Topological Insulators and Thermoelectric Effects

Yong Xu (徐勇)

Department of Physics, Tsinghua University, China

Center for Emergent Matter Science, RIKEN, Japan

Thermoelectric (TE) effects

Key advantages

No moving parts, silent and reliableScalable (power from mW to MW)

TE applications

Wide applications but low efficiency!

TE figure of merit (zT)

Improving *zT* is a grand challenge in material science!

New materials prompt TE developments

Early stage (1820~1830) Metal: *zT*<<1 (thermocouple only)

Mature period (1950~1960) Semiconductor: *zT*~1 (power generation and cooling)

Revival (1990~present) Nano-material: 1 < *zT*< 3

New development:

Topological insulator: zT > 3?

Topological insulators (TIs)

Topological insulator

Unusual surface/edge states

M. König, et al. Science 318, 5851 (2007).

Majorana fermions

Magnetic monopole

Quantum anomalous Hall effect

X. Qi, et al. Science 323, 5918 (2009).

C. Chang, et al. Science 340, 6129 (2013).

Many TIs are excellent TE materials!

Material examples:

 $Bi_{x}Sb_{1-x}$ $Bi_{2}Te_{3}$, $Bi_{2}Se_{3}$, $Sb_{2}Te_{3}$, $Bi_{2}Te_{2}Se$, $Bi_{2}Te_{2}S$, $Tl(Bi,Sb)(Te,Se,S)_{2}$, $Ge_{1}Bi_{4}Te_{7}$, $Ge_{2}Bi_{2}Te_{5}$, $Ge_{1}Bi_{2}Te_{4}$, $PbBi_{2}Se_{4}$, $Pb_{1}Sb_{2}Te_{4}$, $ZrTe_{5}$, $HfTe_{5}$, ternary Heusler compounds, filled skutterudites,

Material traits	TI	TE
Heavy elements	Strong SOC	Low thermal conductivity
Narrow band gap	Band inversion	Large power factor (σS^2)

How to use the novel TI states for TE?
Are there any fundamentally new features in TI?

Definition of zT

Inexplicit assumption:

zT is an intrinsic material property, independent of geometry size.

Not true for TIs!

The definition of zT has to be changed in TI

Bulk & boundary states: *different geometry dependence*

The general definition is required to describe TI!

```
YX et al. PRL 112, 226801 (2014).
```

Relation between the two definitions

zT then will be independent of geometry size.

zT is size-dependent in TI!

Two mechanisms induce size dependence of *zT*:
(1) Ohm's or Fourier's scaling laws fail.
(2) *S* depends on the geometric size.

Both mechanisms take effect in TI!

Improve *zT* **by optimizing geometry!**

2D and 3D TIs

Spin-momentum locked (helical) boundary states:

- Backscattering is forbidden.
- Scatterings at $\theta \neq 180^\circ$ are allowed in 3D TIs!

Electron conduction without dissipation

The QAH effect (our theoretical works):Magnetic TI Cr-doped Bi2(Se,Te)3PRL 111, 136801 (2013).Ferromagnetic CdO/EuO quantum wellPRL 112, 096804 (2014).Magnetic doped p-n junction quantum wellPRL 112, 216803 (2014).

Search for large-gap QSH insulators (2D TIs)

Typical 2D TIs: quantum wells

B. A. Bernevig, *et al.* Science **314**, 1757 (2006).
M. Koenig, *et al.* Science 318, 766 (2007).
C. Liu, *et al.* Phys. Rev. Lett. **100**, 236601(2008).
I. Knez, *et al.* Phys. Rev. Lett. **107**, 136603 (2011).

Low working temperature (<10 K) due to the small band gap!

A new material class of "stanene"

Quantum TI-FET and piezotronic devices

Topological bit: **ON/OFF** (with/without the edge states) Controlled by topological phase transition

Nature Mater. Invited Progress Article (under review).

Recent progresses of stanene research

[1] **YX** *et al.*, PRL 111, 136804 (2013).

- [2] **YX** *et al.*, PRL 112, 226801 (2014).
- [3] J. Wang, YX, et al., PRB 90, 054503 (2014).
- [4] S.-C. Wu, et al., PRL 113, 256401 (2014).
- [5] F. Zhu, W. Chen, YX, et al., Nature Mater. 14, 1020 (2015).

[6] J. Deng, YX, et al. (in preparation).

[7] **YX** *et al.*, PRB 92, 081112(R) (2015).

Epitaxial growth of two-dimensional stanene

Fengfeng Zhu^{1†}, Wei-jiong Chen^{1†}, Yong Xu^{2,3,4†}, Chun-lei Gao^{1,5}, Dan-dan Guan^{1,5}, Canhua Liu^{1,5}, Dong Qian^{1,5}*, Shou-Cheng Zhang^{2,3,4} and Jin-feng Jia^{1,5}*

MBE growth of monlayer stanene@ $Bi_2Te_3(111)$

Buckled honeycomb lattice (confirmed by STM).

ARPES: before and after the growth of stanene

Two features (agree with DFT):
Electron transfer from stanene to Bi₂Te₃(111)

Two hole bands given by stanene

Stanene becomes metallic due to substrate effects!

Large-gap QSH states in stanene grown on substrate

Stanene@SrTe(111)-Te

QSH gap of stanene grown on substrates:

- SrTe: 0.26 eV
- PbTe: 0.09 eV
- BaSe: 0.24 eV
- BaTe: 0.30 eV

Awaiting for following experiments!

YX *et al.*, PRB 92, 081112(R) (2015).

Critical issue of using TI for TE

Two dimensional TI

 $-\Delta \cdot \frac{E}{\tau_2}$

Helical edge states: favorable for electric conduction

Gapless band structure: disadvantageous for Seebeck

Open a hybridization gap

P. Ghaemi, et al., PRL 105, 166603 (2010).

Better ways? (use intrinsic features of TI)

Two mechanisms to enhance S

The lifetime of TI edge states is strongly energy-dependent!

Large S (from gapless bands) with an unusual sign

Improve *zT* of TI by geometry optimization

YX et al. PRL 112, 226801 (2014). (Editors' suggestion)

Why can zT be high in TIs?

Effective decoupling between electrons and phonons

"Electron-Crystal Phonon-Glass"

Main conclusions

Predictions for TIs: YX et al. PRL 112, 226801 (2014).
Strong size dependence of zT
Anomalous Seebeck effect (sign anomaly)

Apply to other topological materials, including *topological crystalline insulators* and *quantum anomalous Hall insulators*.

Graphene-based TI: $zT \sim 3$ at $T \sim 40$ K P.-H. Chang, *et al.* Nano Lett., **14**, 3779 (2014).

Await for experimental verification!

Sign anomaly of Seebeck and Hall coefficients

Our experiment: 5QL $(Bi_{1-x}Sb_x)_2Te_3$ (thin film of 3D TI)

J. Zhang, X. Feng, YX et al. PRB 91, 075431 (2015).

Bulk-to-surface transitions of Seebeck and Hall effects

Bulk-to-surface transition driven by tuning $\sigma_{\rm b}/\sigma_{\rm s}$

Bulk-to-surface transitions of Seebeck and Hall effects

2D metallic surface states: large μ and small *S*. Very likely to reach region II (*S*>0, $R_{\rm H}$ <0)!

Strong Size effects in TI thin films

(a)

 $R_{\square}(k\Omega)$ - 3

(b)

 $S(\mu V/K)$

(c) 6

Power Factor $(\mu WK^{-2}cm^{-1})$

2

-20

-40

-60

-80

-100

4

3

2

0

0

5 QL

QL

10 QL 15 QL 20 QL

30 QL

50

100

150

T (K)

200

250

300

5QL

30QL

Exp. on 3D TI Bi₂Se₃ thin films

M. Guo, Z. Wang, YX et al. New J. Phys. 18, 015008 (2016).

S is suppressed by the surface states

Outlook

Future: more research on 2D TI

search large-gap materials, like stanene.

F. Zhu, W.-J. Chen, **YX** *et al*. Nature Mater. 14, 1020 (2015). **YX** *et al.*, Phys. Rev. B 92, 081112(R) (2015).

Acknowledgement

Prof. SC Zhang (Stanford)

Prof. J. Jia Prof. D. Qian (Shanhai Jiao Tong)

Prof. Y. Wang

Prof. Q. Xue (Tsinghua)

Prof. K. He

Thanks for your attention!