International Summer School on Basic Concepts and First-Principles Computations for Surface Science:

Applications in Chemical Energy Conversion and Storage Norderney, Germany, July 21-26, 2013

Treating surfaces: (embedded) clusters, supercells, and thermodynamics

Luca M. Ghiringhelli

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin

Part I: from xc functionals to total energies calculations in practice

- basis sets
- convergence

Part II: system size

- isolated clusters and molecules
- cluster extrapolation for bulk properties
- supercell approach
- embedded clusters

Part III: extending the scale

- surfaces in thermodynamic equilibrium with a reactive environment
- constrained equilibrium

Part I: from xc functionals to total energies calculations in practice

- basis sets
- convergence

Part II: system size

- isolated clusters and molecules
- cluster extrapolation for bulk properties
- supercell approach
- embedded clusters

Part III: extending the scale

- surfaces in thermodynamic equilibrium with a reactive environment
- constrained equilibrium

Representing solutions to KS equations on a discrete machine

$$\left[-rac{
abla^2}{2}+v_{
m ext}(oldsymbol{r})+v_{
m es}(oldsymbol{r})+v_{
m xc}(oldsymbol{r})
ight]\psi_k(oldsymbol{r})=\epsilon_k\psi_k(oldsymbol{r})$$

Pick a basis set: $\{ | arphi_{m{i}}
angle \}$

Achieve self-consistency

$$\psi_k(\mathbf{r}) = \sum_i c_{ki} \varphi_i(\mathbf{r})$$

Solve generalized eigenvalue problem:

 $\underline{\underline{h}}\,\underline{\underline{c}}_{k} = \epsilon_{k}\,\underline{\underline{s}}\,\underline{\underline{c}}_{k}$

$$\begin{split} h_{ij} &= \langle \varphi_i | \hat{h}_{\mathrm{KS}} | \varphi_j \rangle \\ s_{ij} &= \langle \varphi_i | \varphi_j \rangle \end{split}$$

$$\psi_k(\boldsymbol{r}) = \sum_i c_{ki} \varphi_i(\boldsymbol{r})$$

The choice of the basis set determines all further algorithms (hence accuracy and efficiency)

Basis set market:

- Plane waves
 - efficient FFT (density, electrostatics) $\varphi_{\underline{k}}(r) = rac{1}{N}e^{i\underline{k}r}$

- inherently periodic
- not all-electron (Slater 1937): pseudoization
- Augmented plane waves (Slater 1937; Andersen 1975)
- Gaussian type orbitals

$$arphi_{i}(m{r})=rac{1}{N}r^{l}e^{-lpha r^{2}}$$

- (Linear) Muffin-tin orbitals
- Numeric atom-centered functions (next slides)

cutoff

pot'l

radius

$$arphi_{i[lm]}(m{r}) = rac{u_i(r)}{r} \cdot Y_{lm}(\Omega)$$

Many popular implementations: DMol3 (Delley), FPLO (Koepernik et al.), PLATO (Horsfield et al.), Pseudo Atomic Orbitals (Siesta, Conquest, OpenMX2, Fireball, ...)

 $u_i(r)$ Flexible choice (anything you like)

$$\left[-rac{1}{2} rac{d^2}{dr^2} + rac{l(l+1)}{r^2} + v_i(r) + v_{ ext{cut}}(r)
ight] u_i(r) = \epsilon_i u_i(r)$$

free-atom like: $v_i(r) = v_{\rm free \ atom}^{\rm DFT}(r)$ Hydrogen-like: $v_i(r) = z/r$

free ions, harmonic oscillators (Gaussians), ...

But, in practice? How to find radial functions systematically convergeable?

Goal: Element-dependent, transferable basis sets from fast qualitative to meV-converged total energy accuracy (ground-state DFT)

Robust iterative selection strategy: (e.g., Delley 1990)

Hierarchical Basis Set Library for All Elements

Systematic hierarchy of basis (sub)sets, iterative <i>automat</i> ed construction based on <i>dimers</i>	=	A 11	0	С	Н	
	-	[Xe]+6s5d4f	[He] + 2s2p	[He]+2s2p	11	minimal
	ſ	$Au^{2+}(6p)$	H(2p,1.8)	H(2p, 1.7)	H(2s, 2.1)	Tier 1
		H(4f, 7.4)	H(3d, 7.6)	H(3d, 6.0)	H(2p, 3.5)	
- "First tier (level)"		$Au^{2+}(6s)$	H(3s, 6.4)	H(2s, 4.9)		
	ſ	H(5g,10)				
<pre> "Second tier" "Third tier" … </pre>		H(6h, 12.8)				
	J	H(3d, 2.5)				
		H(5f, 14.8)	${\rm H}(4f,\!11.6)$	${\rm H}(4f,\!9.8)$	$\operatorname{H}(1s,\!0.85)$	Tier 2
		H(4d, 3.9)	H(3p, 6.2)	H(3p, 5.2)	${\rm H}(2p,\!3.7)$	
		H(3p, 3.3)	H(3d, 5.6)	H(3s, 4.3)	H(2s, 1.2)	
		H(1s, 0.45)	$_{\rm H(5g,17.6)}$	${\rm H}(5g,\!14.4)$	H(3d,7.0)	
		$_{\rm H(5g,16.4)}$	$\operatorname{H}(1s,\!0.75)$	H(3d, 6.2)		
	J	H(6h, 13.6)				
	7	$\mathrm{H}(4f,\!5.2)^*$	$O^{2+}(2p)$	${\rm H}(2p,\!5.6)$	${\rm H}(4f,\!11.2)$	Tier 3
		H(4d, 5.0)	${\rm H}(4f,\!10.8)$	H(2s,1.4)	H(3p, 4.8)	
	۲	•••			•••	
	<u>۱</u>					

Basis set convergence: hydrogen bond

Basis set superposition error

Using NAO basis sets

Numerical Integration

$$h_{ij} = \int d^3 r \varphi_i(\boldsymbol{r}) \hat{h}_{\mathrm{KS}} \varphi_j(\boldsymbol{r})$$

- Electron density update
- All-electron electrostatics
- Eigenvalue solver

 $egin{aligned} n(m{r}) &= \sum_k f_k |\psi_k(m{r})|^2 \ v_{
m es}(m{r}) &= \int d^3 r' rac{n(m{r}')}{|m{r}-m{r}'|} \end{aligned}$

- $\underline{h} \underline{c}_k = \epsilon_k \underline{s} \underline{c}_k$
- needed for heavy elements Relativity?
- Periodic systems?

need suitable basis, electrostatics

Relativity

Non-relativistic QM: Schrödinger equation

$$V\phi+rac{oldsymbol{p}^2}{2m}\phi=\epsilon\phi$$

One (two with spin) component One Hamiltonian for all states

Relativistic QM: Dirac equation

$$\begin{pmatrix} V & c\sigma \cdot p \\ c\sigma \cdot p & -2c^2 + V \end{pmatrix} \begin{pmatrix} \phi \\ \chi \end{pmatrix} = \epsilon \begin{pmatrix} \phi \\ \chi \end{pmatrix}$$
$$V\phi + \sigma \cdot p \frac{c^2}{2c^2 + \epsilon - V} \sigma \cdot p\phi = \epsilon \phi$$

E-dependent Hamiltonian
 Not negligible for

 ϵ − v(r) ≈ 2c²
 ⇔ affects near-nuclear part
 of any wave function

Implementing scalar relativity: ZORA

- Formally exact for H-like systems
- Perturbative, based on ZORA

E. van Lenthe et al., JCP 101, 9783 (1994).

Implementing scalar relativity: ZORA and fixes

- Formally exact for H-like systems
- Perturbative, based on ZORA

E. van Lenthe et al., JCP 101, 9783 (1994).

Part I: from xc functionals to total energies calculations in practice

- basis sets
- convergence

Part II: system size

- isolated clusters and molecules
- cluster extrapolation for bulk properties
- supercell approach
- embedded clusters

Part III: extending the scale

- surfaces in thermodynamic equilibrium with a reactive environment
- constrained equilibrium

- We may be interested in **isolated** (gas phase) **clusters**, then we just look at the cluster (rigid body motion?)

- In all other cases, we would like to observe (calculate properties of) few particles and "extrapolate" the behavior at macroscopic size.

- E.g., liquids, solid/liquid interface, bulk solid, solid/solid interface, surfaces.

- Using a (large) **cluster as model for a bulk**? What about the spurious surface? In a cube of length L, one particle per unit length : $[L^3(L-2)^3]/L^3 \sim 6L^2/L^3$

- Repeat infinitely the cluster: tile the (half)space. The **supercell** approach
- **Embed the cluster** in an environment that resembles the bulk?

Isolated organic molecules

Gas phase (gold) clusters

0.11 eV

0.06 eV

0.12 eV

0.15 eV

0.13 eV

0.15 eV

Beret, LMG, Scheffler, Faraday Discussions (2011)

Cluster extrapolated to bulk

Cluster extrapolated to bulk

Metals

LDA/GGA

Hu, Reuter, Scheffler, PRL (2007)

Periodic boundary conditions

Extended periodic systems

There are 10²⁰ electrons per 1 mm³ of bulk Cu

Position of every atom in the crystal (Bravais lattice):

$$\mathbf{r}(n_1, n_2, n_3) = \mathbf{r}(0, 0, 0) + n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$$

lattice vector: $\mathbf{R}(n_1, n_2, n_3) = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$
 $n_1, n_2, n_3 = 0, \pm 1, \pm 2, \dots$

From molecules to solids

Electronic bands as limit of bonding and anti-bonding combinations of atomic orbitals:

Adapted from: Roald Hoffmann, Angew. Chem. Int. Ed. Engl. 26, 846 (1987)

Periodic potential $U(\mathbf{r} + \mathbf{R}) = U(\mathbf{r})$ (translational symmetry)

$$\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$$

In an infinite periodic solid, the solutions of the one-particle Schrödinger equations must behave like

$$\psi(\mathbf{r} + \mathbf{R}) = \exp(i\mathbf{k}\mathbf{R})\psi(\mathbf{r})$$

Index **k** is a vector in *reciprocal space*

$$\mathbf{k} = x_1 \mathbf{g}_1 + x_2 \mathbf{g}_2 + x_3 \mathbf{g}_3 \qquad \mathbf{g}_i \cdot \mathbf{a}_j = 2\pi \delta_{ij}$$
$$\mathbf{g}_l = 2\pi \frac{\mathbf{a}_m \times \mathbf{a}_n}{\Omega} \quad - \text{reciprocal lattice vectors}$$
Consequently:

$$\psi(\mathbf{r}) = \exp(i\mathbf{k}\mathbf{r})u(\mathbf{r}), \ u(\mathbf{r} + \mathbf{R}) = u(\mathbf{r})$$

The meaning of k

chain of hydrogen atoms

$$\psi_k = \sum_j \exp(ikx_j) \chi_{1s}(j \cdot a)$$

k shows the phase with which the orbitals are combined:

k = 0:
$$\psi_0 = \sum_j \exp(0)\chi_{1s}(j \cdot a) = \chi_{1s}(a) + \chi_{1s}(2a) + \dots$$

$$\mathbf{k} = \frac{\mathbf{\pi}}{\mathbf{a}} : \psi_0 = \sum_j \exp(i\pi \cdot j) \chi_{1s}(j \cdot a) = -\chi_{1s}(a) + \chi_{1s}(2a) - \chi_{1s}(3a) + \dots$$

k is a symmetry label and a node counter, and also represents electron momentum

Adapted from: Roald Hoffmann, Angew. Chem. Int. Ed. Engl. 26, 846 (1987)

In a periodic system, the solutions of the Schrödinger equations are characterized by an integer number *n* (called *band index*) and a vector k:

$$h\psi_{n\mathbf{k}} = \varepsilon_{n\mathbf{k}}\psi_{n\mathbf{k}}$$

 $\psi_{n\mathbf{k}}(\mathbf{r}) = \exp(i\mathbf{k}\mathbf{r})u_{n\mathbf{k}}(\mathbf{r}), \ u_{n\mathbf{k}}(\mathbf{r}+\mathbf{R}) = u_{n\mathbf{k}}(\mathbf{r})$

For any reciprocal lattice vector

 $\psi_{n\mathbf{k}+\mathbf{G}}$

a Bloch state

at k+G with

index n

$$\mathbf{G} = n_1 \mathbf{g}_1 + n_2 \mathbf{g}_2 + n_3 \mathbf{g}_3$$

Can choose to consider only **k** within single primitive

unit cell in reciprocal space

a lattice-periodic

function \tilde{u}

Electronic band structure (1D)

Band structure represents dependence of $\mathcal{E}_{n\mathbf{k}}$ on \mathbf{k}

For a periodic (infinite) crystal, there is an infinite number of states for each band index *n*, differing by the value of **k**

Electronic band structure in 3D

By convention, $\mathcal{E}_{n\mathbf{k}}$ are measured (angular-resolved photoemission spectroscopy, ARPES) and calculated along lines in k-space connecting points of high symmetry

Potential of an array of point charges

Convergence of the potential with number of charges is extremely slow

Ewald summation

There is no universal potential energy reference (like vacuum level) for periodic systems – important when comparing different systems

Supercell approach

The supercell approach For periodic bulk (obvious), but also for ...

interfaces (surfaces) and wires (also with adsorbates), and defects (especially for concentration or coverage dependences)

- Approach accounts for the lateral periodicity
- Sufficiently broad vacuum region to decouple the
- slabs
- Sufficient slab thickness to mimic semi-infinite crystal
- Semiconductors: saturate dangling bonds on the "back" surface
- Non-equivalent surfaces: use dipole correction
- Alternative: cluster models (for defects and adsorbates)

Supercell approach

Makov-Payne correction $G_{\rm f}^{{
m bulk},q}(L,\epsilon_F,\mu_{\rm O}) = G_{\rm f}^{{
m bulk},q}(L \to \infty,\epsilon_F,\mu_{\rm O}) + \frac{a_1^q}{L} + \frac{a_3^q}{L^3}$

Richter et al., PRL (2013)

Modeling charged defects:

- Neutralizing background charge density
- - only bulk
- - problem: level alignment
- Compensating impurities: virtual crystal for doped material

$$V_{\rm VCA}(\mathbf{r}) = (1-x)V_{\rm A}(\mathbf{r}) + xV_{\rm B}(\mathbf{r})$$

 ${\it Z}_{\rm M} \rightarrow {\it Z}_{\rm M} + \Delta {\it Z}_{\rm M}$

p-type doping:

$$\begin{split} \Delta Z_{\mathrm{M}} &= -N_{\mathrm{holes}}/N_{\mathrm{M}} \\ E_{\mathrm{el-nuc}}^{\mathrm{VC}} \approx \sum_{i} \int \frac{(Z_{i} + \Delta Z_{i})n(\mathbf{r})}{|\mathbf{r} - \mathbf{r}_{i}|} d^{3}r \\ &= E_{\mathrm{el-nuc}}^{\mathrm{ref}} + \sum_{i} \Delta Z_{i} \int \frac{n(r)}{|\mathbf{r} - \mathbf{r}_{i}|} d^{3}r \end{split}$$

Richter et al., PRL (2013)

Embedded clusters

Embedded clusters

Embedded clusters, convergence

Embedded clusters

2H₂O/MgO(embedded in point charges)

Zhao et al., in progress

Part I: from xc functionals to total energies calculations in practice

- basis sets
- convergence

Part II: system size

- isolated clusters and molecules
- cluster extrapolation for bulk properties
- supercell approach
- embedded clusters

Part III: extending the scale

- surfaces in thermodynamic equilibrium with a reactive environment
- constrained equilibrium

Extending the scale

Essentials of computational chemistry: theories and models. 2nd edition. C. J. Cramer, JohnWiley and Sons Ltd (West Sussex, 2004). Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions K. Reuter, C. Stampfl, and M. Scheffler, in: Handbook of Materials Modeling Vol. 1, (Ed.) S. Yip, Springer (Berlin, 2005). http://www.fhi-berlin.mpg.de/th/paper.html *Ab initio* atomistic thermodynamics: General concepts Oxide formation on a metal surface

Adsorption of O_2 and CO on a metal oxide

Ab initio atomistic thermodynamics: General concepts

Oxide formation on a metal surface

Adsorption of O₂ and CO on a metal oxide

Ab initio atomistic thermodynamics

A surface cannot be separated from a gas (or liquid) above it

Requires $p \le 10^{-12}$ atm to keep a "clean" surface clean; surface can also lose atoms At constant T a system minimizes its free energy, not internal energy U

If also volume V is constant, the energy minimized is Helmholtz free energy F

$$F = U - TS$$

If (T,p) are constant, the energy minimized is Gibbs free energy G

$$G = U + pV - TS = \sum_{i} \mu_{i} N_{i}$$

Chemical potential μ_i of the *i*-th atom type is the change in free energy as the number of atoms of that type in the system increases by one

In thermodynamic equilibrium, μ_i is the same in the whole system (surface, bulk, gas)

Statistics plays a crucial role due to a macroscopically large number of particles in the system

Computation of free energies: ideal gas

$$q = q^{trans} q^{rot} q^{vib} q^{el} q^{conf} q^{uot}$$

Translational:
$$q^{trans} = \left(\frac{2\pi m k T}{h^2}\right)^{\frac{3}{2}} V$$

 $Q = \frac{1}{N'} q^{N}$

Use the ideal gas law to relate V and p

Rotational:
$$\begin{cases} q^{rot} = \frac{8\pi^2 I_A k T}{h^2} \\ q^{rot} = 8\pi^2 \left(\frac{2\pi k T}{h^2}\right)^{\frac{3}{2}} \left(I_A I_B I_C\right)^{\frac{1}{2}} \end{cases}$$

Linear molecules

Non-linear molecules

Rigid rotor

Need: moments of inertia I_A , I_B , I_C

pV = NkT

Computation of free energies: ideal gas

$$Q = \frac{1}{N!} q^{N}$$

$$q = q^{trans} q^{rot} q^{vib} q^{el} q^{conf} q^{nuot}$$

$$(ibrational: q^{vib} = \prod \left[exp \left(-\frac{hv_i}{2kT} \right) \left(1 - exp \left(-\frac{hv_i}{kT} \right) \right)^{-1} \right] \longrightarrow \text{Need: vibrational modes}$$

Harmonic oscillator

Electronic:

$$q^{el} = \sum v_i e^{-\frac{E_i}{kT}} \approx v_0 e^{-\frac{E_0}{kT}}$$
$$v_i = 2S_i + 1$$

Assuming that the first excited state is energetically unaccessible

Conformational:
$$q^{conf} = \frac{1}{\sigma}$$

Diatomic molecules: $\sigma = 1$ (heteroatomic) $\sigma = 2$ (homoatomic) Need: total (DFT) energy of the ground state and its degeneration

pV = NkT

 Need: symmetry number (N. equivalent orientations)

Polyatomic molecules:

 σ = N. symmetry operations according to the symmetry point group

From the partition function *Q*:

Helmholtz free energy: $F = -kT \ln Q$ Canonical ensemble (*NVT*)

Gibbs free energy: $G = -kT \ln Q + pV$

Isothermal-isobaric ensemble (*NpT*)

pV = NkT

Chemical potential:
$$\mu = \left(\frac{\partial F}{\partial N}\right)_{V,T} = \left(\frac{\partial G}{\partial N}\right)_{p,T} \left\{ \begin{array}{c} \mu = kT \ln N - kT \ln q \quad (NVT) \\ \mu = kT \left[\ln N + 1 - \ln q\right] \quad (NpT) \end{array} \right\}$$

Statistical Mechanics, D. A. McQuarrie, University Science Books, 2000 Statistical Thermodynamics, R. Fowler and E. A. Guggenheim, Cambridge University Press, 1949

Computation of free energies: solids

$$G(T, p) = E^{tot} + F^{trans} + F^{rot} + F^{vib} + F^{conf} + pV$$

- E^{tot} Total electronic energy \rightarrow DFT
- F^{trans} Translational free energy
- F^{rot} Rotational free energy
- F^{vib} Vibrational free energy

Conformational free energy

Discarded (consider fixed solids)

$$\begin{cases} F^{vib} = \int d\omega F^{vib}(T, \omega) \sigma(\omega) \\ F^{vib}(T, \omega) \approx \frac{h\omega}{2} + kT \ln\left[1 - \exp\left(-\frac{h\omega}{kT}\right)\right] \end{cases}$$

Needs more advanced methods (Ex: cluster expansion)

pV Expansion term

 F^{conf}

→ Usually small, often neglected

$$G(T,p) \approx E^{tot} + F^{vib}$$

Ab initio atomistic thermodynamics: General concepts

Oxide formation on a metal surface

Adsorption of O₂ and CO on a metal oxide

Heterogeneous catalysis:

Which oxide forms at given experimental conditions (*T*,*p*)?

Reuter and Scheffler, Appl. Phys. A, 78, 793-798, 2004 J. Rogal and K. Reuter, Ab initio atomistic thermodynamics for surfaces: A primer. In: Experiment, Modeling and Simulation of Gas-Surface Interactions for Reactive Flows in Hypersonic Flights. Educational Notes RTO-EN-AVT-142, Neuilly-sur-Seine (2007)

 $Pd(100) + x O \leftrightarrow Pd \cdot (O)_x$

$$\Delta G^{ad} = \frac{1}{A} (G_{Pd \cdot O_x} - G_{Pd(100)} - x \mu_0)$$

$$G(T, p) \approx E^{total} + F^{vib} \approx E^{total}$$

 $\Delta F^{vib} \approx \pm 5 \text{ meV/Å}^2 \text{ up to } T = 600 \text{ K}$

$$\mu_{O}(T,p) = \frac{1}{2} \mu_{O_{2}}(T,p)$$

$$\mu_{O_{2}}(T,p) = E_{O_{2}}^{DFT} + E_{O_{2}}^{ZPE} + \Delta \mu_{O_{2}}(T,p)$$

$$\mu_{O}(T,p) = \frac{1}{2} E_{O_{2}}^{DFT} + \frac{1}{2} E_{O_{2}}^{ZPE} + \Delta \mu_{O}(T,p)$$

$$\Delta G^{ad} \approx \frac{1}{A} \left[E_{Pd \cdot O_x} - E_{Pd(100)} - x \left(\frac{1}{2} E_{O_2}^{DFT} + \frac{1}{2} E_{O_2}^{ZPE} + \Delta \mu_O(T, p) \right) \right]$$

$$\Delta G^{ad} \approx \frac{1}{A} \left[E_{Pd \cdot O_x} - E_{Pd(100)} - x \left(\frac{1}{2} E_{O_2}^{DFT} + \frac{1}{2} E_{O_2}^{ZPE} + \Delta \mu_O(T, p) \right) \right]$$

- Clean Pd(100) surface

 PdO(101)/Pd(100) surface oxide: (√5x√5)R27°: 0.80 ML

• Bulk PdO

Relation between chemical potential and (T, p)

$$\mu_{O_2}(T, p) = E_{O_2}^{DFT} + E_{O_2}^{ZPE} + \Delta \mu_{O_2}(T, p)$$

From the O_2 partition function:

$$\mu(T, p) = \left(-kT \ln \left[\left(\frac{2\pi m}{h^2} \right)^{\frac{3}{2}} (kT)^{\frac{5}{2}} \right] + kT \ln p - kT \ln \left(\frac{8\pi^2 I_A kT}{\sigma h^2} \right) \right]$$

$$+ \frac{1}{2}h\nu + kT \ln \left(1 - e^{-\frac{h\nu}{kT}} \right) + E^{DFT} - kT \ln \nu_0$$

$$E^{ZPE} = \Delta \mu(T, p)$$

From thermochemical tables:

$$\Delta \mu (T, p) = \mu (T, p^{\circ}) - \mu (T^{\circ}, p^{\circ}) + kT \ln(p/p^{\circ})$$
Tables

Example: JANAF Thermochemical tables, D.R. Stull, H. Prophet. US National Bureau of Standards, Washington DC, 1971

 \longrightarrow $S^{o}(T), H^{o}(T)$

Relation between chemical potential and (T, p)

$$\mu_{O_2}(T, p) = E_{O_2}^{DFT} + E_{O_2}^{ZPE} + \Delta \mu_{O_2}(T, p)$$

From thermochemical tables:

$$\Delta \mu (T, p) = \mu (T, p^{\circ}) - \mu (T^{\circ}, p^{\circ}) + kT \ln (p/p^{\circ})$$
Tables

Example: JANAF Thermochemical tables, D.R. Stull, H. Prophet. US National Bureau of Standards, Washington DC, 1971

 \longrightarrow $S^{o}(T), H^{o}(T)$

$$\Delta G^{ad} \approx \frac{1}{A} \left[E_{Pd \cdot O_x} - E_{Pd(100)} - x \left(\frac{1}{2} E_{O_2}^{DFT} + \frac{1}{2} E_{O_2}^{ZPE} + \Delta \mu_O(T, p) \right) \right]$$

- Clean Pd(100) surface

 PdO(101)/Pd(100) surface oxide: (√5x√5)R27°: 0.80 ML

• Bulk PdO

- Number of screened structures: structures not considered cannot be predicted
- Neglecting F^{vib}: (slight) horizontal shift of lines
- Neglecting *F^{conf}*: smearing of phase transitions
- Systems in equilibrium: possible kinetic effects in experiment

Comparing with experiment: kinetic effect

E. Lundgren et al., Phys. Rev. Lett. 92, 046101 (2004)

Ab initio atomistic thermodynamics: General concepts

Oxide formation on a metal surface

Adsorption of O₂ and CO on a metal oxide

Adsorption of O₂ and CO on RuO₂(110)

CO oxidation over a Ru catalyst:

What are the preferred structures for $RuO_2 \cdot (O)_x \cdot (CO)_y$?

This reaction does not take place in the gas phase:

K. Reuter and M. Scheffler, Phys. Rev. Lett. 90, 046103 (2003); Phys. Rev. B 68, 045407 (2003)

Constrained equilibrium

 $\operatorname{RuO}_{2}(110) + x O + y CO \leftrightarrow \operatorname{RuO}_{2}(O)_{x}(CO)_{y}$

$$\Delta G^{ad} = \frac{1}{A} \left[G_{RuO_2 \cdot O_x \cdot (CO)_y} - G_{RuO_2(110)} - x \mu_O - y \mu_{CO} \right]$$

$$\Delta G^{ad} \approx \frac{1}{A} \left[E_{RuO_2 \cdot O_x \cdot (CO)_y} - E_{RuO_2(110)} - x \left(\frac{1}{2} E_{O_2}^{DFT} + \frac{1}{2} E_{O_2}^{ZPE} + \Delta \mu_O \right) - y \left(E_{CO}^{DFT} + E_{CO}^{ZPE} + \Delta \mu_{CO} \right) \right]$$

$$\Delta G^{ad} \approx \frac{1}{A} \left[E_{RuO_2 \cdot O_x \cdot (CO)_y} - E_{RuO_2(110)} - x \left(\frac{1}{2} E_{O_2}^{DFT} + \frac{1}{2} E_{O_2}^{ZPE} + \Delta \mu_O \right) - y \left(E_{CO}^{DFT} + E_{CO}^{ZPE} + \Delta \mu_{CO} \right) \right]$$

Including kinetics: steady state

No reaction: Same as thermodynamics, but with time evolution information: From fully O-covered surface (red), induction time is 0.1 s (!)

Reuter, Frenkel, and Scheffler, PRL (2004); Reuter and Scheffler, PRB (2006)

Summary of ab initio atomistic thermodynamics

Ab initio atomistic thermodynamics provides a connection between the microscopic and macroscopic regimes

With *ab initio* atomistic thermodynamics one can predict

- the preferred structure of a material as a function of environmental conditions
- the regions of enhanced catalytic activity

Limitations:

- Only actually sampled structures enter the free energy contest:
- Need for an exhaustive structural sampling
- Equilibrium assumption: possible kinetic hindrance in experiment

Acknowledgements

Elizabeth Beret, Sergey Levchenko, Volker Blum, Norina Richter