

The 1st USTC-FHI workshop on the Frontiers of Advanced Electronic Structure Methods Hefei, June 14-18, 2016

GW with LAPW+HLOs: Challenges for Numerically Accurate GW Calculations

Hong Jiang (蒋鸿)

College of Chemistry, Peking University

June 18, 2016

Introduction

- *GW* with LAPW+HLOs for *sp*-semiconductors
- GW with LAPW+HLOs for *d* and *f*-systems
- Concluding remarks

Introduction: the GW approach to electronic band structure of materials

Why are electronic band structure important?

Electronic band structure

Yu and Cardona, Fundamentals of Semiconductors (2003)

Mean field approaches

Quasi-particle theory

Quasi-particle equation

$$\left[-\frac{\nabla^2}{2} + V_{\text{ext}}(\mathbf{r}) + V_{\text{H}}(\mathbf{r})\right]\Psi_{n\mathbf{k}}(\mathbf{r}) + \int d^3\mathbf{r}' \Sigma_{\text{xc}}(\mathbf{r}, \mathbf{r}'; E_{n\mathbf{k}})\Psi_{n\mathbf{k}}(\mathbf{r}') = E_{n\mathbf{k}}\Psi_{n\mathbf{k}}(\mathbf{r})$$

Hedin equation and GW approximation

$$\left[-\frac{\nabla^2}{2} + V_{\text{ext}}(\mathbf{r}) + V_{\text{H}}(\mathbf{r})\right] \Psi_{n\mathbf{k}}(\mathbf{r}) + \int \Sigma(\mathbf{r}, \mathbf{r}'; E_{n\mathbf{k}}) \Psi_{n\mathbf{k}}(\mathbf{r}') d^3\mathbf{r}' = E_{n\mathbf{k}} \Psi_{n\mathbf{k}}(\mathbf{r})$$

L. Hedin Phys. Rev. 139, A 796 (1965); Aulbur et. al. Solid State Physics (2000)

G₀**W**₀ approach

$$\begin{bmatrix} -\frac{\nabla^2}{2} + V_{\text{ext}}(\mathbf{r}) + V_{\text{H}}(\mathbf{r}) + V_{\text{xc}}(\mathbf{r}) \end{bmatrix} \psi_{n\mathbf{k}}(\mathbf{r}) = \epsilon_{n\mathbf{k}}\psi_{n\mathbf{k}}(\mathbf{r})$$
$$E_{n\mathbf{k}} = \epsilon_{n\mathbf{k}} + \Re \left[\langle \psi_{n\mathbf{k}} | \Sigma(E_{n\mathbf{k}}) - V_{\text{xc}}^{\text{DFT}} | \psi_{n\mathbf{k}} \rangle \right]$$

Implementation: GW with Augmented Planewaves

GAP (GW with Augmented Planewaves)

- Based on LAPW (all-electron, no pseudopotentials !)
- ◆ Interfaced with WIEN2k (P. Blaha et al. (2001))

FHI-gap: H. Jiang, R. I. Gomez-Abal, X. Li, ..., M. Scheffler, Computer Phys. Commun., 184, 348 (2013).

Ln₂O₃ band gaps: GW₀@LDA+U vs Expt.

H. Jiang *et al.* **Phys. Rev. Lett. 102**, 126403(2009); *Phys. Rev. B* **86**, 125115(2012).

GW for solar materials: TMDC and ATaO₃

Jiang, H., J. Chem. Phys. , 134,
204705 (2011); Jiang, H., J. Phys.
Chem. C, 116,7664 (2012).

H. Wang, F. Wu & H.
Jiang*, J. Phys. Chem.
C, 115, 16180, (2011)

GW with LAPW+HLOs for sp-semiconductors

H. Jiang and P. Blaha, Phys. Rev. B, 93,115203 (2016).

"The ZnO puzzle" (1)

H. Jiang (2009)

"The ZnO puzzle" (2)

Shih, et al, PRL 105, 146401 (2010).

"The ZnO puzzle" (3)

M. Stankovski, et al, PRB 84, 241201(R) (2011)

"The ZnO puzzle" (4)

C. Friedrich et al, PRB 83, 081101(R) (2011)

Linearized Augmented Planewaves (LAPW)

Local orbital (LO) basis in LAPW

D. Singh, Phys. Rev. B, 43, 6388(1991)

LAPW with high-energy LOs (LAPW+HLOs)

$$\phi_{\text{LO}}(\mathbf{r}) = \begin{cases} 0 & (\mathbf{r} \in I) \\ [A_{lm}^{\alpha} u_l(r^{\alpha}; E_l) + B_{lm}^{\alpha} \dot{u}_l(r^{\alpha}; E_l) + C_{lm}^{\alpha} u_l(r^{\alpha}; E_l^{(2)})] Y_{lm}(\hat{\mathbf{r}}^{\alpha}) & (\mathbf{r} \in S_{\alpha}) \end{cases}$$

 n_{LO} : additional number of radial nodes in highest-energy LO $l_{\text{max}}^{(\text{LO})}$: maximal *l* of the angular channels with HLOs

Effects of HLOs: ZnO (1)

Effects of HLOs: ZnO (2)

Effects of HLOs: ZnO (3)

Effects of HLOs: ZnO(4)

 $N_{\rm k}=2x2x2$

Effects of HLOs: ZnS and TiO₂

 $N_{\rm k}$ =2x2x2 $N_{\rm k}$ =1x1x2

GW based on LAPW with HLOs: other systems

Effects of HLOs added to high-/ channels

GW based on LAPW with high-energy LOs

GW based on LAPW with high-energy LOs

Systems	Expt.	PBE	G_0W_0	GW_0	G_0W_0	GW_0	δE_g	$GW_0(\text{NC-PAW})^a$
			$n_{ m LO}=0$		$n_{LO} = 5$		A	
С	5.48	4.16	5.49	5.66	5.69	5.87	0.21	5.81
Si	1.17	0.56	1.03	1.09	1.12	1.19	0.10	1.21
SiC	2.42	1.36	2.23	2.36	2.38	2.53	0.17	2.60
BN	6.4	4.46	6.04	6.27	6.36	6.61	0.34	6.66
BP	2.4, 2.1	1.34	2.01	2.09	2.11	2.20	0.11	
wz-AlN	6.2-6.3	4.14	5.60	5.88	5.80	6.11	0.23	
AlP	2.51	1.57	2.25	2.36	2.37	2.51	0.15	2.62
AlAs	2.1	1.34(0.10)	1.94	2.03	2.06	2.17	0.14	2.35
AlSb	1.6	1.03(0.22)	1.40	1.45	1.50	1.57	0.12	1.76
GaN	3.30	1.68	2.78	2.96	3.00	3.21	0.25	3.48
GaP	2.26	1.66	2.05	2.12	2.21	2.30	0.18	2.40
GaAs	1.42	0.42(0.11)	1.31	1.39	1.15	1.23	-0.16	1.21
GaSb	0.81	-0.12(0.23)	0.64	0.71	0.47	0.51	-0.20	0.51
ZnO	3,4	0.70	2.05	2.41	2.78	3.32	0,91	
wz-ZnO	3.4	0.83	2.24	2.59	3,01	3.55	0,96	3.40
ZnS	3.68	2.07	3.15	3.35	3.35	3.61	0.26	3.72
ZnSe	2.7	1.15(0.13)	2.23	2.41	2.34	2.54	0.13	2.66
ZnTe	2.26	0.98(0.27)	1.95	2.08	1.89	2.02	-0.06	2.15
wz-CdS	2.49	1.20	2.02	2.18	2.19	2.38	0.20	
wz-CdSe	1.75	0.55(0.12)	1.29	1.42	1.39	1.54	0.12	1.60
CdTe	1.43	0.48(0.28)	1.20	1.30	1.23	1.34	0.04	1.44
LiF	14.20	9.28	12.36	13.98	14.27	15.13	1.15	
MgO	7.83	4.75	7.08	7.52	7.50	8.01	0.49	8.03
MAE		1.54	0.47	0.25	0.24	0.17		
MARE(%)		48	14	9	9	5	₩.	

GW based on LAPW with high-energy LOs

Systems	Expt.	PBE	G_0W_0	GW_0	G_0W_0	GW_0	δE_g	GW ₀ (NC-PAW) ^a
			$n_{ m LO}=0$		$n_{\rm LO} = 5_{A}$			
С	5.48	4.16	5.49	5.66	5.69	5.87	0.21	5.81
Si	1.17	0.56	1.03	1.09	1.12	1.19	0.10	1.21
SiC	2.42	1.36	2.23	2.36	2.38	2.53	0.17	2.60
BN	6.4	4.46	6.04	6.27	6.36	661	0.34	6.66
BP	2.4, 2.1	1.34	2.01	2.09	2.11	2.20	0.11	
wz-AlN	6.2-6.3	4.14	5.60	5.88	5.80	6.11	0.23	
AlP	2.51	1.57	2.25	2.36	2.37	2.51	0.15	2.62
AlAs	2.1	1.34(0.10)	1.94	2.03	2.06	2.17	0.14	2.35
AlSb	1.6	1.03(0.22)	1.40	1.45	1.50	1.57	0.12	1.76
GaN	3.30	1.68	2.78	2.96	3.00	3.21	0.25	3.48
GaP	2.26	1.66	2.05	2.12	2.21	2,30	0.18	2.40
GaAs	1.42	0.42(0.11)	1.31	1.39	1.15	1.23	-0.16	1.21
GaSb	0.81	-0.12(0.23)	0.64	0.71	0.47	0.51	-0.20	0.51
ZnO	3.4	0.70	2.05	2.41	2.78	3,32	0.91	
wz-ZnO	3.4	0.83	2.24	2.59	3.01	3.55	0.96	3.40
ZnS	3.68	2.07	3.15	3.35	3.35	3.61	0.26	3.72
ZnSe	2.7	1.15(0.13)	2.23	2.41	2.34	2,54	0.13	2.66
ZnTe	2.26	0.98(0.27)	1.95	2.08	1.89	2.02	-0.06	2.15
wz-CdS	2.49	1.20	2.02	2.18	2.19	2.38	0.20	
wz-CdSe	1.75	0.55(0.12)	1.29	1.42	1.39	1.54	0.12	1.60
CdTe	1.43	0.48(0.28)	1.20	1.30	1.23	1.34	0.04	1.44
LiF	14.20	9.28	12.36	13.98	14.27	15.13	1.15	
MgO	7.83	4.75	7.08	7.52	7.50	8.01	0.49	8.03
MAE		1.54	0.47	0.25	0.24	0.17		
MARE(%)		48	14	9	9	\$		

GW with LAPW+HLOs for *d*- and *f*-electron systems

H. Jiang, in preparation (2016).

GW@LDA+U for f-electron systems: CeO_x

H. Jiang et al. Phys. Rev. Lett. 102, 126403(2009).

GW@LDA+U for f-electron systems: UO,

H. Jiang (unpublished)

Effects of HLOs: CuCl

Effects of HLOs: FeS₂

Effects of HLOs: Ce₂O₃

Effects of HLOs: Ib-VII semiconductors

(N_k =4x4x4, using experimental lattice constants)

Concluding remarks

- Numerically accurate *GW* results are not easy to obtain, especially for some systems (ZnO).
- Both the accuracy and completeness of unoccupied states are important.
- The effects of including HLOs are more dramatic for *d* and *f*-electron systems, and the energy position of occupied *f*-states are greatly improve.
- GW based on LAPW+HLOs can be used to as the benchmark

Collaborators:

Funding: NSFC

- Prof. Peter Blaha (TUW)
- Prof. M. Scheffler (FHI-Berlin)
- Dr. R. I. Gomez-Abal (FHI-Berlin)
- Dr. Xinzheng Li (now at PKU)
- Dr. Patrick Rinke (FHI-Berlin)

Acknowledgement

Thank you for your attention!

