Bulk doping effects in hybrid organic/ inorganic systems from quantum mechanical first principles

<u>Patrick Rinke¹</u>, Yong Xu¹, Oliver T. Hofmann¹, Niko Moll² and Matthias Scheffler¹

¹Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin ²IBM Research - Zurich

May 2013

HIOS

MAX-PLANCK-GESELLSCHAFT

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Organic Electronics - Plastic Electronics

sources (left to right): Organic Electronic Association, Eco Friend, Nature Publishing Group, Samsung

Inorganic/organic interfaces are already present... ... and affect or determine device properties. Can we understand and control them?

sources (left to right): Organic Electronic Association, Eco Friend, Nature Publishing Group, Samsung

Hybrid Inorganic/Organic Interfaces (HIOS)

Combine the best of two worlds...

inorganic materials:

- stable crystal structures
- good growth control
- high charge carrier mobilities

organic materials:

- strong light matter coupling
- large chemical compound space

synergy or more!

Hybrid electronics:

make interface central

ZnO/p-sexiphenyl (courtesy of S. Blumstengel)

Potential for new physics at HIOS solid organic

potential for new interface morphologies

Optimizing HIOS - the right combination

• What is the right combination?

Vast chemical compound space

Fundamental questions at HIOS interfaces

What is the nature of charge carriers?
Do new quasiparticles emerge at interface?

Atomistic understanding of molecules@surfaces

Atomistic understanding of molecules@surfaces

Level alignment at interface

Modifying level alignment at interface

interface layer to adjust level alignment

Modifying level alignment at interface

Charge transfer induced work function increase

High doping \Rightarrow flat bands \Rightarrow metallic regime

Charge transfer induced work function increase

High doping \Rightarrow flat bands \Rightarrow metallic regime

Formation of space-charge layer

low doping \Rightarrow band bending

Quantum mechanical treatment

adsorption energy:

Our Code: FHI-aims [1]

All-electron DFT and beyond code developed in the Fritz-Haber-Institut

• Accurate numerical atomic orbital basis sets:

$$\varphi_i(\vec{r}) = \frac{u_i(r)}{r} Y_{lm}(\Omega)$$

- Massively scalable, massively parrallel
- DFT functionals: LDA, PBE, hybrids (HSE), ...
- pairwise van der Waals (vdW) scheme [2]:

$$E_{\rm vdW} = -\sum_{B>A} f_{damp} \frac{C_6^{AB}[n]}{R_{AB}^6} \quad \text{density-dependent } C_6 \text{ coefficient}$$

[1] V. Blum et al. Comp. Phys. Comm. **180**, 2175 (2009)
[2] A. Tkatchenko and M. Scheffler Phys. Rev. Lett. **102**, 073005 (2009)

Adsorption geometries and energies $E^{ads} = E^{mol@surf} - E^{mol} - E^{surf}$

F4TCNQ on hydrogen terminated ZnO(000-I)

Adsorption geometries and energies $E^{ads} = E^{mol@surf} - E^{mol} - E^{surf}$

F4TCNQ on hydrogen terminated ZnO(000-I)

F4TCNQ@ZnO in DFT

Our normal DFT calculations: undoped

F4TCNQ@ZnO in DFT

Our normal DFT calculations: undoped

Step 1: add electrons to DFT calculation

adsorption energy:

 $E^{ads}(q) = E^{mol@surf}(q) - E^{mol} - E^{surf} + q\Delta\epsilon_F$

energy of electron reservoir

adsorption energy:

 $E^{ads} = E^{mol@surf} - E^{mol} - E^{surf} + q\mu_e$ chemical potential of electrons

adsorption energy:

$$E^{ads} = E^{mol@surf} - E^{mol} - E^{surf} + q\mu_e$$

Adding electrons to supercells:

chemical potential of electrons

requires compensating charge background

adsorption energy:

$$E^{ads} = E^{mol@surf} - E^{mol} - E^{surf} + q\mu_e$$

Adding electrons to supercells:

chemical potential of electrons

requires compensating charge background

adsorption energy:

$$E^{ads} = E^{mol@surf} - E^{mol} - E^{surf} + q\mu_e$$

Adding electrons to supercells:

chemical potential of electrons

requires compensating charge background

adsorption energy:

$$E^{ads} = E^{mol@surf} - E^{mol} - E^{surf} + q\mu_e$$

Adding electrons to supercells:

chemical potential of electrons

• we confine charge background (virtual crystal approximation)

In our all-electron code:

• we change nuclear charge:

$$Z \rightarrow Z + \delta$$
 ($\delta \sim 10^{-2}$)

Adsorption energy as function of Fermi energy

Step 2: contribution from space charge region

bulk doping concentration

 translate Fermi energy into doping dependence (standard semiconductor text book expressions)

Step 2b:

Step 2a:

• introduce space charge region (add band bending contribution)

Step 2: contribution from space charge region

Step 2a:

Step 2b:

bulk doping concentration

 $\Delta \epsilon_{\rm F} \rightarrow N_D$

 translate Fermi energy into doping dependence (standard semiconductor text book expressions)

• introduce space charge region (add band bending contribution)

$$\Delta E_q^{\rm ads}(N_{\rm D}) = E_{\rm ads}^{\rm DFT}(q) - \underbrace{\frac{e^2}{6\varepsilon\varepsilon_0 N_{\rm D}A^2}|q|^3}_{6\varepsilon\varepsilon_0 N_{\rm D}A^2}|q|^3 + \underbrace{\frac{e^2d}{6\varepsilon\varepsilon_0 A}q^2}_{6\varepsilon\varepsilon_0 A}$$

Step 2c:

• maximize $\Delta E_q^{
m ads}(N_{
m D})$ for optimal charge transfer Q

Y. Xu, O.T. Hofmann, R. Schlesinger, S. Winkler, J. Frisch, J. Niederhausen, A. Vollmer, S. Blumstengel, F. Henneberger, N. Koch, <u>P. Rinke</u>, and M. Scheffler, submitted to Phys. Rev. Lett

Adsorption energy and charge transfer

small charge transfer

Work function increase in photoemission

photoemission (UPS/XPS) in collaboration with:

Humboldt University Berlin

R. Schlesinger J. Frisch J. Niederhausen S. Blumstengel F. Henneberger N. Koch

Synchrotron -BESSY II

S.Winkler A.Vollmer

Experiment

- work function increase: 1.4 eV
- minimal charge transfer

Collaborative Research Center "Hybrid Inorganic/ Organic Systems"

HIOS

R. Schlesinger, Y. Xu, O. T. Hofmann, S. Winkler, J. Frisch, J. Niederhausen, A. Vollmer, S. Blumstengel, F. Henneberger, <u>P. Rinke</u>, M. Scheffler, and N. Koch, Phys. Rev. B 87, 155311 (2013)

F4TCNQ@ZnO - photoemission

similar spectra for ZnO(0010)

F4TCNQ@ZnO - photoemission

R. Schlesinger, et al., Phys. Rev. B 87, 155311 (2013)

F4TCNQ@ZnO - photoemission

extraordinarily large work function changes

R. Schlesinger, et al., Phys. Rev. B 87, 155311 (2013)

Workfunction of F4TCNQ@ZNO

DFT-HSE workfunction in good agreement with UPS

Workfunction of F4TCNQ@ZNO

H-deficient ZnO-O 2x1-H surface

H-deficient ZnO-O 2x1-H surface

ZnO-O in contact with H-reservoir

• H-deficient surfaces stabilized by n-type conditions

ZnO-O in contact with H-reservoir

• H-deficient surfaces stabilized by n-type conditions

Experimental evidence

PBE ∆ self-consistent field (SCF) calculations reveal:
only H-terminated structures match exp. core level shifts

HIOS are fascinating systems

Atomistic understanding of HIOS

Atomistic understanding of molecules@surfaces

Acknowledgements

Fritz-Haber-Institut, Berlin

Yong Xu **Oliver Hofmann** Norina Richter Sergey Levchenko Matthias Scheffler

IBM Research Zurich

Nikolaj Moll

Humboldt University Berlin

R. Schlesinger J. Frisch J. Niederhausen S. Blumstengel F. Henneberger N. Koch

Helmholtz-Center Berlin - BESSY II S.Winkler A.Vollmer **Thank you!**

Unterstützt von / Supported by

Stiftung/Foundation

HIOS

Adsorption geometries and energies 0.0adsorption energy per area 0.5 E_{ads} (eV/nm²) PBE+v 1.0 HSE*+vdW 1.5 flat-lying 2.9 0.5 1.0 2.0 2.5 3.0 1.5 coverage (nm⁻²)

monolayer is composed of flat-lying molecules
molecular orientation in layer random: disorder (no impact on electronic structure)

Step 2: contribution from space charge region

bulk doping concentration

 translate Fermi energy into doping dependence (standard semiconductor text book expressions)

Step 2a:

donor binding energy

 $\frac{N_{\rm D}}{1+2\exp(\frac{\Delta\epsilon_{\rm F}}{k_{\rm B}T})\exp(\frac{E_{\rm d}}{k_{\rm B}T})} = N_{\rm C}\frac{2}{\sqrt{\pi}}F_{1/2}(\frac{\Delta\epsilon_{\rm F}}{k_{\rm B}T})$ $\frac{1+2\exp(\frac{\Delta\epsilon_{\rm F}}{k_{\rm B}T})\exp(\frac{E_{\rm d}}{k_{\rm B}T})}{(30\text{ meV})} = N_{\rm C}\frac{2\pi m^*k_{\rm B}T}{h^2})^{\frac{3}{2}}$ $\frac{1+2\exp(\frac{\Delta\epsilon_{\rm F}}{k_{\rm B}T})}{(0.27 \text{ m}_{\rm e})}$

 $\Delta \epsilon_{\rm F} \rightarrow N_D$

 $F_{1/2}(\eta_{\rm F}) = \int_{0}^{\infty} \frac{\eta^{1/2} d\eta}{1 + \exp(\eta - \eta_{\rm F})}$

F4TCNQ@ZnO schematically

low doping + deep donors \Rightarrow band bending pins

R. Schlesinger, et al., Phys. Rev. B 87, 155311 (2013)

R. Schlesinger, et al., Phys. Rev. B 87, 155311 (2013)