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Efficiency of solar→electrical energy conversion very low.
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■ Exciton dissociation: electron/hole pair recombines instead of dis-
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Predict electron mobility in a macroscopic fullerene crystal.
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C60

Below 250K, C60 crystals are
stable in FCC configuration and ex-
hibit no special features.

Over 250K every C60 molecules
pseudo-rotates at its site.

Simulations need to consider these
different regimes.
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Phenyl-C61-butyric acid methyl ester (PCBM)

At room temperature crystal
structure depends on preparation
method.

Observed PCBM crystals are:

■ SC

■ BCC

■ Hexagonal

■ Monoclinic

■ Triclinic
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The mobility of an electron can be defined as the derivative of the drift
velocity v with respect to the applied external field E:

µij =
∂ 〈vi(E)〉
∂Ej

→ need a way to calculate field dependent electron velocities.

→ how do electrons move?
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Hypothesis I:
Electrons are localised in the form of polarons and move via hopping.

A polaron is a quasi-particle composed of a charge and its accompanying
polarisation field.
In our case: charge → polarisation of surroundings → stabilises charge

Polaron in C60 Polaron in water
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Hypothesis I:
Electrons are localised in the form of polarons and move via hopping.

Hypothesis II:
Electrons are de-localised in bands and move via band-like conduction.

Semiconductor band structure

Wenzien, Käckell, Bechstedt, Cappellini,
PRB 52 10897 (1995)
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Hopping model:

Need derivative of average drift ve-
locity 〈v〉.

E

v

Within hopping model this is given as the
sum of all forward and backward hops in each direction.
Determined by rate kl and hopping distance dl

µij =
∂ 〈vi〉
∂Ej

=
∑

l

∂ 〈kl〉
∂Ej

dli

Can be solved analytically for crystals.
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Within the hopping model we need to be able to predict electron transfer
rates1 between nearest and next-nearest neighbours.

e−

1H. Oberhofer and J. Blumberger Angew. Chem. Int. Ed. 49 3631 (2010)
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Rate expressions of the form:

k = A× e−G/kBT

→ semi-classical Landau Zener transition state theory:
A = κel(Hab, λ, νn;T )νn, G = ∆E‡ −∆(Hab, λ,∆G)

→ non-adiabatic (Marcus) rate: A ∝ |Hab|2(λkBT )−1/2, G = ∆E‡

valid for activated processes where λ >> Hab

→ adiabatic rate: A = νn, G = ∆E‡ −∆(Hab, λ,∆G)
valid for κel ≈ 1 (|Hab|2 >> hνn

√
λkBT )

1Brunschwig, Logan, Newton, Sutin, JACS, 102, 5798 (1980)
2R. A. Marcus, Rev. Mod. Phys. , 65, 599 (1993)
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Marcus theory1 of electron transfer gives a configuration dependent rate:

kET(r) =
1

h

〈

|Hab(r)|2
〉

(4πλ(r)kBT )
−1/2e−(λ(r)−∆G(r))/4λ(r)kBT

Has to be calculated for
every crystallographic direction and
depending on the electric field E.
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kET(r) =
1

h
〈|Hab(r)|2〉(4πλ(r)kBT )−1/2e−(λ(r)−∆G(r))/4λ(r)kBT

■ Hab the electronic transition matrix element
⇒ accurate calculation of diabatic energies

■ the reorganisation free energy λ
⇒ sampling of diabatic states for a given r

■ Driving force ∆G
⇒ energy difference of diabatic states

1R. A. Marcus, J. Chem. Phys. 24 966 (1956)
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kET(r) =
1

h
〈|Hab(r)|2〉(4πλ(r)kBT )−1/2e−(λ(r)−∆G(r))/4λ(r)kBT
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Reaction coordinate
1R. A. Marcus, J. Chem. Phys. 24 966 (1956)
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Reaction coordinate

Diabatic states: Charges localised on either Donor or Acceptor molecules.
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       necessarily in minimum



Concerning the reaction coordinate
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Charge of Donor or acceptor is not a good reaction coordinate!
Actual charge hopping not the slow process.

Reorganisation of surroundings is slow.
Idea: Use energy difference of charge states.

Electron jumps

Surroundings still polarised for old charge state

dE
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How to calculate the parameters
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Need to construct the charge localised states.

→ DFT suffers from the so called charge delocalisation error.

DFT will always give this (even with hybrid functionals):
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To circumvent the delocalisation error we use:

Constrained DFT:

■ B. Kaduk, T. Kowalczyk, and T. Van Voorhis, Chem. Rev. 112 321 (2011)

■ H. Oberhofer and J. Blumberger J. Chem. Phys. 131 64101 (2009)

■ H. Oberhofer and J. Blumberger J. Chem. Phys. 133 4105 (2010)
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To circumvent the delocalisation error we use:

Constrained DFT:

■ B. Kaduk, T. Kowalczyk, and T. Van Voorhis, Chem. Rev. 112 321 (2011)

■ H. Oberhofer and J. Blumberger J. Chem. Phys. 131 64101 (2009)

■ H. Oberhofer and J. Blumberger J. Chem. Phys. 133 4105 (2010)

Fragment orbital DFT

■ H. Oberhofer and J. Blumberger Angew. Chem. Int. Ed. 49 3631 (2010)

■ K. Senthilkumar, F. C. Grozema, F. M. Bickelhaupt, L. D. A. Siebbeles,
J. Chem. Phys. 119 9809 (2003)

■ A. Farazdel, M. Dupuis, E. Clementi, A. Aviram, JACS 112 4206 (1990)
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wA,D = wD − wA =

∑
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∑

i∈A ρi(r−Ri)
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i=1 ρi(r−Ri)

A constraint on charges takes the form 1

∫

w(r)ρ(r) dr−Nc = 0

1Q. Wu and T. van Voorhis, Phys. Rev. A 72 024502 (2005)
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wA,D = wD − wA =

∑

i∈D ρi(r−Ri)−
∑

i∈A ρi(r−Ri)
∑N

i=1 ρi(r−Ri)

A constraint on charges takes the form 1

∫

w(r)ρ(r) dr−Nc = 0

With a new energy functional

F [ρ, V ] = E[ρ] + V (

∫

w(r)ρ(r) dr−Nc)

The matrix element is then given by:

Hab ∝ 〈ψa|HKS |ψb〉 = FB 〈ψa|ψb〉 − VB 〈ψa|w |ψb〉

1Q. Wu and T. van Voorhis, Phys. Rev. A 72 024502 (2005)
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wA,D = wD − wA =

∑

i∈D ρi(r−Ri)−
∑

i∈A ρi(r−Ri)
∑N

i=1 ρi(r−Ri)

1H. Oberhofer and J. Blumberger J. Chem. Phys. 131 64101 (2009)



Fragment Orbital DFT

Summer School Norderney, July 2013 Harald Oberhofer

Separate donor and Acceptor group and calculate the HOMO’s of the
charged groups separately.



Fragment Orbital DFT

Summer School Norderney, July 2013 Harald Oberhofer

Separate donor and Acceptor group and calculate the HOMO’s of the
charged groups separately.



Fragment Orbital DFT
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Separate donor and Acceptor group and calculate the HOMO’s of the
charged groups separately.

Hab is the off-diagonal Kohn-Sham matrix element of the two HOMO’s.

Hab ∝
〈

ΦHOMO
a

∣

∣HKS

∣

∣ΦHOMO
b

〉
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■ In an ideal bravais crystal all sites are equivalent.

■ Only with an external potential ∆G is non-zero.

■ Given an external Field E the energy difference between two lattice
sites A and B is simply:

∆GA,B = −eE.(rB − rA) = −eE.dAB

A B

E
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Some results for hopping in Fullerene crystals

■ H. Oberhofer and J. Blumberger, Phys. Chem. Chem. Phys. 14 13846 (2012)

■ F. Gajdos, H. Oberhofer, M. Dupuis, and J. Blumberger J. Phys. Chem. Lett.
4 1012 (2013)
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Distribution of (nearest) site-to-site transition matrix elements in crystal

Sampled over
≈ 27000 equidistributed
configurations

Gaussian distribution arises from different relative orientations of
molecules.
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Where do these variations come from?
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Temperature dependence of mobilities for different rate equations.

Experimental value µ(T = 300K) = 0.5cm2/s/V 1

1Frankevich, Maruyamaa, Ogataa, CPL 214 39, (1993)
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Rate expressions of the form:

k = A× e−G/kBT

→ semi-classical Landau Zener transition state theory:
A = κel(Hab, λ, νn;T )νn, G = ∆E‡ −∆(Hab, λ,∆G)

→ non-adiabatic (Marcus) rate: A ∝ |Hab|2(λkBT )−1/2, G = ∆E‡

valid for activated processes where λ >> Hab

→ adiabatic rate: A = νn, G = ∆E‡ −∆(Hab, λ,∆G)
valid for κel ≈ 1 (|Hab|2 >> hνn

√
λkBT )

1Brunschwig, Logan, Newton, Sutin, JACS, 102, 5798 (1980)
2R. A. Marcus, Rev. Mod. Phys. , 65, 599 (1993)
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adiabatic or non-adiabatic? Adiabaticity is controlled by ratio:

2πγ =
π3/2|Hab|2
hνn

√
kBTλ

2πγ ≫ 1 : adiabatic regime
2πγ ≪ 1 : non-adiabatic regime
here 〈2πγ〉 = 0.65!
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adiabatic or non-adiabatic? neither

Are there even charge localised states?
Diabatic states exist if there is a finite barrier separating the sites:
In our picture that means |Hab| ≤ 3λ/8

For ≈ 5% of all configurations
there is no barrier.
Considering nuclear quantum
effects (zero point energy)
→ barrier even lower.
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adiabatic or non-adiabatic? neither

Are there even charge localised states?
Diabatic states exist if there is a finite barrier separating the sites:
In our picture that means |Hab| ≤ 3λ/8

large barrier

localised states

small barrier

slightly 

delocalised states

no barrier

no localised states
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adiabatic or non-adiabatic? neither

Are there even charge localised states?
No, due to low reorganisation energy and high Hab

⇓

Hopping models based on localised site-to-site rates only suitable as first
approximation. Can yield a starting point for future investigations.
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A better way to simulate charge transport

Direct propagation of a model Hamiltonian parametrised from ab-initio
calculations

■ A. Troisi J. Chem. Phys. 134 034702 (2011)

■ F. Gajdos, M. Dupuis, and J. Blumberger in preparation
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Assume a time independent Hamiltonian.

→ no coupling between electron and nuclear motion
(not really correct, see above)

Write Hamiltonian in basis of site localised states (these correspond to
diabatic states)

Model Hamiltonian:

off diagonal elements = Hab

diagonal elements = Eigenenergies
of diabatic states
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■ SolveHΦi(r) = εiΦi(r) for time independent eigenvalues εi and eigen-
functions Φi(r)
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Solution to i~ ∂
∂t
Ψ(r, t) = HΨ(r, t)

■ Choose initial state ΨI(r, t0)

■ SolveHΦi(r) = εiΦi(r) for time independent eigenvalues εi and eigen-
functions Φi(r)

■ Numerically propagate ΨI(r, t0) for a time t:
Ψ(r, t) =

∑

i 〈Φi(r)|ΨI(r, t0)〉 e−iεi(t−t0)/~Φi(r)

Work in progress for solar cells!
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1D Example: Propagation of an excited core electron in LiCN

Time dependent states
⇒ time series of atomic
charges
⇒ can follow the movement
of the electron through the
molecule

1M. Ludwig, internship report (2013)
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What is missing (and some ideas how to proceed):

■ Electric field → modify site energies

■ Absorbing boundary conditions → imaginary site energies

■ Movement of the atoms → force field or Born Oppenheimer DFT

■ Coupling of electronic and nuclear motion
→ need non-adiabatic coupling element 〈ψj(r,R)|∇Rψi(r,R)〉
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