DISCOVERY

RESEARCH

RESEARCH ARTICLE

DFT METHODS

Reproducibility in density functional
theory calculations of solids

Kurt Lejaeghere,'* Gustav Bihlmayer,” Torbjorn Bjorkmaigdié rHﬂ@SB]&déOOO (2016)
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Andrea Dal Corso," Stefano de Gironcoli," Thierry Deutsch,”® J ohn Kay Dewhurst, 12
Igor Di Marco,'® Claudia Draxl,'*'* Marcin Dulak,'® Olle Eriksson,’®
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A-Value Project in Materials Science

NOVEL MATR[AS DSCOVERY SCIence 351 aad3000 (2016)

1.06Vy ; "

A, (a,b) = / (Eu.i(";))];éu,i(l’ )" av
0.01V0., ! An exhaustive test set

(71 elemental solids)

code 2

meV I
code 1




Potentials (K. Lejaeghere et al.)

Comparing Solid State DFT Codes, Basis Sets, and

6/17/2016

NOVEL MATERIALS DISCOVERY

Code Version Basis Electron treatment A-value
meV/atom

13.1 LAPW/APW+lo all-electron
081213 tier2 all-electron (relativistic

numerical orbitals atomic_zora scalar)
development LAPW+xlo all-electron
version
5.1 plane waves SSSP Accuracy (mixed

NC/US/PAW potential lib.)

3.15 APW+lo all-electron
5.2.12 plane waves PAW 2015
081213 tier2 all-electron (relativistic

numerical orbitals  zora scalar 1le-12)
9.0 plane waves OTFG CASTEP 9.0

Comparing Solid State DFT Codes, Basis Sets, and

Potentials (K. Lejaeghere et al.)

NOVEL MATERIAS DISCOVERY . n
Science 351, aad3000 (2016) 0
New methods S
Mutual agreement ,,\
— - - o 0 al
— — a = o —i
-— — i H A o o
—= = 5 T % g » 28 8
O,crystal 5 L B2 3 & & & §
0ld methods T - T = S T
Different values o R F R = = = v

— exciting 0.1 04 18 0.7 0.6 7.7 0.2

FHI-AIMS/tier2 BOIE 0.3 1.7 0.6 0.5 EEEENOEE

FLEUR 04 0.3 1.4 0.3 0.3 pF28 0.2

FPLO/T+F+s 1.8 1.7 1.4 1.1 1.2 FE8n 1.6

RSPt 0.7 0.6 g@=m 1.1 O TEEN 0.5

WIEN2k/acc 0.6 0.5 0.3 1.2 0.1 7.1 0.4

VASP2011/VASP NENAGZ28 5.8 861971 7:5

VASP2012/VASP [0.2 "0:1 0.2 1.6 0.5 04 BZS
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Comparing Solid State DFT Codes, Basis Sets, and

Potentials (K. Lejaeghere et al.)
Science 351, aad3000 (2016)

New methods
Mutual agreement

- - year {A) vs AE
- - JTHOL/ABINIT 2013 1.l

- - JTHO2/ABINIT 2014 0.6

Old methods Vdb/CASTEP 1998

Different values

OTFG7/CASTEP 2013
OTFG9/CASTEP 2015

GPAWO6/GPAW 2010
GPAWO09/GPAW 2012
PS1ib031/QE 2013
PS1ib100/QE 2013

VASP2007/VASP 2007
VASP2012/VASP 2012
VASPGW2015/VASP 2015

*om® i,;;;{ﬁ; ; Comparing Solid State DFT Codes, Basis Sets, and

; ’.ﬂ,O_P:lA,J -° Potentials (K. Lejaeghere et al.)

HOVEL MATERIALS DISCOVERY Use a code and settings (pseudopotentials (if necessary),
basis set, etc.) that survived the Delta test.
Code Version Basis Electron treatmenr* A-value
" meV/atom
- r’ C“ ’ 5
13.1 LAPW/APW+lo all eleu e(&e \N\"\(\
081213 tier2

0 \! Q.
numerical orbita (\5\6 \Qe 2

development LAPW+xlo _ 1o O © AW

version L0597 2o ge?

5.1 "\)eo 0\.6(\ bca. Accuracy (mixed

a\ra\ e\)c\0\3 o817 NC/US/PAW potential lib.)

3.1° P\oe\‘ 665\95 e(\'Xa all-electron

5. O e es PAW 2015

08. W\° \\)GS 2 all-electron (relativistic
b—\la numerical orbitals zora scalar 1e-12)

9.0 plane waves OTFG CASTEP 9.0
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Find Structure in Big Data That Is A Priori “Not Visible”

Data Fitting, Statistical Learning, Machine Learning

Arrange/organize materials with respect to a property and a set of
simple descriptive parameters (a descriptor).

3
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Find Structure in Big Data That Is A Priori “Not Visible”

Data Fitting, Statistical Learning, Machine Learning

Arrange/organize materials with respect to a property and a set of
simple descriptive parameters (a descriptor).
The descriptor can be
designed: Rupp, von
0 © Lilienfeld, Behler,
o % Csanyi, Seko, Tsuda, ...
o

.

>
o
>

The descriptor can be
2. selected out of a large
® 00 °o set of candidates:

o000
o 0o » O
Calculation # Descriptor D Ozolins, Ghiringhelli.
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Find Structure in Big Data That Is A Priori “Not Visible”

Data Fitting, Statistical Learning, Machine Learning

Arrange/organize materials with respect to a property and a set of
simple descriptive parameters (a descriptor).
The descriptor can be
designed: Rupp, von
6, Lilienfeld, Behler,
% Csanyi, Seko, Tsuda, ...
Q
hy ‘
4 JQ The descriptor can be
8°: QQ' selected out of a large
>, set of candidates:

Ozolins, Ghiringhelli.
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Calculation # Descriptor D

More data means a better representation. Will we ever have enough data?

um Big-Data-Driven Science vs.
n"“ m J.’"‘: . .
B & Model-Driven Science
Traditional approach in the empirical sciences (e.g. physics, chemistry):
* Study a few systems
* Build a model,

* Improve the model when needed
(e.g. strength of transition metals Ti, ... Fe, ... Cu: d-band occupation, etc.).

. . “""n"_‘n,
® o ' g Tt g

* Find structure in big data that is probably invisible by standard tools.

» Offer many (thousands) of optional models and

* employ applied mathematics/information theory to find out which
model is best (e.g. compressed sensing, statistical learning).

The new option offered by Big-Data Analytics (and big-data-driven science):

10
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Proof of Concept: Descriptor for the Classification

“Zincblende/Wurtzite or Rocksalt?”

NOVEL MATERIAS DISCOVERY
Crystal-structure prediction was and is one of the most important, basic challenges

in materials science and engineering.

Can we predict not yet calculated structures from Z, and Zg? Can we create a map: “The
ZB/W community lives here and the RS community there?”

RS Energy differences
% between different
structures are very small.

For Si: 0.01% of the ener-
gy of a Si atom, or 0.1% of
B the 4 valence electrons.

Complexity: T,[n] and E,..

Proof of Concept: Descriptor for the Classification
“Zincblende/Wurtzite or Rocksalt?”

NOVEL MATERIAS DISCOVERY
Crystal-structure prediction was and is one of the most important, basic challenges
in materials science and engineering.

FURLZLELE DG LI LR FUELSLELE (LU UL L RS
ol B B N R}y
40 .
A T T S S N )
NP ] * ZB,A>02eV
- o 7ZB.0.1eV<A<02eV
20F ] o 7B,0.05eV<A<0.1eV
FN e G G —0.05eV<A<005eV
F %\ \ % § o RS.—-0.1eV<A<-005eV
'0-\ UL I B E @ RS, -02eV<A<—0.1eV
: ] m RS, A<-02¢V
v by bvw v by Lwovov v bo oy uy

11
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Proof of Concept: Descriptor for the Classification

“Zincblende/Wurtzite or Rocksalt?”

We need to arrange the data such that statistical learning is
efficient. We need a good set of descriptive parameters.
How to find d;, d,?
— In reality the representation will be higher than 2-dimensional.
50?— . B ‘— Rev. 182, 891 (1969).

E ] J. C. Phillips, Rev. Mod.
40 .

Phys. 42, 317 (1970).
r G -8 By A. Zunger, Phys. Rev. B
E30F v 5 N\ A Y 22, 5839 (1980).
E ] D. G. Pettifor, Solid
20; State Commun. 51, 31

(1984).

Y. Saad, D. Gao, T. Ngo,
S. Bobbitt, J. R.
Chelikowsky, and

TUENCERNE SN
EE S NLIENL I N

o Lax o) e vl e i b o v ol o e g

10 20 30 40 50

i

B 85, 104104 (2012).

J. A. van Vechten, Phys.

W. Andreoni, Phys. Rev.

"- "'-

M'A Statistical Learning (Machine Learning), Compressed Sensing

NOVEL MATERIALS DISCOVERY

I, norm: | x,| +|y,| Manhattan (taxi cab)

distance
Vi I, norm: sqrt(x,2 +y,?)
X

1

kernel ridge regression linear
v R. Tibshirani, J. Royal Statist. Soc. B 58, 267 (1996)
P(d) = Y;1, ciexp (—[|d; — d|3/207) P(d) =

minimize

SN (P(d;) — P)? o+
AN ciegexp (| di — djl|3/207)

: ] M
ldi—d;l3 = Y0_ (dia — dja)’ el = >,
least ab g
operator (LASSO) for feature selection

12



2- 1) Primary Features,

2) Feature Space,

6/17/2016

3) Descriptors

ID | Description free atoms Symbols #
Al | Tonization Potential (IP) and Electron Affinity (EA) | IP(A) EA(A) IP(B) EA(B) [1] | 4
A2 | Highest occupied (H) and lowest unoccupied (L) H{A) L(A) H(B) L(B)
Kohn-Sham levels
1) A3 | Radius at rlhn max. value nfl $, Py mul. d re(A) mp(A) ra(A) G
valence radial radial probability density re(B) rp(B) rg(B)
[} | Description free dimers Symbols #
A4 | Binding energy Ey(AA) E,(BB) Ey(AB) 3
A5 | HOMO-LUMO KS gap HL{AA) HL(BB) HL(AB) | 3
A6 | Equilibrium distance d(AA) d(BB) d(AB) 3
We start with 23 primary features
2) and build > 10,000 non linear combinations
IP(B) — EA(B) |rs(A) —r,(B)] |r,(B) — rs(B)]
3) LASSO finds the descriptors: rp(A)2 exp(rs(A)) " exp(rq(A) + r,(B))

'Nonhn '

l,. s

“The Map”

-- Compressed Sensing --

L.M. Ghiringhelli, J. Vybiral,
S.V. Levchenko, C. Draxl, M.S.,

NOVEL MATERIALS DISCOVERY

- RS Aghy "
8 - =]
| % s
i 028V GaN
"% a0 *
i Rbcc} AgCl
L = &
m o
G CuCl
o Ang‘o /oCds A=045eV.
| ]
/ MZ,S% 9 ¢ i
®cale /¢ sn e &
/QAgl »
OMgTe
g 0,
o
.
..... | " " " "
2 4 6
[IP(B) — )N/7p eV A ‘)]

LASSO, 2-Dim. Descriptor

PRL 114, 105503 (2015).

= E(RS) — E(ZB)
ZB,A>0.2eV
7ZB,0.1eV<A<02eV
ZB,0.05eV<A<0.1eV
-005eV<A<0.05eV
RS,-0.1eV<A<-0.05eV
RS,-02eV<A<L-0.1eV
RS, A <-02eV

LR N

H @O

P(d) =

The complexity and science is
in the descriptor (identified
from >10,000 features).

13



3. “The Map” -- Compressed Sensing --

LASSO, 2-Dim. Descriptor

6/17/2016

L.M. Ghiringhelli, J. Viybiral,
S.V. Levchenko, C. Draxl, M.S.,
PRL 114, 105503 (2015).

= E(RS) — E(ZB)

A
¥ion e ZB,A>02eV
= ¢ ZB,0.1eV<A<02eV
o ¢ ZB,0.05eV<A<0.1eV
° - ~0.05eV <A<0.05eV
BSb O RS,-0.1eV<A<—005eV
_ B RS.—02cV<A<-01¢eV
A=10eV m RS, A <-02eV
D
! 0SIC BN
;. BAs
pGel i
0.1 o ! ¢ Using our approach and no
~ “ ¥ information on BN and C we would
< 3 s . .
< ; BP  have predicted the existence and
0.05 v unusual stability of these materials.
PO c
0 . l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 I 1 1 1 1 p
0 5 10 15 20 25
IP(B) — EA(B)|/r,(A)? [eV A

P T v
X r” ., [ M -‘.v , »’
““NoMAD-

-

NOVEL MATERIALS DISCOVERY

Mean abs

Descriptor

MAE
MaxAE

MAE, CV
MaxAE, CV

Statistical Learning (Machine Learning): Descriptor

W error (MAE), and maximum absolute error (MaxAE), in eV, (first two

lines) and for a leave-10%-out cross validation (CV), averaged over 150 random
selections of the training set (last tw Je

a string of three random numbers.

ZA’ ZB ZA*, ZB*

1*104 3*10°3

8*10+ 0.03

0.13 0.14

0.43 0.42
-

wes). For (Z,*, Zg*), each atom i

ntified by

3 .

1D 2D 3D 5D
0.12 0.08 0.07 0.05
032 032 024 0.20
0.12 0.09 0.07 0.05

0.27

14
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6/17/2016

NOMAD Statistical Learning (Machine Learning): Descriptor

Mean abs error (MAE), and maximum absolute error (MaxAE), in eV, (first two
lines) and for a leave-10%-out cross validation (CV), averaged over 150 random
selections of the training set (last twoJines). For (Z,*, Zz*), each atom i‘entified o
a string of three random numbers.

Descriptor Zn Zg Zp*, Zg* g) 2D
MAE 1*104 3*1073

MaxAE 8*10+ 0.03

MAE, CV 0.13 0.14

MaxAE, CV 0.43 0.42

NOVEL MATERIALS DISCOVERY

NOMAD Statistical Learning (Machine Learning): Descriptor

Mean abs error (MAE), and maximum absolute error (MaxAE), in eV, (first two
lines) and for a leave-10%-out cross validation (CV), averaged over 150 random

selections of the training set (last twadines). For (Z,*, Z,*), each atom isddentified b
a string of three random numbers.

Descriptor

MAE
MaxAE

MAE, CV
MaxAE, CV

0.18 0.16

0.27

15
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Other Statistical Learning Projects

NOVEL MATERIALS DISCOVERY
* Metastabilities of binary compounds, at first considering 5 structures:

Rocksalt CrB CsCl NiAs Zincblende

)O \#* SR L‘T ! i

i E=
o9 AR [
Q

* Determine the best, correlation-consistent basis functions from a pool of 10,000
Gaussians

* Subgroup discovery algorithms: find structure
in big data and analyze what is behind.

Drawing Causal Inference from Big Data
(Scientific Insight) -- can we trust a prediction?

NOVEL MATERIALS DISCOVERY

Correlation between d and P, i.e. P is a function of d, P(d),
reflects causal inference

if it is based on sufficient information(*) :
There are four possibilities (types of causality) behind P(d): §

1. d - P : P “listens” to d Judea Pearl

2. A->d and A - P :Thereis no direct connection between d and P, but
d and P both “listen” to a third “actuator”

3. P>d :d “listens”toP

4. There is no direct connection between d and P, but they have a

common effect that listens to both and screams: “l occurred” (Berkson
bias; Judea Pearl)

) Construct d with scientific knowledge (prejudice?), or use “big data” for {P; }.

16
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EPPO O SO Drawing Causal Inference from Big Data
.NOMAD- - . g : e
e (Scientific Insight) -- can we trust a prediction?
LASSO has provided us with an equation for the quantitative energy difference:
EA(B) — IP(B) o |7s(A) = 7, (B))
rp(A)? Nkl exp(rg(A)) +

“ o m®

AE = 0.108
. ~ “'.p(B) - ’s(B)‘ .
+  3.766 — 0.0267
exp(rqa(A))
This is an equation, not a scientific law:

Case #2:
Nuclear numbers Z,, Zg — our descriptor
many-body Hamiltonian — energy differences

a mapping exists, even a physical intuition exist, but AE
does not listen directly to the descriptor (intricate causality)

The NOMAD Laboratory

A European Centre of Excellence

NOMAD develops a Materials Encyclopedia and Big-Data
Analytics and Advanced Graphics Tools for materials science

and engineering.
‘ w

@ o

The amount of different materials is huge.
However, the number of materials that exhibit a
certain function, is rather small, i.e. the space of
chemical compounds is sparsely populated.

We need to develop domain-specific compressed-
sensing and machine-learning tools.

b

big-data analytics in
materials science

Relevance ofa
new technology

17
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The NOMAD Laboratory

A European Centre of Excellence

NOMAD develops a Materials Encyclopedia and Big-Data
Analytics and Advanced Graphics Tools for materials science
and engineering.

J w

I y big-data analytics in

© &0 materials science
v O
S

J A §_§ Perception

(S]
The amount of different materials is huge. g9
However, the number of materials that exhibit a - 2
certain function, is rather small, i.e. the space of e c

|
we are probably here

chemical compounds is sparsely populated.

We need to develop domain-specific compressed-
sensing and machine-learning tools.

18



