

1

Space Charge Transfer at Metal-Oxide Surfaces

Anion vacancy in MgO (F center)

- "The" classical intrinsic defect in compound insulators.
- Rocksalt structure simple.
- Many puzzling properties. For example, the positively charged and the neutral vacancy (F⁺ and F⁰) absorb light at practically identical energies [PRL **108** (2012)].

- Wide-gap oxide insulator: standard DFT may have a problem.
- The observed concentrations of F centers appear to be inconsistent with the experimentally estimated defect formation energy and previous theoretical studies.

	oxygen-rich conditions			
Method	F ^o (eV)	F ⁰ _{surf} (eV)		
PBE-pbc	7.09	6.48		
HSE06-pbc	7.04	6.34		
PBEO-pbc	7.07	6.33		
MP2-pbc	8.05	7.60		
rPT2@PBE-ec	7.45	6.90		
CCSD(T)-ec	7.09	6.52		
PBE-ec <i>correction</i>	-0.09	-0.26		
PBE0-ec <i>correction</i>	+0.07	-0.01		
B3LYP-ec <i>correction</i>	-0.28	-0.28		
we conclude:	6.95 ± 0.1 eV	6.28 ± 0.05 eV		
FHI-aims; <i>periodic boundary conditions (pbc)</i> : 5 layers, 12.5% "coverage". turbomole; embedded clusters (ec): unrelaxed Mg ₆ O ₉				
& Mg₅O₅	eyn es	timate: E ^{0,} 9 29 eV/*		
25 5	cxp: cs	unate. 1 . 5.25 CV		
(#1 C. Cianta Q. J. Courses [#	11 A Kannars D L Kroos and E	D Llondov DDD 1 /1151 /107		

Accurate defect formation energies of O vacancy in MgO bulk and at the (100) surface with reliable error bars.

p-doping gives rise to charged vacancies and a pronounced space-charge layer.

Space-charge layer and associated band bending limit the concentration of vacancies:

# surf. vacancies (%)					
at $n_d = 10^{18}$ cm ⁻³ and 3 O ₂ pressures					
$T(\tilde{K})$	1 atm	1 Pa	10 ⁻⁷ Pa		
400	0.089	0.168	0.242		
1.000	0.319	0.396	0.484		

For *n*-type MgO no vacancies are expected. Thus, the catalytic behavior for *n*- and *p*-type MgO should be very different.

<< F4TCNQ @ZnO: Significant effect of space-charge region on adsorption energies, charge transfer, workfunction. >>

Need exp. information about dopant concentration dependence of energies etc. and doping profiles at the interface.