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Tutorial lecture on 



Chemical reactor 
The reactor is the device within which the physicochemical 
transformations are caused.  
It can assume various shapes and modes of operations and be 
operated in a number of possible environments of pressure and 
temperature. 
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Heterogeneous catalytic reactor 

B A 

REACTOR 

CATALYST SUPPORT: ACTIVE SITES ARE 
DEPOSITED WITHIN THESE POROUS SOLIDS 

Heterogeneous catalytic reactions by their nature involve 
a separate phase of catalyst embedded in a phase of 

reacting species. 
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The observable reaction rate may differ 

substantially from the intrinsic rate of 

chemical transformation under bulk fluid 

phase conditions. 



Catalysts at work 
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How do transport 
phenomena and 
distribution of 
residence times in the 
reactor affect the 
observed reaction rate? 



Outline 

1) Effect of the distribution of the contact times in the 
reactor on the observed reaction rate 
 

2) Inter-phase and intra-phase transport phenomena 
and their impact on the observed reaction rate 
 

3) Show-case: effect of transport phenomena on 
catalyst reactivity 
 

4) Take-home messages 



Reactivity (for this talk) 

3 [mol/m / ]Ar kc s=

A → B 

0 exp Ek k
RT

 = − 
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Reaction coordinate  
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How long molecules stay in the 
reactor? 

PLUG-FLOW-REACTOR: 
all molecules have same residence time and concetrations vary only 
along the length of the tubular reactor. 

CONTINUOUS-FLOW STIRRED TANK REACTOR: 
due to vigorous agitation, the reactor contents are well mixed, so that 
effluent composition equals that in the tank 
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PFR Vs.CSTR reactor 
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Time 
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Does RTD affect the observed reactivity? 

Do I have to expect different reactivity 

even if I am running the reaction at constant 

T, P and same inlet composition? 



Effect of RTD on observed reaction rate 
3 [mol/m / ]Ar kc s=A → B 

Q = 10 m3/s 
cA,0=1 kmol/m3 

V = 5 m3 
k = 5 s-1 @ T = 500K – P = 1 atm  

PLUG FLOW REACTOR 

Every “small” element travels along the 
reactor without mixing with the rest 

V
Q

τ =

We want to run the reaction isothermally and pressure drops are negligible 

V V+dV 
IN-OUT+PROD = ACC 
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3) Show-case: effect of transport phenomena on 
catalyst reactivity 
 

4) Take-home messages 



Inter- and Intra-phase transport phenomena 

3 [mol/m / ]Ar kc s=A → B 

CA CA 

CA,S 

Catalytic slab 



Interphase transport phenomena 

3 [mol/m / ]Ar kc s=A → B 

CA CA 

CA,S 

Catalytic slab 

L 



Interphase transport phenomena 

3 [mol/m / ]Ar kc s=A → B 

CA CA 

CA,S 

L A
A

Dk
L

= ( ),A A A SN k C C= −

,A Sr kC=

INTRINSIC REACTION RATE 

MASS TRANSPORT RATE 

Catalytic slab 



Catalytic slab 

Interphase transport phenomena 

CA CA 

CA,S 

L A
A

Dk
L

= ( ),A A A SN k C C= −

,A Sr kC=

INTRINSIC REACTION RATE 

MASS TRANSPORT RATE 

( ), ,A S A A A SkC V k C C S= −



Catalytic slab 

Interphase transport phenomena 

CA CA 

CA,S 

L A
A

Dk
L

= ( ),A A A SN k C C= −

,A Sr kC=

INTRINSIC REACTION RATE 

MASS TRANSPORT RATE 

( ) ( )*
, , ,A S A A A S A A A S

SkC k C C k C C
V

= − = −



Catalytic slab 

Interphase transport phenomena 

CA CA 

CA,S 

L A
A

Dk
L

= ( ),A A A SN k C C= −

,A Sr kC=

INTRINSIC REACTION RATE 

MASS TRANSPORT RATE 

,

*
11

A A
A S

A

C CC k Da
k

= =
++



Interphase transport phenomena 
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Effect on observable reaction rate 

Da<<1 Da >> 1 

obs Ar kC= *
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Transport coefficient has 
very weak dependence on 
temperature 
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Intraphase transport phenomena 
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Intraphase transport phenomena 
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Intraphase transport phenomena 
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Intraphase concentration gradients 



So what? 



At what extent am I using the catalyst? 
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Effect on observable reaction rate 
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For high values of Thiele modulus (internal mass transfer limitations): 
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Annular Reactor 

Annular reactor 

  Laminar flow ⇒ negligible pressure drops 

  High GHSV  ⇒ 106 – 107 Nl/Kgcat/h 

   ⇒ distance from chemical equilibrium 

  Small annular gap (0.5 mm) and thin catalyst layers 

  Regular geometry (easy modeling) 

  Thermal equilibrium across the section of the ceramic tube 

  Isothermal conditions are easily reached (efficient heat dissipation by 

radiation, dilution) 



M. Maestri, A. Beretta, T. Faravelli, G. Groppi, E. Tronconi, D.G. Vlachos, 
Chemical Engineering Science, 2008 

Combustion of a fuel-rich H2 over Rh catalyst in an annular reactor (*)  
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Governing equations 

( )ρ ω αΓ ∇ = − Ω =
, 1,...,het

k mix k cat kcatalytic
k NG

ω∇ = 0k inert
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T H r

Catalytic walls 

Non-catalytic walls 

( )= ,
inert

T f t T

1. H2+2Rh(s)=>2H(s) 
2. 2H(s)=>H2+2Rh(s) 
3. O2+2Rh(s)=>2O(s) 
4. 2O(s)=>O2+2Rh(s) 
5. OH(s)+Rh(s)=>H(s)+O(s) 
6. H(s)+O(s)=>OH(s)+Rh(s) 
7. H2O(s)+Rh(s)=>H(s)+OH(s) 
8. H(s)+OH(s)=>H2O(s)+Rh(s) 
9. H2O(s)+O(s)=>2OH(s) 
10. 2OH(s)=>H2O(s)+O(s) 
11. OH+Rh(s)=>OH(s) 
12. OH(s)=>OH+Rh(s) 
13. H2O+Rh(s)=>H2O(s) 
14. H2O(s)=>H2O+Rh(s) 
15. H+Rh(s)=>H(s) 
16. H(s)=>H+Rh(s) 
17. O+Rh(s)=>O(s) 
18. O(s)=>O+Rh(s) 

Detailed microkinetic models 

M. Maestri, Microkinetic analysis of complex chemical processes at surface, in “New strategy for chemical synthesis and 
catalysis”, Wiley-VCH (2012) 
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Adsorbed (surface) species 



Identification of the calculation domain 

 Cylindrical symmetry 
 2D domain 
 Lower computational   

effort 

Fluid and solid regions 

M. Maestri, A. Beretta, T. Faravelli, G. Groppi, E. Tronconi, D.G. Vlachos, Chemical Engineering Science, 2008 
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Interphase gradients 
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Take-home messages 
1) Physical transport may have a strong influence on the rate of the overall 

process and may introduce additional dependences on the operating 
conditions 
 

2) The observable reaction rate may differ substantially from the intrinsic 
rate of the chemical transformation under bulk fluid phase composition 
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Take-home messages 
1) Physical transport may have a strong influence on the rate of the overall 

process and may introduce additional dependences on the operating 
conditions 
 

2) The observable reaction rate may differ substantially from the intrinsic 
rate of the chemical transformation under bulk fluid phase composition 
 

3) You need to be aware of such interplay and related effects in order to: 
1) understand what you are measuring 
2) understand what you are comparing 
3) scale-up properly and successfully your reaction 
4) force your catalyst to the desired observed functionality 

(selectivity €€€!! – safe operation) 
 

4) Reactivity measurement is intrinsically a multiscale phenomenon: make 
sure you minimize the effect of transport (dilution, temperature, 
geometry) 
 



A first-principles approach to CRE 

Time  
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Thank you for your 
attention! 

www.catalyticfoam.polimi.it 

Politecnico di Milano 
Raffaello, The school of Athens, 1509, Apostolic Palace, Roma 

matteo.maestri@polimi.it 
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