Solar Cells

Clas Persson

Dept of Physics, University of Oslo, Norway & Dept Material Science and Engineering Royal Institute of Technology, Stockholm, Sweden

World Energy Consumption

	2012	2050	-
People:	7 bil	12 bil	
Energy:	15 TW	30 TW	

Can we use only nuclear power ??

We will need ~**30 TW** in 2050

One reactor ~1 GW

~30,000 nuclear reactors (today ~450 reactors)

..... 2 new reactors every day over 40y !!

Different alternatives

We will need ~**30 TW** in 2050

Required land area

Six power plants can cover our need: 500 x 500 km² each Problem is distribution, losses and starage

Average sunlight power: ~1 kW/m²

3 types of solar-energy technologies

1. Solar-thermal heat water

2. Solar-chemical H2 from split of water

Power tower in California: 10 MW Steam engine

3. Solar-electricity

photovoltaics or solar cells

~5 kW roof top system

mimic photo-catalyst reaction

What will each person need in 2050?

Sunlight power: ~1 kW/m²

Each person ~3 kW that is, ~3 m² solar cell

In addition, we need energy storage, ie, batteries !

3rd/4th Generation of Photovoltaic Cells

Low-cost and high-efficient solar-cell modules

- High device efficiency: **n = output electric power / input sunlight**
- Low material costs
- Low degradation => Longer life-time of the solar cell panels
- Cost-efficient processing, manufacturing, development, handling
- Low installation costs
- Earth-abundant materials
- Non-toxic elements
- Environment friendly production

3rd generation solar cells

Martin Green, 3rd Generation PV, Springer-Verlag, Berlin, (2003).

Module Cost Outlook: 36 cents/W in 2017

GTM Research, June 2013 Source: *PV Technology and Cost Outlook*, 2013-2017

Primary Category	Secondary Category	Historical Trend (2009- 2012)	Base Case Forecast (2013-2017)
Technology Parameters	Conversion Efficiency (Module)	Average increase of 0.2% absolute per year	0.2% annual increase through 2017 to 16.2%
	Wafer Thickness	180 micron (2009-2012)	Drops to 160 micron in 2015
	Kerf (Sawing) Loss	160 micron (2009-2011) to 145 micron (2012)	Drops to 120 micron in 2015
	Cell-to-Module Loss	Average annual increase of 0.1% absolute	Average annual increase of 0.1% absolute
Capital Equipment Cost	Capex per Watt (Ingot-to- Module)	Annualized decline of 21%	Flat from 2012-2014; increases by 21% in 2015 due to increased automation to counter labor rate
Consumables Pricing	Polysilicon	Dropped from \$80/kg (Q4 2009) to \$18/kg (Q1 2013) - annualized decline of ~40%	Increases to \$22/kg by 2014 and then declines to \$18/kg by 2017
	Metallization Paste	Increased from \$700/kg in 2010 to \$1900/kg in mid- 2011, dropped to \$1000/kg currently	Increases by 5% annually
	Other Consumables	~25-30% annualized decline (wafer), 15-25% decline (module)	Declines by 5% annually
	Silicon	8% annualized decline to 5.3g/W by Q4 2012	6% annualized decline to $4.1g/\mathrm{W}$ in 2017
Consumption	Electricity (Ingot)	4% annual average decline	1% annual average decline
Efficiency	Wafer Slurry	3% annual average decline	17% reduction in 2015 with adoption of thinner sawing wire, flat thereafter (2% annualized decline)
	Silver	20% annual average decline	4% annual decline
Labor	Labor Rates	${\sim}10\%$ annual increase	~10% annual increase
	Labor Intensity	3% annual decline due to increases in tool throughput and conversion efficiency	25% reduction from 2014-2015 due to increased automation
Manufacturing Scale	Plant Capacity	Increased by ~700 MW annually to 2.5 GW in 2012	Increase by 500 MW annually to 5 GW by 2017

Evolution of global PV annual installations 2000-2012 (MW)

* From 2012 onwards, these figures are directly integrated into those of the relevant regions.

Source: EPIA, "Global Market Outlook for Photovoltaics 2013-2017", 2013

History <u>PV = Photo+voltaic</u> = convert <u>light</u> to <u>electricity</u>

- **1839**: A. E. Becquerel first recognized photovoltaic effect.
- **1883**: First solar cell built, by Charles Fritts, gold-coated selenium.

- 1941: First silicon-based solar cell demonstrated, by Russell Ohl (70y ago)
- **2013**: Crystalline Si is dominating (80% market).
- Future: More thin-film technologies ?

#1 Crystalline Si

#1 Crystalline Si (pn-junction)

#1 Crystalline Si

Two main problems with c-Si

- 200 μm thick: Much material, and c-Si is costly to produce
- 2) band 1.1 eV Not optimized band gap

#2 Thin-film Si

a-Si (or a-Si:Hi); amorphous silicon,

Low processing temperature (lower cost) Eg = 1.7 eV, better absorber => thinner cell (~1 μ m thin) But much less efficiency (~10%) compared to c-Si (~30%).

nc-Si (microcrystalline Si)

Low processing temperature, but Eg = 1.1 eV

Improved material quality over a-Si

1.8 µm thin with 10.7% efficiency (EPFL Inst of Microengineering, Feb 2013)

#1 Plasmonic solar cells (thin film)

Light scatters through surface plasmon resonance, and get trapped inside a-Si layer. >90% of light can be trapped.

Surface plasmon = collective electron vibration

#2 Other thin-film pn-junction

Two problems with traditional solar cells

#3 Thin-film multi-junction (40%)

Multi-junction cell, InGaAs-based 52% efficiency in 2013 for 3-junction cell

Theoretical limit 31 % for single junction.

50% for 2-junction, 56% for 3-junction,

86% for infinite-junction

Marina S. Leite, et al. APL, 102, 033901 (2013)

Indium is expensive

Thin-film intermediate band (future)

- n ~ 55% (theo), instead of ~31% for single gap cell
- low absorption in QD,
- Extra non-radiative recomb
- difficult to realize a half-filled band wi no tunneling, and ackummulation in IB
- Band (not defect level) to avoid SRH-recomb.

ZnTe:O

50% increase in power conversion efficiency Wang et. al, APL 95, 011103 (2009)

#4. Dye-sensitized solar cell (O'Regan and Grätzel, 1991)

#4 Organic solar cells

100nm TTO 200nm ISE 5.0kV 6.0mm x200k SE(U)

SEM images of MDMO-PPV/PCBM Mozer, CR Chimie, 9, 568 (2006).

Polymers (donor)

Easy to vary gap 1-4 eV, good e-conductor; Localizes e and h. Absorb, confine, and transport e-h excitons

Fullerene (acceptor)

Dissocioation, good e-conductor

Transport via diffusion e-h diffusion lenght ~10nm (needs 100nm for absorption)

- Inexpensive
- Low efficiency (10 %)
- Degradation and instability

Lab Results vs Module Efficiency

A. Saengprajak, Kasel Univ Press also Wikepedia

Solar Cell Glass Market In-depth Analysis 2008-2015F, Feb 2013

Material Properties

What properties do we want (for most solar cells)?

- High absorption in 1.0 < hv < 3.5 eV
- High carrier mobility
- High crystalline stability (long lifetime)
 No deep-level in-gap defects
- Dopability (n- and/or p-type)
- Control of complexes, nanostructures, etc

Material Properties: High absorption

Material Properties: High absorption

* Direct band gaps $(q \sim 0)$ * Good having CBM/VBM a BZ edge instead of at Γ -point, => higher JDOS

High joint DOS -2 < E < 3 eV Many bands Flat bands

Material Properties: High mobility

LDA error of masses

Persson et al. Phys.Rev B 64, 033201 (2001)

Hole masses depends on spin-orbit coupling (SOC)

Christensen, PRB 30, 5753 (1984); Persson et al, PRB. **64**, 033201 (2001); *ibid* **54**, 10257 (1996)

Material Properties: Defects

- Defect involves scattering, and recombinations
- Deep-level in-gap state are normally non-radiative, and transfer energy to heat.
- Defects can diffuse, and form complexes, => degradation, especially at high operating temperature.

Material Properties: Defects

Material Properties: Formation energies

Set up two big supercells: one with V, and one without Calculate total energies. Calculate chemical potential for Cu.

Problem: What is chemical potential for Cu

Formation energy of V(Cu) for different anion-alloys

S-based alloys have higher dHf in Cu-compounds

May reflect the problem with oxygen in chalcopyriten structure

Kumar, Zhao, and Persson. submitted

Because V(Cu) has so low formation energy in CulnSe2, the defect is used as an acceptor in p-type CulnSe2.

What is the ionization energy (= transition energy) of V(Cu) as acceptor.

That is, how much energy does it cost to ionize it ??

= how much energy to trap one electron at the acceptor ??

The transition energy can be defined as the Fermi energy for which dHf(V) = dHf(V;q)

 $0 = E(V;q) - E(V) + q \cdot E_F \implies E_F = [E(V) - E(V;q)] / q$

neutral dHf(V) = [
$$E(V) - TS(V) + \mu_{Cu} \cdot N_{Cu}$$
] - [$E(0) - TS(0)$]
charged dHf(V;q) = [$E(V;q) - TS(V) + \mu_{Cu} \cdot N_{Cu} + q \cdot E_F$] - [$E(0) - TS(0)$]

Cu(InGa)Se2 and Cu2ZnSn(S,Se)4

Cu(InGa)Se2 commercialized

NREL, USA

CISe	= CulnSe ₂
CGSe	= CuGaSe ₂
CIGSe	= Culn _{1-x} Ga _x Se ₂

indium-free

Cu2ZnSn(S,Se)4 under developments

Salomé, et al. Solar Energy Mater & Solar Cells 95, 3482 (2011),

CZTS	= Cu ₂ ZnSn <mark>S</mark> 4
CZTSe	= Cu ₂ ZnSn <mark>Se</mark> 4
CZTSSe	= Cu ₂ ZnSn(<mark>S_{1-x}Se_x)</mark> 4

Puzzeling properties of CIGSe devices, different from Si, GaAs and CdTe devices

- (1) Grain boundaries are harmless for the device !!!
- (2) Best CIGS material is <u>Cu-poor</u> ($[V_{Cu}]$, $[In_{Cu}] \sim 1\%$) polycrystalline, non-stoichiometric, ODP (eg Culn₃Se₅)
- (3) Extremely Cu-poor at surface/interfaces !!!
- (4) CIGSe is typically <u>*p*-type as grown</u> !!!
- (5) <u>CISe can be *n*-type, but CGSe cannot !!!</u>
- (6) Na at grain-boundaries is good for the device !!!
 - 7) Not better efficiency for high Ga content (x>0.30)

rockett.mse.uiuc.edu

TEM image of

grain boundary

Polycrystalline CIS

X-SEM of grain boundary

Y. Yan, et.al, report, NREL/CP-520-33615 (2003)

CISe and CGSe are direct band-gap semicond.

Solar cells need direct-gap materials because photons has q ~ 0

Electronic band-edge structure

blue circles show fitted band structure

Chen and Persson, Thin Solid Films 519, 7503 (2011).

Easy to form cation vacancies and antisites

V_{Cu} and In_{Cu} have very low formation energies in CIGSe

Charge-neutral / isovalent defects [2V_{Cu}+ln_{Cu}]

0 missing/extra electron, that is isovalent

Trends in d-state energies

VBM of CIGS has strong d-character !!

Cation vacancy formation energies

 $\begin{tabular}{|c|c|c|c|} \hline CISe and CGSe & & & \\ \hline V_{Cu} & \sim 0.7 & + \Delta\mu_{Cu} & [eV] & & \\ \hline Persson, et al. PRB 72, 035211 (2005) & \\ \hline \\ \hline \\ \hline V_{Zn} & \sim 3 & + \Delta\mu_{Zn} & [eV] & & \\ \hline Laks, et al. PRB 45, 10965 (1992) & \\ Cheocg, et al. PRB 51, 10610 (1995) & \\ \hline \\ \end{array}$

High quality CIGS is Cu-poor: 23.5 – 24.5 at.% (not 25%)

Charge-neutral complex [2V_{Cu}+ln_{Cu}]

Y. Yan, et.al, report, NREL/CP-520-33615 (2003)

Zhang et al. PRB 57, 9642 (1998).

Calculation S= N_i $e^{-\Delta H_f / k_B T}$ ~ 1–5 % V_{Cu} **Cu-vacancies can**

for example,1) limit n-type doping

experimental observation: CulnSe₂ be n-type, but not CuGaSe₂

Both CISe and CGSe have shallow donors !!!

Trying to n-type dope CGSe

It costs ~0.7 eV to create V_{cu}

But V_{cu} -compensation, the system gains ~ 0.8 eV in CIS ~ 1.4 eV in CGS

Cu-vacancies can

second example,create hole barriers

Modeling of GBs: GB are Cu poor

AFM grain boundaries in CISe rockett.mse.uiuc.edu

nano-voids with (112)-surfaces Lei, JAP 100, 073518 (2006)

Why is GBs good/harmless for the device ? What is happening at GBs ?

Stable polar (112)-surface in CIGSe !!

An atomic-force microscopy image of the urface of a (220)-oriented Cu(In,Ga)Se₂ epitaxial yer grown on GaAs. The surface has ecomposed into two sets of polar (112) planes dentified by their crystallographic orientation).

<u>Theory:</u>

- In CIGSe: *polar* (112) is most stable it is energetically 'cheap' to create V_{cu} [Jaffe and Zunger, PRB 64, 241304 (2001)].
- (112) surface reconstruct by V_{Cu}.
 -(112) surface reconstruct by In_{Cu}.
 [Zhang and Wei, PRB 65, 081402 (2002)].

Hole barrier at the GBs

Persson, et al. APL 87, 211904 (2005)

VBM of CIGS has strong d-character !!

CISe with $2V_{Cu}$ +ln_{Cu}

NaCu at dislocation interface can also repel holes

Na at GB lacks d-orbitals so it creates a hole barrier

PRL 91, 266401 (2003)

Charged defects at GB (J.Y.W. Seto, JAP 46, 5247 (1975))

Neutral GBs now observbed expt

IG. 4. Simulation of the KPFM line profile (solid line) across the grain boundary assuming a 30 meV barrier at the grain oundary. The points show the comparison with the experimenal data.

Siebentritt, et al, PRL 97,146601 (2006)

FIG. 3. KPFM line profile of the work function (a) and topography (b) across the grain boundary. The KPFM scan shows no indication of a space charge at the grain boundary.

FIG. 1 (color online). KPFM measurement on the CuGaSe₂ bicrystal containing a $\Sigma 9$ grain boundary. (a) Topography and (b) CPD showing a dip along the GB. Averaged line profiles across the GB were extracted in the gray box indicated in the images for (c) topography and (d) CPD.

Hafenmeister, et al, PRL 104, 196602 (2010)