Bulk doping effects in hybrid organic/ inorganic systems from quantum mechanical first principles

Patrick Rinke ${ }^{1}$, Yong Xu^{1}, Oliver T. Hofmann ${ }^{1}$, Niko Moll ${ }^{2}$ and Matthias Scheffler ${ }^{1}$
${ }^{1}$ Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin ${ }^{2}$ IBM Research - Zurich

$$
\text { May } 2013
$$

Organic Electronics - Plastic Electronics

sources (left to right): Organic Electronic Association, Eco Friend, Nature Publishing Group, Samsung

Organic Electronics - Plastic Electronics

Inorganic/organic interfaces are already present...
... and affect or determine device properties.
Can we understand and control them?

Hybrid Inorganic/Organic Interfaces (HIOS)

Combine the best of two worlds...

Hybrid electronics:

- make interface central

$\mathrm{ZnO} / \mathrm{p}$-sexiphenyl (courtesy of S. Blumstengel)

Potential for new physics at HIOS

solid

- potential for new interface morphologies

HIOS in reality - defects and disorder

solid
 defects...

disorder...
organic

HIOS

Optimizing HIOS - the right combination

- What is the right combination?
- Vast chemical compound space

Fundamental questions at HIOS interfaces

- What is the nature of charge carriers?
- Do new quasiparticles emerge at interface?

Atomistic understanding of molecules@surfaces

Charge transfer

Level alignment

Van der Waals interaction

Surface structure
Adsorption geometry

Atomistic understanding of molecules@surfaces

Charge transfer

Level alignment

Van der Waals interaction

Surface structure
Adsorption geometry

Level alignment at interface

injection limited current:

$$
j \propto A T^{2} \exp \left(-\frac{\text { charge injection barrier }}{k_{B} T}\right)
$$

Modifying level alignment at interface

interface layer to adjust level alignment

Modifying level alignment at interface

Charge transfer induced work function increase

High doping \Rightarrow flat bands \Rightarrow metallic regime
vacuum level

molecular
acceptor
state

Charge transfer induced work function increase

High doping \Rightarrow flat bands \Rightarrow metallic regime

Formation of space-charge layer

low doping \Rightarrow band bending

Quantum mechanical treatment

adsorption energy:

Our Code: FHI-aims [1]

All-electron DFT and beyond code developed in the Fritz-Haber-Institut

- Accurate numerical atomic orbital basis sets:

$$
\varphi_{i}(\vec{r})=\frac{u_{i}(r)}{r} Y_{l m}(\Omega)
$$

- Massively scalable, massively parrallel
- DFT functionals: LDA, PBE, hybrids (HSE), ...
- pairwise van der Waals (vdW) scheme [2]:

Adsorption geometries and energies

$$
E^{a d s}=E^{\text {mol@surf }}-E^{m o l}-E^{s u r f}
$$

F4TCNQ on hydrogen terminated $\mathbf{Z n O}(000-I)$

> upright
$E^{a d s}=0.40 \mathrm{eV}$

- $\mathbf{Z n}$
- \mathbf{O}

$E^{a d s}=1.84 \mathrm{eV}$
flat-lying
all energies: $\mathrm{HSE}^{*}+\mathrm{vd} W^{\text {scr }}$

Adsorption geometries and energies

$$
E^{a d s}=E^{m o l @ s u r f}-E^{m o l}-E^{s u r f}
$$

F4TCNQ on hydrogen terminated $\mathrm{ZnO}(000-\mathrm{I})$

upright

 $E^{a d s}=0.40 \mathrm{eV}$ - ZnStructural features:

- weak binding (hydrogen bonding, vdW)
- CN groups bind to hydrogens
- F4TCNQ does not bend appreciably all ene (unlike on metals)

Adsorption geometries and energies

F4TCNQ@ZnO in DFT

Our normal DFT calculations: undoped
vacuum level
 function change

F4TCNQ
LUMO
no work

F4TCNQ@ZnO in DFT

Our normal DFT calculations: undoped

Step 1: add electrons to DFT calculation

 adsorption energy:

$$
E^{a d s}(q)=E^{m o l @ \operatorname{surf}}(q)-E^{m o l}-E^{s u r f}+q \Delta \epsilon_{F}
$$

Adding electrons to surface calculations

adsorption energy:

$$
E^{a d s}=E^{m o l @ s u r f}-E^{m o l}-E^{s u r f}+q \mu_{e}
$$

chemical potential of electrons

Adding electrons to surface calculations

adsorption energy:

$$
E^{\text {ads }}=E^{\text {mol@surf }}-E^{\text {mol }}-E^{\text {surf }}+q \mu_{e}
$$

Adding electrons to supercells: chemical potential of electrons

- requires compensating charge background

supercell

Adding electrons to surface calculations

adsorption energy:

$$
E^{\text {ads }}=E^{\text {mol@surf }}-E^{\text {mol }}-E^{\text {surf }}+q \mu_{e}
$$

Adding electrons to supercells:
chemical potential of electrons

- requires compensating charge background

Adding electrons to surface calculations

adsorption energy:

$$
E^{a d s}=E^{m o l @ s u r f}-E^{m o l}-E^{s u r f}+q \mu_{e}
$$

Adding electrons to supercells: chemical potential of electrons

- requires compensating charge background

supercell

Adding electrons to surface calculations

adsorption energy:

$$
E^{a d s}=E^{m o l @ s u r f}-E^{m o l}-E^{s u r f}+q \mu_{e}
$$

Adding electrons to supercells:
chemical potential of electrons

- we confine charge background (virtual crystal approximation)

In our all-electron code:

- we change nuclear charge:

$$
Z \rightarrow Z+\delta \quad\left(\delta \sim 10^{-2}\right)
$$

supercell

Adsorption energy as function of Fermi energy

Step 2: contribution from space charge region

Step 2a:
bulk doping concentration

- translate Fermi energy into doping dependence (standard semiconductor text book expressions)

$$
\Delta \epsilon_{\mathrm{F}} \rightarrow N_{D}
$$

Step 2b:

- introduce space charge region (add band bending contribution)
surface area supercell length
$\Delta E_{q}^{\mathrm{ads}}\left(N_{\mathrm{D}}\right)=E_{\mathrm{ads}}^{\mathrm{DFT}}(q)-\underbrace{\frac{e^{2} \downarrow}{6 \varepsilon \varepsilon_{0} N_{\mathrm{D}} A^{2}}|q|^{3}}+\underbrace{\frac{e^{2} d^{\swarrow}}{6 \varepsilon \varepsilon_{0} A} q^{2}}$
macroscopic band bending
spurious band bending
in calculation

Step 2: contribution from space charge region

Step 2a:
bulk doping concentration

- translate Fermi energy into doping dependence (standard semiconductor text book expressions)

$$
\Delta \epsilon_{\mathrm{F}} \rightarrow N_{D}
$$

Step 2b:

- introduce space charge region (add band bending contribution) surface area supercell length
$\Delta E_{q}^{\mathrm{ads}}\left(N_{\mathrm{D}}\right)=E_{\mathrm{ads}}^{\mathrm{DFT}}(q)-\underbrace{\frac{e^{2} \downarrow}{6 \varepsilon \varepsilon_{0} N_{\mathrm{D}} A^{2}}|q|^{3}}+\underbrace{\frac{e^{2} d}{6 \varepsilon \varepsilon_{0} A} q^{2}}$
Step 2c:
- maximize $\Delta E_{q}^{\text {ads }}\left(N_{\mathrm{D}}\right)$ for optimal charge transfer Q

Introducing bulk doping into 1st principles

$$
E^{a d s}\left(N_{D}\right)=\underbrace{E^{\text {mol@surf }}-E^{\text {mol }}-E^{\text {surf }}}+\underbrace{\Delta_{B B}\left(Q, N_{D}\right)}
$$ microscopic: DFT macroscopic model

charge transfer

adsorption energy

Y. Xu, O.T. Hofmann, R. Schlesinger, S.Winkler, J. Frisch, J. Niederhausen, A.Vollmer, S. Blumstengel, F. Henneberger, N. Koch, P. Rinke, and M. Scheffler, submitted to Phys. Rev. Lett

Introducing bulk doping into 1st principles

$$
E^{a d s}\left(N_{D}\right)=\underbrace{E^{\text {mol@surf }}-E^{\text {mol }}-E^{\text {surf }}}+\underbrace{\Delta_{B B}\left(Q, N_{D}\right)}
$$ microscopic: DFT macroscopic model

Adsorption energy and charge transfer

- large work function increase

Formation of space-charge layer

low doping + deep donors \Rightarrow band bending pins

Work function increase in photoemission

photoemission (UPS/XPS) in collaboration with:

Humboldt University Berlin

R. Schlesinger
J. Frisch
J. Niederhausen
S. Blumstengel
F. Henneberger
N. Koch

Synchrotron BESSY II
S.Winkler
A.Vollmer

Experiment

- work function increase: 1.4 eV
- minimal charge transfer

Collaborative Research Center "Hybrid Inorganic/ Organic Systems" F. Henneberger, P. Rinke, M. Scheffler, and N. Koch, Phys. Rev. B 87, I553II (2013)

F4TCNQ@ZnO - photoemission

F4TCNQ@ZnO(00-I0)
 similar spectra for $\mathrm{ZnO}(0010)$

F4TCNQ@ZnO - photoemission

F4TCNQ@ZnO(00-10)

R. Schlesinger, et al., Phys. Rev. B 87, I553II (2013)

F4TCNQ@ZnO - photoemission

- extraordinarily large work function changes
R. Schlesinger, et al., Phys. Rev. B 87, I553II (2013)

Workfunction of F4TCNQ@ZNO

- DFT-HSE workfunction in good agreement with UPS

Workfunction of F4TCNQ@ZNO

H-deficient $\mathbf{Z n O}-\mathrm{O} \mathbf{2 x 1}-\mathrm{H}$ surface

O dangling bond

H-deficient $\mathbf{Z n O - O} \mathbf{2 x 1}-\mathrm{H}$ surface

H-deficient $\mathbf{Z n O}-\mathbf{O} \mathbf{2 x 1}-\mathrm{H}$ surface

$\mathrm{ZnO}-\mathrm{O}$ in contact with H -reservoir

- H-deficient surfaces stabilized by n-type conditions

N. Moll,Y. Xu, O. Hofmann, P. Rinke, New J. Phys. in press

$\mathrm{ZnO}-\mathrm{O}$ in contact with H -reservoir

- H-deficient surfaces stabilized by n-type conditions

N. Moll,Y. Xu, O. Hofmann, P. Rinke, New J. Phys. in press

Experimental evidence

	surf. core level shift
Exp.	2.0 eV
DFT	2.3 eV

peak weights:

- H-coverage ~30-40\%

PBE Δ self-consistent field (SCF) calculations reveal:

- only H-terminated structures match exp. core level shifts

HIOS are fascinating systems

Charge transfer

Level alignment

Surface structure

Van der Waals interaction

Adsorption geometry
Defects

Atomistic understanding of HIOS

Charge transfer

Level alignment

Van der Waals interaction

Surface structure

Atomistic understanding of molecules@surfaces

Charge transfer

Level alignment

Van der Waals interaction

Acknowledgements

Fritz-Haber-Institut, Berlin
Yong XuOliver HofmannNorina RichterSergey Levchenko

Matthias Scheffler

IBM Research Zurich

Nikolaj Moll
Humboldt University Berlin

R. Schlesinger
J. Frisch
J. Niederhausen
S. Blumstengel
F. Henneberger
N. Koch
Helmholtz-Center Berlin - BESSY II
S.Winkler
A.Vollmer

Adsorption geometries and energies

- monolayer is composed of flat-lying molecules
- molecular orientation in layer random: disorder (no impact on electronic structure)

Step 2: contribution from space charge region

Step 2a:
bulk doping concentration

- translate Fermi energy into doping dependence (standard semiconductor text book expressions)

$$
\Delta \epsilon_{\mathrm{F}} \rightarrow N_{D}
$$

$$
\frac{N_{\mathrm{D}}}{1+2 \exp \left(\frac{\Delta \epsilon_{\mathrm{F}}}{k_{\mathrm{B}} T}\right) \exp \left(\frac{E_{\mathrm{d}}}{k_{\mathrm{B}} T}\right)}=N_{\mathrm{C}} \frac{2}{\sqrt{\pi}} F_{1 / 2}\left(\frac{\Delta \epsilon_{\mathrm{F}}}{k_{\mathrm{B}} T}\right)
$$

donor binding energy
(30 meV)

$$
\begin{gathered}
N_{\mathrm{C}}=2\left(\frac{2 \pi m^{*} k_{\mathrm{B}} T}{h^{2}}\right)^{\frac{3}{2}} \\
F_{1 / 2}\left(\eta_{\mathrm{F}}\right)=\int_{0}^{\infty} \frac{\eta^{1 / 2} \mathrm{~d} \eta}{1+\exp \left(\eta-\eta_{\mathrm{F}}\right)}
\end{gathered}
$$

F4TCNQ@ZnO schematically

low doping + deep donors \Rightarrow band bending pins

F4TCNQ@ZnO schematically

$$
\Delta \Phi=\Delta \Phi_{\mathrm{ID}}+\Delta \Phi_{\mathrm{BB}}=\frac{\delta q}{\varepsilon_{0}} d_{e f f}+\frac{\delta q^{2}}{2 \varepsilon_{0} \varepsilon N_{D}}
$$

R. Schlesinger, et al., Phys. Rev. B 87, I553II (2013)

F4TCNQ@ZnO schematically

$$
\Delta \Phi=\Delta \Phi_{\mathrm{ID}}+\Delta \Phi_{\mathrm{BB}}=\frac{\delta q}{\varepsilon_{0}} d_{e f f}+\frac{\delta q^{2}}{2 \varepsilon_{0} \varepsilon N_{D}}
$$

R. Schlesinger, et al., Phys. Rev. B 87, I553II (2013)

F4TCNQ@ZnO schematically

$$
\Delta \Phi=\Delta \Phi_{\mathrm{ID}}+\Delta \Phi_{\mathrm{BB}}=\frac{\delta q}{\varepsilon_{0}} d_{e f f}+\frac{\delta q^{2}}{2 \varepsilon_{0} \varepsilon N_{D}}
$$

R. Schlesinger, et al., Phys. Rev. B 87, I553II (2013)

