New vistas on strong correlation
from symmetry projection
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Weak versus strong correlation:
focus on pair-pair correlations

- Weak correlation:

- The independent e- picture is a good approximation.
- A mean-field approach yields a good starting point.
- Electrons pairs can be localized or delocalized.

- But correlations between pairs are weak.

- Strong correlation:

- Kinetic energy and Coulomb repulsion compete.

- Degeneracy (or near-degeneracy) is rampant.

- Electrons display collective behavior.

- Correlations between pairs are strong.

- Equal state occupation (large entanglement entropy)



Weak correlation paradigm

in quantum chemistry:

single reference

coupled cluster theory



CC theory

* Coupled Cluster theory is based on particle-hole excitations,
singles + doubles + triples +.. out of a reference det |0>

T =TT, 4T, . T, =) tciciec,
ijab
'W)=e'|0) He' |0)=Ee' |0)

i,j :occ; a,b:unocc in reference det |0>

* Hamiltonian is similarity transformed and cluster correlation
amplitudes are determined by left projection

* Let's consider T; = O (Brueckner orbitals) for simplicity

<2|H|0>

H=e¢THe'; H|0)=E[0): E=(0[H|0); 0

* CCenergy is linear in T,
* Doubles residual is quadratic in T, and linear in T; and T,
* If we were given T; and T, we could have an exact CCD theory



Desiderata

We want good quantum numbers, so we will do a symmetry
adapted theory.

We want a T, only theory to keep cost down.

We want a similarity fransformation theory (canonical
transformation) to remain size extensive.

CCSD(T) is the "gold standard” for weak correlation where
T, = 0 and quadruples C, = 3(T,)?2 but for strongly
correlated systems where collective excitations become
important, T, becomes large & single-reference CC falls dead

We will challenge the notion that EXP is the best optionina T,
only theory when strongly correlated.

We will model T, from T, using symmetry collective states



Hubbard model
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U=0 => RHF isexact

U/t small => weakly correlated

U/t large => strongly correlated

Exact solution known in 1D => Bethe ansatz

In repulsive model (U>0), RHF spontaneously breaks
spin symmetry but does not break number symmetry

Model has a local interaction but yields long-range
entanglement for large U



Energy (t)

CC catastrophic failure

1D Hubbard ring (PBC); 10 sites; half-filling.
As U/t increases, the system gets strongly correlated.
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=12 I . | | . | . | by symmetry

U/t
CCDT, CCDTQ... all fail similarly
Unrestricted CC is fine but we lose good quantum numbers




Outline

Understanding why symmetry adapted CC
theory fails under strong correlation

Understanding the crucial role of collective
states arising from symmetry degeneracies
which cannot be neglected

Marrying CC theory with symmetry projection:
similarity transformation theory with non-
exponential correlator (PoST)



strong correlation and

pair excitations



Seniority (£2) vs. p

excitations
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L. Bytautas, T. M. Henderson, C. A. Jimenez-Hoyos, J. K. Ellis, and G. E. Scuseria, J. Chem. Phys. 135, 044119 (2011)




DOCI : seniority zero full CI

O | | | | 1+ I | 1
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Energy (t)

14 + 1

U/t

Good news: pair excitations to all orders do not break down

Bad news: DOCI has combinatorial cost -> doable only for small systems




pair coupled cluster theory

Lots of pair theories in the literature...
What is different about this one ?

* Matches DOCI for repulsive interactions
* Mean-field O(N3) computational cost
* It does not fail in the strong correlation regime




pCCD describes strong correlation

1D Hubbard ring; 10 sites; half-filling

Energy (t)

U/t

A combinatorial cost wave function (DOCI)
is remarkably well approximated by O(N3) pCCD




pair CCD

°* CCD theory with a diagonal singlet-paired excitation operator

Tz = Ztiac;racgﬂciﬂcia :Z tia PaTPi
1a Ia

* A simpler version of CCD with only O(N?) amplitudes

* Bad news:
(1) Not a good starting point for breaking pairs
(2) It does not work for strongly correlated attractive systems

WHY?



Broken-pair correlations

frozen-pair (fp) CCSD approach:

- Do pCCD with optimized orbitals (oo-pCCD)
- Freeze the pair amplitudes

- Solve for all other CCSD amplitudes.

exp(T, +T,) = exp[T, + T, (pairs) + T,(broken pairs)]
T, : changes seniority by 2

T,(pairs): preserves seniority

T, (broken pairs): changes seniority by 2 or 4

T. Stein, T. M. Henderson, and 6. E. Scuseria, J. Chem. Phys. 140, 214113 (2014).
T. M. Henderson, I. W. Bulik, T. Stein, and 6. E. Scuseria, J. Chem. Phys. 141, 244104 (2014).




Freezing & breaking ph pairs

1D Hubbard chain; 10 sites; half-filling

E/t

T,=0
by symmetry

U/t

fpCCD breaks down in the strongly correlated regime
T. Stein, T. M. Henderson, and G. E. Scuseria, J. Chem. Phys. 140, 214113 (2014)




Why is pair-CCD not a good

starting point for breaking pairs?



Insights from Attractive Pairing
(reduced BCS Hamiltonian)

H=>¢N -G P'P

P Pq
P! =CZTC£¢, N, :C;TCpT +C;¢Cp¢
PP/ |=6,(1-N,)
:Npﬂpqq:25@(1':)(;r

Exactly solvable model by Bethe ansatz (Richardson, 1960s)
Eigenfunctions are antisymmetrized products of geminals

In weakly correlated limit, geminals are all different => pCCD

In strongly correlated limit, geminals are all the same => AGP/PBCS



Attractive Pairing
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pCCD fails catastrophically past the number symmetry breaking point.
pCCD works well when pairs repel rather than attract (rep. Hub 1D).

T. M. Henderson, G. E. Scuseria, J. Dukelsky, A. Signoracci, and T. Duguet, Phys. Rev. C 89, 054305 (2014).

T. M. Henderson, I. W. Bulik, and G. E. Scuseria, J. Chem. Phys. 142, 214116 (2015).



PBCS works well for large attractive G

CCD ——
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* PBCS = number projected BCS (condensate of fermion pairs)
does not work well for weak correlation.
* CCD is the theory of weak correlation




Insights from
symmetry breaking

& restoration



Symmetries, degeneracies & strong correlation

Symmetry implies degeneracy:

if Hg=gH (where gis a symmetry)
then Hg¥ =gHY =g EY = E g¥
Y and g¥ have the same energy E

Degeneracy leads to strong correlation

Dealing with strong correlation cheaply

Unrestricted formalism with broken-symmetry o BCS pecD
orbitals yields some strong correlation cheaply. & ::f

But symmetry breaking is unphysical in finite b
systems. Symmetries should be restored. el T




Symmetry breaking & restoration

Spontaneous symmetry breaking in RHF flags the importance of
degeneracies.

When symmetries break, we can restore them by projection.

It is much better to break symmetries and then restore them self-
consistently : E ~ <O| Pt H P |0> and 8E=0 where |0> is optimized.

Equivalent to CI between non-orthogonal determinants but done through
integration of symmetry coherent states (Lie group).

Our work (2011-2015): we deliberately break and restore:
Continuous: Number U(1) and Spin (S2 and S,) SU(2)
Discrete: Complex Conjugation (K), Point Group (PG)
Discrete in lattices: Linear Momentum (LM), Space Group (SG6=LM+PG)




Spin Projection

Lowdin's approach (1955): a multi-body projection operator that
leads to a complicated set of equations

s ST o1+
i _1,;[5(5+1)—|(|+1)

Alternative: Rotational invariance in spin space

jdﬂsmﬁ d.(f) g/

/F;fnm _ZS—I—I

/F\3(Q) —_ eIaSz eIﬂSy e

This leads to a simple set of equations at ~HF computational cost.

The language of SB&R is generalized coherent states, non-orthogonal
states and collective excitations.

2r R
Number Projection : ||p, = L [dp e
2




N,: triple-bond dissociation

Ns dissociation min basis
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Break all symmetries & restore them: KSNUHFB ~ FCI quality
Complex conjugation (K), spin (S), and number (N) broken & restored




N,: triple-bond dissociation

Ny dissociation /| cc-pVDZ
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Away from minimum bases, weak residual correlations appear.
It would be great if we could marry SB&R w/ CC theory.




SB&R problem: not size extensive

Equidistant H atom rings @ 1.80 Bohr with minimum basis

-0.510

-0.515

—~ -0.520 .
=
=
P
= 0525 .
-0.530 + —A— RHF -
—A— UHF
—A— SUHF (PAV) |
—A— SUHF (VAP)
-0.535 L | L | L | L | L | L |
0.00 0.02 0.04 0.06 0.08 0.10 0.12
1/n

Spin projection (SUHF) yields zero correlation energy
per electron in infinite systems




How can we marry SB&R
with CC theory?

Two dissimilar theories:

* CC is not variational and size-extensive.

* PBCS/PHF is variational and size intensive.

* For the attractive pairing Hamiltonian these
two theories are exact on opposite limits.

* Can we merge them on a common ground?



PBCS and pair-CCD

* The broken symmetry BCS state can be obtained by a gpThouless:
|BCS) = exp(Q, 255 9)

* Written in the particle-hole basis BCS becomes:

IBCS) ~ exp(D_ X, P +¥;P)|RHF) = exp(>_x,P))exp(D_ y;P)|RHF)

* The projected state is the diagonal term:

1 . !
\PBCS>zZn:n—!2£iZa:ti P;e] |RHF)
* And suggests an interpolating ansatz of the form:

N apip |
\POST>~;W£§Q PaPij |RHF)

* pair-CCD is o=1 and PBCS is a=2 (Bessel parametrization of wave op.)
* Similar arguments can be made for spin projection




PoST theory

Polynomial Similarity Transformation uses a non-exponential
correlator based on doubles only

FM=1+T+aT’+.. (a=2"), T=) t’clclcc

Hamiltonian is similarity transformed and correlation ampll‘rudes are
determined by left projection (CC-like)

H=F ' (T)HF(T), E=(0/H|0), 0=(2|H|0)

o is determined via variance minimization of quadruples residual
Because F(T) is not exp(T), this theory contains unlinked terms

H=H+[H,T]+(1-a)[[H,T].T |+(2a-1)T[H,T]

Renormalization of 2" commutator coefficients and unlinked terms
take care of symmetry collective states built out of RHF as ph
excitations.



PoST theory in a nutshell
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We present a similarity transformation theory based on a polynomial form of a particle-hole pair excitation
operator. In the weakly correlated limit, this polynomial becomes an exponential, leading to coupled cluster
doubles. In the opposite strongly correlated limit, the polynomial becomes an extended Bessel expansion and
yields the projected BCS wave function. In between, we interpolate using a single parameter. The effective
Hamiltonian is non-Hermitian and this polynomial similarity transformation theory follows the philosophy of
traditional coupled cluster, left projecting the transformed Hamiltonian onto subspaces of the Hilbert space in
which the wave function variance is forced to be zero. Similarly, the interpolation parameter is obtained through
minimizing the next residual in the projective hierarchy. We rationalize and demonstrate how and why coupled
cluster doubles is ill suited to the strongly correlated limit, whereas the Bessel expansion remains well behaved.
The model provides accurate wave functions with energy errors that in its best variant are smaller than 1% across
all interaction strengths. The numerical cost is polynomial in system size and the theory can be straightforwardly
applied to any realistic Hamiltonian.

Interpolation between CCD and SB&R in the CC framework




Attractive Pairing
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PoST energy error is ~1%; wavefunction is very accurate

(o is determined via variance minimization of quadruples residuals)



Why does CCD fail?
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In strongly correlated limit, all determinants have weight
equal to 1 because of intfermediate normalization




RMS ¥

Full CC reverse-engineered from FCI
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Full-CC is numerically ill-posed in the strongly correlated limit.
No natural truncation.




RMS Y

Bessel (PBCS) parametrization
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Bessel is fine and does for strong correlation
what CCD does for weak correlation




How does PoST perform
for strongly correlated

repulsive Hubbard?

(Hamiltonian breaks seniority)
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PoST curves cross the exact energy only once




R, paired

Optimum o by residual minimization

Hubbard 1D, 16 sites, half-filled, repulsive & attractive
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SO(4) symmetry: ph transformation maps H(-U) onto H(+U) @ 3 filling




E per site
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Hubbard 1D, 16 sites, half-filled.
PoST: High quality results. No breakdown.




CCD catastrophic failure
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fpCCD: onset of catastrophe is at U much larger than CCD but fpCCD fails too.
This means that pCCD is not a good starting point for breaking pairs. Why?
Let's reverse engineer FCI and look at the exact pair amplitudes.

They are not close to pCCD; they are rather similar to those in PoST, which
contain a good dose of PBCS.

Conjecture: in a strongly correlated repulsive H, ph excitations that break
pairs renormalize the bare repulsive pairing interaction and develop attractive
channels, thus pCCD/CCD fails and PoST is needed.



Conclusions

Symmetry implies degeneracy and degeneracy implies
strong correlation.

Strong correlation from symmetry degeneracies
implies factorization of connected high excitations:
T4, Tg.... dominated by disconnected terms that are
not described by a T, exponential

We are incorporating these factorizations into the
CCD formalism:

Fo(To)=1+T,+ 2 (T,)2+.. (number projection)
Fs(T,)=1+T,+3/10(T,)2+ .. (spin projection)
EXP(T,)=1+T,+ 4 (T,)2+.. (dynamical corr.)
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