

Microkinetic Modeling

Karsten Reuter

Chemistry Department and Catalysis Research Center Technische Universität München

Testing (Kinetics)

Preparation

Characterization

Macrokinetic studies

 $r = \text{rate of reaction} = f(\text{initial gas composition}, T, p_i)$ f(catalyst, active sites) f(catalyst meso/macro structure) f(reactor, flow (contact time), heat, dilution,...)

Power law kinetics:

$$r = k \prod_{i} p_{i}^{\alpha_{i}}$$

Reaction engineering:

,,Remove" all reactor/catalyst macrostructure effects to get intrinsic rate Normalize to rate per active site = turnover frequency TOF = r/N [molecules site⁻¹ s⁻¹]

 \rightarrow intrinsic steady-state TOF = TOF(*T*, *p*_{*i*})

Microkinetic modeling aims to relate this to detailed mechanistic understanding:

Top-down: deduce reaction mechanism from measured TOF data Bottom-up: generate TOF data starting from first-principles calculations

Disclaimer: Mind the gap!

Courtesy: G. Rupprechter and Ch. Weiland, NanoToday 2, 20 (2007).

I. The top-down approach: Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics

Chemical kinetics and catalysis, R.A. van Santen and J.W. Niemantsverdriet, Plenum Press (New York, 1995)

Microkinetic simulation of catalytic reactions, P. Stoltze, Prog. Surf. Sci. 65, 65 (2000)

Step 1: Measured steady-state TOF data

CO oxidation over Rh(111)

S.B. Schwartz, L.D. Schmidt, and G.B. Fisher, J. Phys. Chem. 90, 6194 (1986)

Step 2: Formulate a reaction mechanism and rate equation

$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$

$$r(\mathrm{CO}_2) \sim d/dt [\mathrm{CO}_2^{(\mathrm{gas})}] = k_4 \,\theta_{\mathrm{CO}_2^{(\mathrm{ad})}}$$

first-order dependence (4)

 $d/dt \ \theta_{\rm CO_2}({\rm ad}) = k_3 \ \theta_{\rm O}({\rm ad}) \ \theta_{\rm CO}({\rm ad}) \ - k_4 \ \theta_{\rm CO_2}({\rm ad}) \equiv 0$

steady-state approximation

$$r(\mathrm{CO}_2) \sim k_3 \,\theta_{\mathrm{O}}(\mathrm{ad}) \,\theta_{\mathrm{CO}}(\mathrm{ad})$$

⇒ determine adsorbate concentrations at the surface in equilibrium with the gas phase

Step 3: Derive adsorption isotherms

$$\theta_{\rm eq} = \theta_{\rm eq}(p_i, T)$$

e.g. Langmuir:

 $\theta_{CO}(ad)$

- i) finite number of equivalent sites to hold reactants
- ii) each site can hold at most one adsorbate
- iii) no interaction between adsorbed particles

$$CO^{(\text{gas})} + (*) \leftrightarrow CO^{(\text{ad})} \qquad r_{\text{adsorption}} = k_{\text{ads}} p_{CO}(\text{gas}) \theta_{(*)}$$
$$r_{\text{desorption}} = k_{\text{des}} \theta_{CO}(\text{ad})$$

 $r_{\text{adsorption}} = r_{\text{desorption}}$ (equilibrium)

$$\Rightarrow K_{eq}^{CO} = k_{ads} / k_{des} = \frac{\theta_{CO}^{(ad)}}{p_{CO}^{(gas)} \theta_{(*)}} = \frac{\theta_{CO}^{(ad)}}{p_{CO}^{(gas)} (1 - \theta_{CO}^{(ad)})}$$

 $\frac{K_{\rm eq}^{\rm CO} p_{\rm CO}^{\rm (gas)}}{1 + K_{\rm eq}^{\rm CO} p_{\rm CO}^{\rm (gas)}}$

Langmuir isotherm for non-dissociative, non-competitive adsorption

Step 3: Adsorption isotherms cont'd

$$\theta_{\rm CO}(\rm ad) = \frac{K_{\rm eq}^{\rm CO} p_{\rm CO}(\rm gas)}{1 + K_{\rm eq}^{\rm CO} p_{\rm CO}(\rm gas)}$$

- i) saturation due to finite number of sites
- ii) K_{eq}^{CO} is an equilibrium property \rightarrow thermodynamics

Similarly: molecular adsorption on several sites dissociative adsorption (e.g. 2 sites) competitive adsorption

Refinement: multiple sites adsorbate interactions

- → Freundlich/Toth isotherms
- → Tempkin/Fowler isotherms (only averaged interactions, still analytical)
- → Lattice gas Hamiltonians (explicit interactions, no longer analytical)

CO oxidation over Rh(111)

 $r(\text{CO}_2) \sim k_3 \theta_0(\text{ad}) \theta_{\text{CO}}(\text{ad})$

$$\theta_{\rm CO}({\rm ad}) = \frac{K_{\rm eq}^{\rm CO} p_{\rm CO}({\rm gas})}{1 + K_{\rm eq}^{\rm CO} p_{\rm CO}({\rm gas}) + K_{\rm eq}^{\rm O2} p_{\rm O_2}({\rm gas})}$$
$$\theta_{\rm O}({\rm ad}) = \frac{K_{\rm eq}^{\rm O2} p_{\rm O_2}({\rm gas})}{1 + K_{\rm eq}^{\rm CO} p_{\rm CO}({\rm gas}) + K_{\rm eq}^{\rm O2} p_{\rm O_2}({\rm gas})}$$

Langmuir isotherms competitive adsorption of O and CO rapid O₂ dissociation (first order in $\theta_{O(ad)}$)

S.B. Schwartz, L.D. Schmidt, and G.B. Fisher, J. Phys. Chem. 90, 6194 (1986)

II: The bottom-up approach: First-principles kinetic Monte Carlo simulations

First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: Concepts, status and frontiers K. Reuter, in "Modeling Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System", (Ed.) O. Deutschmann, Wiley-VCH, Weinheim (2009). http://www.fhi-berlin.mpg.de/th/paper.html

Elementary processes and catalytic function

- Continuous bond making and breaking

Challenge I: predictive-quality QM energetics

Rare event time scale: > ~msec

Challenge II: long time-scale simulations

First-principles modeling of surface reactions

Markovian state dynamics: Kinetic Monte Carlo simulations

$$\frac{dP_i(t)}{dt} = -\sum_j k_{i \to j} P_i(t) + \sum_j k_{j \to i} P_j(t)$$

Kinetic Monte Carlo: essentially ,,coarse-grained MD"

Molecular Dynamics: the whole trajectory

ab initio MD: up to 50 ps

Kinetic Monte Carlo: coarse-grained hops

ab initio kMC: up to minutes

Building a first-principles kinetic Monte Carlo model

CO oxidation @ RuO₂(110)

26 elementary processes (site-specific):

- O₂ adsorption/desorption (dissociative/associative)
- CO adsorption/desorption (unimolecular)
- O and CO diffusion
- CO + O reaction

K. Reuter, Oil&Gas Sci. Technol. 61, 471 (2006) K. Reuter and M. Scheffler, Phys. Rev. B 73, 045433 (2006)

Surface structure and composition in the reactive environment

CO oxidation at RuO₂(110)

K. Reuter, D. Frenkel and M. Scheffler, Phys. Rev. Lett. 93, 116105 (2004)

Steady-state and transient parameter-free turnover frequencies

K. Reuter and M. Scheffler, Phys. Rev. B 73, 045433 (2006) M. Rieger, J. Rogal, and K. Reuter, Phys. Rev. Lett. 100, 016105 (2008)

The dawn of a new era

III. Towards error-controlled first-principles microkinetic models Accurate rate constants:

$$k_{i \to j} = \Gamma_{\circ} \exp\left(\frac{-\Delta E_{i \to j}}{k_{\rm B}T}\right)$$

Transition state theory and beyond DFT functionals: "self-interaction" van der Waals interactions

Reaction mechanism:

Process identification Lattice mapping / spatial distributions "Hot chemistry" beyond Markov

Mean-field approximation: Phenomenological rate equations

$$\frac{dP_i(t)}{dt} = -\sum_j k_{i \to j} P_i(t) + \sum_j k_{j \to i} P_j(t)$$

$$\frac{d\theta(O^{cus},t)}{dt} = f_1 \left\{ k_{i \to j}, \theta(O^{cus},t), \theta(O^{br},t), \theta(CO^{cus},t), \theta(CO^{br},t) \right\}$$
$$\frac{d\theta(O^{br},t)}{dt} = f_2 \left\{ k_{i \to j}, \theta(O^{cus},t), \theta(O^{br},t), \theta(CO^{cus},t), \theta(CO^{br},t) \right\}$$

The "power" of fitting

Fitted rate constants deviate from "real" rate constants by up to two orders in magnitude for dominant processes Effective parameters without microscopic meaning

B. Temel *et al.*, J. Chem. Phys. 126, 204711 (2007)

"E pluribus unum": Water-gas-shift at Rh(111)

M. Maestri and K. Reuter, Chem. Eng. Sci. 74, 296 (2012)

Diffusion at metal surfaces: surprises...

Hopping mechanism

Ag(100) $\Delta E = 0.45 \text{ eV}$ **Au**(100) $\Delta E = 0.83 \text{ eV}$

Exchange mechanism

Ag(100) $\Delta E = 0.73 \text{ eV}$ Au(100) $\Delta E = 0.65 \text{ eV}$

B.D. Yu and M. Scheffler, Phys. Rev. B 56, R15569 (1997)

Automatized process identification

Accelerated molecular dynamics:

Other approaches:

metadynamics dimer method

. . .

Extending the Time Scale in Atomistic Simulation of Materials, A.F. Voter, F. Montalenti and T.C. Germann, Annu. Rev. Mater. Res. 32, 321 (2002)

Error propagation through rate-determining steps

Source for ,,rough" rate constants: Hybrid UBI-QEP ?!

M. Maestri and K. Reuter, Angew. Chemie Int. Ed. 123, 1226 (2011)

Heat dissipation during dissociative adsorption: $O_2/Pd(100)$

J. Meyer and K. Reuter (submitted)

$$k = \widetilde{S}_{o}(T) \frac{pA_{uc}}{\sqrt{2\pi mk_{B}T}}$$

 $V_{\rm fsa} = (X, Y, Z, d, \theta, \varphi)$

State-of-the-art in catalysis modeling:

- Prevalence of highly coarse-grained models based on effective parameters without true microscopic meaning

rate equation theory based on empirical rate constants - Emergence of ad-hoc 1p-microkinetic models kMC and mean-field

model catalysts, show case reactions

Steps towards a predictive character multiscale catalysis modeling:

- Replace effective parameters by clean first-principles data

fitted vs. DFT-based rate constants battle the curse of complexity (off-lattice, complex networks) electronic non-adiabaticity, heat dissipation

- Refined modeling at each individual level

reliable and efficient 1p-rate constants (where needed) necessity to resolve spatial arrangement at surface integrate 1p-surface chemistry into reactor models

- Robust links between theories that enable reverse-mapping sensitivity analysis to control flow of error across scales

www.th4.ch.tum.de

<u>Present members:</u> Max Hoffmann, Sebastian Matera, Jörg Meyer

Past members:

Matteo Maestri (→ U Milan, I)Hakim Meskine (→ Wiley, D)Michael Rieger (→ BASF, D)Jutta Rogal (→ RU Bochum, D)

Collaborations:

Daan Frenkel (Cambridge, UK) Edvin Lundgren (U Lund, SE) Horia Metiu (UCSB, USA) Matthias Scheffler (FHI Berlin, D)