

Scaling Relations: A Computational Approach to Catalyst Search

Aleksandra Vojvodic

The "Control Age"

We now stand at the brink of a "Control Age" that could spark revolutionary changes in how we inhabit our planet, paving the way to a bright and sustainable future for us all. *

10 10 1 l

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

• How to design energy- & atom-efficient synthesis of new materials with tailored properties to reduce environmental impact?

- Computer guided catalyst and materials design rooted in fundamental understanding - Search for the "materials genome"

> * Directing Matter and Energy: Five Challenges for Science and the Imagination, Basic Energy Sciences Report, U.S. DOE (2009).

Catalysts and Real Materials

Nano-particles:

- Finite size
- Many facets
- Steps/Edges
- Corners
- Defects
- Support

211

Validity of Surface Science Approach

adsorption on Au nano-particles

A. Larsen, J. Kleis, K. Thygesen, J. K. Nørskov, K. Jacobsen, Phys. Rev. B 1, 84 (2011)

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

Elementary Surface Reaction Steps

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

Norderney, Germany 20130722

Key Ingredients to Surface Reactions: Adsorption and Barriers

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

Ammonia Synthesis, Stepped Ru(0001) Surface

K. Honkala et al., Science **307**, 555 (2005)

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

- Overall reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
- Elementary steps $N_2(g) + 2^* \rightleftharpoons 2N^*$ RDS $H_2(g) + 2^* \rightleftharpoons 2H^*$ $N^* + H^* \rightleftharpoons NH^*$ $\mathrm{NH}^* + \mathrm{H}^* \rightleftharpoons \mathrm{NH}_2^*$ $\mathrm{NH}_2^* + \mathrm{H}^* \rightleftharpoons \mathrm{NH}_3^*$ $NH_3^* \rightleftharpoons NH_3(g)$
- Rate of reaction $R = R_1 = k_1 p_{N_2} \theta_*^2 (1 - \gamma)$

What About Other Catalysts?

SUN CAT

S. Dahl et al., Phys. Rev. Lett. 83, 1814 (1999)

Why is Ru good and Ni poor?What determines reactivity?

Dealing with Complexity

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

Norderney, Germany 20130722

SUNEAT

Dealing with Complexity

Ammonia Synthesis on Ru(0001)

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

SUNEAT

1.
$$N_2(g) + 2^* \rightleftharpoons 2N^*$$

2. $H_2(g) + 2^* \rightleftharpoons 2H^*$
3. $N^* + H^* \rightleftharpoons NH^*$
4. $NH^* + H^* \rightleftharpoons NH_2^*$
5. $NH_2^* + H^* \rightleftharpoons NH_3^*$
6. $NH_3^* \rightleftarrows NH_3(g)$
+ $N_2(g) \rightleftharpoons N^*$
+ $N_2(g) \rightleftharpoons N^*$
5 intermediates
+
5 transition states
=
12 different energy parameters

Scaling Relations

Adsorption scaling

 Relationships between bond energies of different intermediates

Brønsted-Evans-Polanyi (BEP)/ Transition state scaling

 Relationships between activation energies and reaction energies

Perform Computer Experiments

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

Norderney, Germany 20130722

Machines: Supercomputers

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

SUNEAT

Main Method: Density Functional Theory

N non-interacting, fictitious particles + effective potential

Kohn-Sham Equations:

$$\begin{bmatrix} -\frac{1}{2}\nabla^2 + v_{\text{eff}} \end{bmatrix} \psi_i(\mathbf{r}) = \varepsilon_i \psi_i(\mathbf{r})$$
$$n(\mathbf{r}) = \sum_{i=1}^N |\psi_i(\mathbf{r})|^2$$

 $v_{eff} = v_{ext}(\mathbf{r}) + v_{Hartree}[n(\mathbf{r})] + v_{xc}[n(\mathbf{r})]$ with $v_{xc}[n(\mathbf{r})] =$

DFT Performance: "It's All in the Exchange-Correlation Functional"

0.8 MAE(eV) 0.6 0.4 0.2

J. P. Perdew et al. in AIP Conf. Proc. 577 (2001), M.A.L. Marques et al., Comp. Phys. Commun. 183, 2272 (2012).

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

J. Wellendorff, et al., Phys. Rev. B 85, 23 (2012),

S

Application of BEEF: Physorption of n-alkanes in Zeolites (ZSM22)

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

R. Brogaard, P. G. Moses, J. K. Nørskov, Catal. Lett. **142**, 1057 (2012).

Computer Experiments I

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

SUNEAT

stepped surface

F.Abild-Pedersen, et al., Phys. Rev. Lett. 99, 016105 (2007).

Computer Experiments I

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

SUNCAT

Computer Experiments II

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

SUNEAT

J	L.	-2	/

stepped surface

F.Abild-Pedersen, et al., Phys. Rev. Lett. 99, 016105 (2007).

Computer Experiments II

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

SUNEAT

Computer Experiments III

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

SUNCAT

stepped surface

F.Abild-Pedersen, et al., Phys. Rev. Lett. 99, 016105 (2007).

Computer Experiments III

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

SUN CAT

Adsorption Scaling Relations

Atom A:

- Valency: x_{\max}
- •# H atoms attached: x
- •# bonds to surface: $x_{surf} = \gamma x_{max}$

Bond order conservation

 $\gamma x_{\max} + x = x_{\max}$

$$\Leftrightarrow \\ \gamma = \frac{x_{\max} - x}{x_{\max}}$$

Adsorption Site and Scaling Relations

Overall scaling independent of adsorption geometry and details of bonding \Rightarrow more general explanation

Norderney, Germany 20130722

Origin of Adsorption Scaling Relations

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

Norderney, Germany 20130722

 $\Delta E^{AH_x} = \gamma(x)\Delta E^A + \xi$ $\gamma(x) = (x_{max} - x)/x_{max}$

d-band model

╋

Effective medium theory

F.Abild-Pedersen, et al., Phys. Rev. Lett. 99, 016105 (2007).

The d-band Model of Chemical Bonding on Metal Surfaces

$$\begin{array}{ll} \Delta E_{ads} = \Delta E_{sp} + \Delta E_d & \longrightarrow & \Delta E_d = -2(1-f) \frac{V_{ad}^2}{|\varepsilon_d - \varepsilon_a|} + 2(1+f) \alpha V_{ad}^2 \\ & \downarrow & \\ & \text{large and constant} & \text{small and varies} \end{array}$$

1 .

B. Hammer et al., Surf. Sci. 343, 211 (1995); Nature 376, 238 (1995); Adv. Catal. 45, 71 (2000).

Calculated Density of States

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

Norderney, Germany 20130722

SUNEAT

Variations in O Adsorption Energies

B. Hammer, J. K. Nørskov, Adv. Catal. 45, 71 (2000).

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

SUNEAT

A.Vojvodic, J. K Nørskov, F.Abild-Pedersen, Top. Catal, accepted (2013).

"d-band model part"

From d-band model: variations between metals depend on ΔE_d $\Delta E^{A} = \Delta E^{A}_{sp} + \Delta E^{A}_{d}$ $\Delta E^{\mathrm{AH}_x}(x) = \Delta E_{sn}^{\mathrm{AH}_x} + \Delta E_d^{\mathrm{AH}_x}$ Assume $\Delta E_d^{\mathrm{AH}_x}(x) = \gamma(x) \Delta E_d^{\mathrm{A}} \Rightarrow$ $\Delta E^{\mathrm{AH}_x}(x) = \gamma(x) \Delta E_d^{\mathrm{A}} + \Delta E_{sp}^{\mathrm{AH}_x}$ $\equiv \gamma(x)\Delta E^{A} + \xi$ read off from figure for each AH_x/A combination

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

 $= \gamma(x)\Delta E_d^{A} + \Delta E_{sn}^{AH_x} - \gamma(x)\Delta E_{sn}^{A} + \gamma(x)\Delta E_{sn}^{A}$

Norderney, Germany 20130722

"Effective medium part"

$$\Delta E_d = \Delta E_d^{hyb} + \Delta E_d^{orth}$$

In the weak coupling limit $\Delta E_d^{hyb} \propto \Delta E_d^{orth} \propto V_{ad}^2$, where V_{ad}^2 is the coupling strength between the adsorbate and the metal *d*-states.

 $V_{ad}^{2}(\{r_{a_{i}}\})$ function of the number of metal neighbors and their distance to the adsorbate.

Add H atoms to the central C, N, O or S *i.e.* $x \nearrow \Rightarrow$

•
$$r_{a_i}$$
 /
• $V^2_{ad}(\{r_{a_i}\})$ /

sp-coupling determines the adsorption bond lengths r_{a_i} Use effective medium theory (EMT)

"Effective medium part"

- Interaction of atom A with atoms in the vicinity \approx interaction of A with a homogeneous electron gas (effective medium) of a density given by a spherical average *n* of the nearby atoms. $\Delta E = \Delta E_{hom}(n)$.
- $\Delta E_{hom}(n)$ has a minimum for a particular electron density $n_0 \Rightarrow$ Equilibrium geometry is the position where A experiences $n = n_0$

Surface electron density n_{surf} needed for $n = n_0 \searrow$ as $x \nearrow$

$$\Rightarrow n_{surf} = \frac{x_{max} - x}{x_{max}} n_0 = \gamma(x) n_0$$

Assumption: *d*-states have approximately the same decay length as the *sp*-states $\Rightarrow V_{ad}^2$ scales with n_{surf}

$$\Delta E_d \propto V_{ad}^2 \propto n_{surf}(x) \propto rac{x_{max}-x}{x_{max}} = \gamma(x)$$

Prediction of Reaction Energies Based on Adsorption Scaling

For any (de)hydrogenation reaction of molecules bonding to a TM surface via C, H, O or S atoms estimate the reaction energy ΔE for all TM's just by knowing ΔE for one TM.

$$\Delta E = \sum_{i=1}^{N} (\gamma_i \Delta E^{A_i}) + \Delta \xi$$

F.Abild-Pedersen, et al., Phys. Rev. Lett. 99, 016105 (2007).

Reducing Complexity: BEP/Transition State Scaling Relations

$$E_{\rm ts} = \gamma \Delta E_{\rm diss} + \xi$$

Relations are active site dependent

J. K. Nørskov et al., J. Catal. **209**, 275 (2002).

Transition State Structures

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

More BEP/Transition State Scaling Relations

C-C, C-O, C-N ... bond breaking

S.Wang, et al, Catal. Lett. **[4]**, 370 (2011).

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

C-H, O-H, N-H ... bond breaking

S. Wang, et al, Phys. Chem. Chem. Phys. **13**, 20760 (2011).

Dealing with Complexity of Ammonia Synthesis

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

1.
$$N_2(g) + 2^* \rightleftharpoons 2N^*$$

2. $H_2(g) + 2^* \rightleftharpoons 2H^*$
3. $N^* + H^* \rightleftharpoons NH^*$
4. $NH^* + H^* \rightleftharpoons NH_2^*$
5. $NH_2^* + H^* \rightleftharpoons NH_3^*$
6. $NH_3^* \rightleftharpoons NH_3(g)$
• How many energetic variables are there?
• How many energetic variables are there?
6 intermediates
+
6 transition states
=
12 different energy parameters

Dissociation of A₂ is Rate Determining Step

$$R(T,p) = k_1 p_{A_2} \theta_*^2 (1-\gamma)$$

$$k_1 = \frac{k_B T}{h} e^{-\Delta S_a} e^{-E_a} k_B e^{-E_a} k_B T$$

$$\gamma = \frac{p_{AB}^2}{K_{eq} p_{A_2} p_B^2}$$

$$\theta_* = \frac{1}{1 + \sqrt{K_1 p_{A_2} \gamma}}$$

$$K_1 = e^{-\Delta G_1^\circ / k_B T}$$

Invoke BEP relations

$$E_{a_{1}} = \gamma \Delta E_{1} + \xi \equiv E_{a}(2E_{N})$$

$$R(T,p) = k_{1}p_{A_{2}}\theta_{*}^{2}(1-\gamma)$$

$$k_{1} = \frac{k_{B}T}{h}e^{-\Delta S_{a}}/k_{B}e^{-E_{a}}/k_{B}T} = k_{1}(\Delta E_{1})$$

$$\gamma = \frac{p_{AB}^{2}}{K_{eq}p_{A_{2}}p_{B}^{2}}$$

$$\theta_{*} = \frac{1}{1+\sqrt{K_{1}p_{A_{2}}\gamma}}$$

$$\Delta E_{1} = 2E_{N}$$

$$K_{1} = e^{-\Delta G_{1}^{\circ}}/k_{B}T} = K_{1}(\Delta E_{1})$$

Volcano for Ammonia Synthesis

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

Descriptor $\Delta E_1 = 2E_N$

Norderney, Germany 20130722

Volcano for Ammonia Synthesis

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

Reaction Coordinate

Descriptor $\Delta E_1 = 2E_N$

Motivation: Syngas Conversion

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

Methanation Volcano ($CO+3H_2 = >CH_4+H_2O$)

211 monometallic surface

- C & O adsorption energies are descriptors
- CO dissociation = RDS
- Ru, Co highest activity
- Rh, Ni, Fe also have high activity

J. K. Nørskov, et. al. Proc. Nat. Acad. Sci. USA **108**, 937 (2011).

Finding Methanation Catalyst Leads

Norderney, Germany 20130722

Identification of Ni₃Fe as Methanation Catalyst

J. K. Nørskov, et. al. Proc. Nat. Acad. Sci. USA 108, 937 (2011).

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

SUN CAT

Screening + Paretto analysis => Ni₃Fe

M.Andersson, et. al. J. Catal. 239, 501 (2006).

Norderney, Germany 20130722

The Industrial Cu/ZnO/Al₂O₃ Methanol Catalyst

- no correlation btw Cu surface area and activity
- only Cu has low activity => need ZnO
- stacking faults => surface defects (steps/kinks ...)
- correlation btw amount of defects and activity

M. Behrens, et. al. Science **336**, 893 (2012).

Reaction Path for CO + $2H_2 => H_3COH$

M. Behrens, et. al. Science **336**, 893 (2012).

Reaction Path for CO + $2H_2 => H_3COH$

Extend to other metal surfaces => correlations

M. Behrens, et. al. Science **336**, 893 (2012).

Scaling Relations for CO Hydrogenation

C & O adsorption energies only descriptors

transition state energies

F. Studt, et. al. J. Catal. **293**, 51 (2012).

Methanol Volcano (CO + $2H_2 => CH_3OH$)

Norderney, Germany 20130722

F. Studt, et. al. J. Catal. **293**, 51 (2012).

Finding Methanol Catalyst Leads

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

http://suncat.stanford.edu/catapp/

- ~I 500 DFT calculated adsorption and activation energies
- Published data
- Consistent sets of results
- Free web application tool
- Runs in any modern web browser without plug-ins

CatApp Publication

Web Applications

CatApp: A Web Application for Surface Chemistry and Heterogeneous Catalysis**

Jens S. Hummelshøj, Frank Abild-Pedersen, Felix Studt, Thomas Bligaard, and Jens K. Nørskov*

I. Hummelshøj, Frank Abild-Pedersen, Felix Studt, Thomas Bligaard, and Jens K. Nørskov, Angew. Chem. Int. Ed. 51, 272 (2012).

DOI: 10.1002/anie.201107947

CatApp Installation

http://suncat.stanford.edu/catapp/

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

SUN CAT

Aleksandra Vojvodic: "Scaling Relations: A Computational Approach to Catalyst Search"

Norderney, Germany 20130722

Design Principle

- Concepts of Modern Catalysis and Kinetics, I.Chorkendorff, J.W. Niemantsverdriet
- Chemical Bonding on Surface and Interfaces, Eds A. Nilsson, L. Pettersson, J. K. Nørskov
- Handbook of Surface Science Vol 2, Electronic Structure, Eds, K. Horn, M. Scheffler

