

Tutorial lecture on

Interplay between reactivity and transport phenomena in heterogeneous catalysis Matteo Maestri

July 23, 2013 Conversationshaus - Norderney, Germany

Chemical reactor

The **reactor** is the device within which the physicochemical transformations are caused.

It can assume **various shapes and modes of operations** and be operated in a number of possible environments of pressure and temperature.

(images from internet)

Heterogeneous catalytic reactor

REACTOR

Heterogeneous catalytic reactions by their nature involve a separate phase of catalyst embedded in a phase of reacting species.

Catalysts at work

How do **transport phenomena** and **distribution of residence times** in the reactor affect the **observed** reaction rate?

Outline

- 1) Effect of the distribution of the contact times in the reactor on the observed reaction rate
- 2) Inter-phase and intra-phase transport phenomena and their impact on the observed reaction rate
- 3) Show-case: effect of transport phenomena on catalyst reactivity
- 4) Take-home messages

Outline

- **1) Effect of the distribution of the contact times in the reactor on the observed reaction rate**
- 2) Inter-phase and intra-phase transport phenomena and their impact on the observed reaction rate
- 3) Show-case: effect of transport phenomena on catalyst reactivity
- 4) Take-home messages

How long molecules stay in the reactor?

PLUG-FLOW-REACTOR:

all molecules have same residence time and concetrations vary only along the length of the tubular reactor.

CONTINUOUS-FLOW STIRRED TANK REACTOR:

due to vigorous agitation, the reactor contents are well mixed, so that effluent composition equals that in the tank

Residence time distribution in PFR

Residence time distribution in PFR

Residence time distribution in PFR

Residence time distribution in CSTR

Residence time distribution in CSTR

Residence time distribution in CSTR

$$
A \to B \t r = kcA [mol/m3 / s]
$$

Q = 10 m³/s $V = 5 m3$
c_{A,0}=1 kmol/m³ $k = 5 s-1 \t Q T = 500K - P = 1 atm$

We want to run the reaction isothermally and pressure drops are negligible

PLUG FLOW REACTOR

Every "small" element travels along the reactor without mixing with the rest

> *V Q* $\tau =$

 $IN-OUT+PROD = ACC$

$$
Qc_A|_V - Qc_A|_{V+dV} - kc_A dV = 0
$$

$$
A \to B \t r = kcA \t [mol/m3 / s]
$$

Q = 10 m³/s \t V = 5 m³
c_{A,0}=1 kmol/m³ \t k = 5 s⁻¹ @ T = 500K - P = 1 atm

We want to run the reaction isothermally and pressure drops are negligible

PLUG FLOW REACTOR

Every "small" element travels along the reactor without mixing with the rest

$$
\tau = \frac{V}{Q}
$$

Mass balance equation:

$$
\frac{dc_A}{d\tau} = -kc_A \longrightarrow c_A = c_{A,0} \exp(-k\tau) \longrightarrow \chi = \frac{c_{A,0} - c_A}{c_{A,0}} = 91\%
$$

 $A \rightarrow B$ $r = k c_A \text{ [mol/m}^3 / s]$ $Q = 10 \text{ m}^3/\text{s}$ $V = 5 \text{ m}^3$ cA,0=1 kmol/m3 **k = 5 s-1 @ T = 500K – P = 1 atm**

We want to run the reaction isothermally and pressure drops are negligible

CONTINUOUS STIRRED TANK REACTOR (CSTR)

Mixing is so fast that concentration of every species is uniform and homogeneous in the reactor

$$
\overline{\tau} = \frac{V}{Q}
$$

 $IN-OUT+PROD = ACC$

 $Qc_{A,0} - Qc_A - k c_A V = 0$

 $A \rightarrow B$ $r = kc_A$ [mol/m³/s] $Q = 10 \text{ m}^3\text{/s}$ $\rm c_{A,0}$ =1 kmol/m 3 $V = 5$ m³ **k = 5 s-1 @ T = 500K – P = 1 atm**

We want to run the reaction isothermally and pressure drops are negligible

CONTINUOUS STIRRED TANK REACTOR (CSTR)

Mixing is so fast that concentration of every species is uniform and homogeneous in the reactor

$$
\overline{\tau} = \frac{V}{Q}
$$

Mass balance equation:

$$
c_{A,0} - c_A - \tau k c_A = 0 \longrightarrow c_A = \frac{c_{A,0}}{1 + k\tau} \longrightarrow \chi = \frac{c_{A,0} - c_A}{c_{A,0}} = 71\%
$$

 $A \rightarrow B$ $r = kc_A$ [mol/m³/s] $Q = 10 \text{ m}^3/\text{s}$ $V = 5 \text{ m}^3$ cA,0=1 kmol/m3 **k = 5 s-1 @ T = 500K – P = 1 atm**

We want to run the reaction isothermally and pressure drops are negligible

Outline

- 1) Effect of the distribution of the contact times in the reactor on the observed reaction rate
- **2) Inter-phase and intra-phase transport phenomena and their impact on the observed reaction rate**
- 3) Show-case: effect of transport phenomena on catalyst reactivity
- 4) Take-home messages

 $A \rightarrow B$ $r = kc_A$ [mol/m³/s]

 $A \rightarrow B$ $r = kc_A$ [mol/m³/s]

 $A \rightarrow B$ $r = k c_A \text{ [mol/m}^3 / s]$

$$
kC_{A,S}V = k_A \left(C_A - C_{A,S} \right) S
$$

$$
kC_{A,S} = k_A (C_A - C_{A,S}) \frac{S}{V} = k_A^* (C_A - C_{A,S})
$$

Interphase transport phenomena

$$
C_{A,S} = \frac{C_A}{1 + \frac{k}{k_A^*}} = \frac{C_A}{1 + Da}
$$

Effect on observable reaction rate

 $Da < 1$

$$
r_{obs} = kC_A
$$

CHEMICAL REGIME

$$
k_{obs} = k = k_0 \exp\left(\frac{-E}{RT}\right)
$$

$$
Da >> 1
$$
\n
$$
r_{obs} = k_A^* C_A
$$
\nMASS TRANSFER REGIME

$$
k_{obs} = k_A^* = k_0 \exp\left(\frac{E \to 0}{RT}\right)
$$

Transport coefficient has very weak dependence on temperature

WE CONSIDER NOW THE POSSIBILITY THAT TRANSPORT WITHIN THE SLAB CAN BECOME LIMITING

Intraphase transport phenomena

$$
D_{A}^{eff} \frac{d^{2}C_{A}(y)}{dy^{2}} = kC_{A}(y) \qquad \begin{cases} \frac{dC_{A}}{dy} = 0\\ C_{A}(y = L) = C_{A,S} \end{cases}
$$

$$
C_A(y) = \frac{\cosh\left(\phi \frac{y}{L}\right)}{\cosh\left(\phi\right)} C_{A,S}
$$

where:
$$
\phi = L \sqrt{\frac{k}{D_A^{\text{eff}}}} \approx \frac{reaction\ rate}{diffusion\ rate}
$$

THIELE MODULUS

Intraphase concentration gradients

Figure 18.4 Distribution and average value of reactant concentration within a catalyst pore as a function of the parameter $mL = L\sqrt{k/\mathcal{D}}$

So what?

Figure 18.4 Distribution and average value of reactant concentration within a catalyst pore as a function of the parameter $mL = L\sqrt{k/\mathcal{D}}$

At what extent am I using the catalyst?

Effect on observable reaction rate

$$
\eta = \frac{R_{obs}}{R_S} = \frac{\int kC_A(V)dV}{kC_{A,S}V} = \frac{\tanh(\phi)}{\phi}
$$

For high values of Thiele modulus (internal mass transfer limitations):

$$
\eta \rightarrow \frac{1}{\phi}
$$
\n
$$
R_{obs} = \eta R_S = \frac{1}{\phi} R_S = \frac{1}{\phi} k C_{A,S} = \left(\frac{1}{L} \sqrt{\frac{D_A^{eff}}{k}}\right) k C_{A,S} = k_{obs} C_{A,S}
$$
\n
$$
k = \left(\frac{1}{L} \sqrt{\frac{D_A^{eff}}{k}}\right) k - \frac{1}{L} \sqrt{\frac{D_A^{eff}}{k}}
$$

 $k_{obs} = \left(\frac{1}{I}\sqrt{\frac{D_{A}^{eff}}{L}}\right)k = \frac{1}{I}\sqrt{D_{A}^{eff}k}$

Lk L

 $=\left(\frac{1}{L}\sqrt{\frac{L_A}{k}}\right)k=$

Effect on observable reaction rate

$$
\begin{cases}\nk_{obs} = \left(\frac{1}{L}\sqrt{\frac{D_A^{eff}}{k}}\right)k = \frac{1}{L}\sqrt{D_A^{eff}k} = k_{obs} \exp\left(-\frac{E_{obs}}{RT}\right) \\
k = k_0 \exp\left(-\frac{E}{RT}\right)\n\end{cases}
$$

Outline

- 1) Effect of the distribution of the contact times in the reactor on the observed reaction rate
- 2) Inter-phase and intra-phase transport phenomena and their impact on the observed reaction rate
- **3) Show-case: effect of transport phenomena on catalyst reactivity**
- 4) Take-home messages

Annular Reactor

- \checkmark Laminar flow \Rightarrow negligible pressure drops
- \checkmark High GHSV \Rightarrow 10⁶ 10⁷ Nl/Kg_{cat}/h
- \checkmark \Rightarrow distance from chemical equilibrium
- \checkmark Small annular gap (0.5 mm) and thin catalyst layers
- \checkmark Regular geometry (easy modeling)
- \checkmark Thermal equilibrium across the section of the ceramic tube
- \checkmark Isothermal conditions are easily reached (efficient heat dissipation by radiation, dilution)

Annular reactor - experiments

Combustion of a fuel-rich H_2 over Rh catalyst in an annular reactor $(*)$

Governing equations

$$
\begin{cases}\n\frac{\partial(\rho\omega_i)}{\partial t} + \nabla(\rho U \omega_i) = \nabla(\rho D_i \nabla \omega_i) + \sum_j R_j v_{ij} M W_i \\
c_p \frac{\partial(\rho T)}{\partial t} + c_p \nabla(\rho U T) = \nabla(\mathbf{k} \nabla T) + \sum_j R_j \Delta H_j \\
\frac{\partial(\rho U)}{\partial t} + \nabla(\rho U U) = -\nabla p + \nabla(\mu \nabla U) + \rho g \\
\frac{\partial \rho}{\partial t} + \nabla(\rho U) = 0\n\end{cases}
$$
\n\nFluid Phase

$$
\begin{cases}\n\frac{\partial (\rho^{mix}\omega_i)}{\partial t} = \nabla (\rho^{mix}D_{eff,i}\nabla \omega_i) + \left(\sum_j R_{het,j}\nu_{ij}MW_i\right) \cdot a_{cat} \\
c_{p,sol} \frac{\partial (\rho_{sol}T)}{\partial t} = \nabla (\kappa_{eff}\nabla T) + \sum_j R_{het,j}\Delta H_j \cdot a_{cat} \\
\text{Solid Phase} & \Gamma_{site} \frac{\partial \vartheta_i}{\partial t} = R_{i,surf}\n\end{cases}
$$

Governing equations

Non-catalytic walls

$$
\nabla \omega_k \big|_{\text{inert}} = 0
$$

$$
\mathcal{T} \big|_{\text{inert}} = f(t, T)
$$

$$
\nabla \mathcal{T} \big|_{\text{inert}} = g(t, T)
$$

Catalytic walls

$$
\rho \Gamma_{k, \text{mix}} (\nabla \omega_k) \Big|_{\text{catalytic}} = -\alpha_{\text{cat}} \, \dot{\Omega}_k^{\text{het}} \qquad k = 1, \dots, \text{NG}
$$

$$
\lambda \left(\nabla \mathcal{T} \right) \Big|_{\text{catalytic}} = -\alpha_{\text{cat}} \sum_{j=1}^{NR} \Delta H_j^{\text{het}} \dot{r}_j^{\text{het}}
$$

$$
\sigma_{cat} \frac{\partial \theta_i}{\partial t} = \dot{\Omega}_i^{het} \qquad i = 1,...,NS
$$

Adsorbed (surface) species

Detailed microkinetic models

- 1. $H2+2Rh(s)=>2H(s)$
- 2. $2H(s) = > H2 + 2Rh(s)$
- 3. $O2 + 2Rh(s) = > 2O(s)$
- 4. $2O(s) = > O2 + 2Rh(s)$
- 5. OH(s)+Rh(s)=>H(s)+O(s)
- 6. $H(s)+O(s)=SOH(s)+Rh(s)$
- 7. $H2O(s) + Rh(s) = H(s) + OH(s)$
- 8. $H(s) + OH(s) \implies H2O(s) + Rh(s)$
- 9. H2O(s)+O(s)=>2OH(s)
- 10. 2OH(s)=>H2O(s)+O(s)
- 11. $OH+Rh(s)=SOH(s)$
- 12. $OH(s) = > OH + Rh(s)$
- 13. $H2O+Rh(s)=>H2O(s)$
- 14. $H2O(s) \Rightarrow H2O + Rh(s)$
- 15. $H + Rh(s) = > H(s)$
- 16. $H(s) = > H + Rh(s)$
- 17. $O+Rh(s)=>O(s)$
- 18. $O(s) = > O + Rh(s)$

$$
r_j = A_j \cdot T^{\beta_j} \cdot \exp\left(-\frac{E_{att,j}(\theta_i)}{RT}\right) \prod_{i=1}^{NC} (c_i)^{v_{ij}}
$$

M. Maestri, Microkinetic analysis of complex chemical processes at surface, in "New strategy for chemical synthesis and catalysis", Wiley-VCH (2012)

Fluid and solid regions

M. Maestri, A. Beretta, T. Faravelli, G. Groppi, E. Tronconi, D.G. Vlachos, Chemical Engineering Science, 2008

Annular reactor

Combustion of a fuel-rich H_2 over Rh catalyst in an annular reactor $(*)$

Annular reactor

Combustion of a fuel-rich H_2 over Rh catalyst in an annular reactor $(*)$

Model results

Combustion of a fuel-rich H_2 over Rh catalyst in an annular reactor

Model results

Combustion of a fuel-rich H₂ over Rh catalyst in an annular reactor

Intraphase gradients

Interphase gradients

Outline

- 1) Effect of the distribution of the contact times in the reactor on the observed reaction rate
- 2) Inter-phase and intra-phase transport phenomena and their impact on the observed reaction rate
- 3) Show-case: effect of transport phenomena on catalyst reactivity
- **4) Take-home messages**

Take-home messages

- 1) Physical transport may have a strong influence on the rate of the overall process and may introduce additional dependences on the operating conditions
- 2) The observable reaction rate may differ substantially from the intrinsic rate of the chemical transformation under bulk fluid phase composition

Take-home messages

- 1) Physical transport may have a strong influence on the rate of the overall process and may introduce additional dependences on the operating conditions
- 2) The observable reaction rate may differ substantially from the intrinsic rate of the chemical transformation under bulk fluid phase composition
- 3) You need to be aware of such interplay and related effects in order to:
	- 1) understand what you are measuring
	- 2) understand what you are comparing
	- 3) scale-up properly and successfully your reaction
	- 4) force your catalyst to the desired observed functionality (selectivity $\epsilon \in \epsilon$! – safe operation)
- 4) Reactivity measurement is intrinsically a multiscale phenomenon: make sure you minimize the effect of transport (dilution, temperature, geometry)

A *first-principles* approach to CRE

MACROSCALE

Reactor engineering and transport phenomena **CFD**

MESOSCALE

Interplay among the chemical events

kMC

MICROSCALE making and breaking of chemical bonds

Length

Electronic structure theory

Thank you for your attention!

 C_{ϵ}

www.catalyticfoam.polimi.it

Politecnico di Milano

Raffaello, The school of Athens, 1509, Apostolic Palace, Roma

MILAN

matteo.maestri@polimi.it