Our goal: To design new, efficient catalytic processes based on fundamental understanding of bonding and reactivity.

Two primary research areas

- Selective oxidation induced by coinage metals (Au and Ag) —bridging the pressure and materials gaps.
- 2. Hot topic: Defects and thermal oxidation/photooxidation on TiO₂

Opportunity for reduced energy usage in chemical industry: Catalysis is Key

Chemical Production is energy intensive

Manufacturing Energy Consumption Survey 2006, Table 1.2

- ~1 M people directly employed by US chemical industry
- Most processes rely on heterogeneous catalysis

How can reduced energy usage through improved catalysis be achieved?

Reduction in energy cost using VETRI catalysis

Increase *rate*

TAS

- Lower operating temperature (save energy)
- Increase selectivity —get the product you want with little or no waste

- **Example:** Methanol oxidation on Ag or Au
- $CH_{3}O-C(H)=O + 2 H_{2}O$ $H_2C=0$ $3 CH_3OH + O_a$
 - $CO_{2} + 2 H_{2}O$

Key principles in catalysis

- Catalysis is controlled by kinetics—
 - *dynamic metasable surface structures;*
 - competitive binding of reactants;
 - small energy differences lead to large changes
- What is a good *catalyst*? Depends on *reactive process*!
- **Complexity**—most catalysis involves transformations of organic molecules
- Requires cyclic process/self renewal

Major advances position catalysis for a major renaissance

- Powerful experimental tools for understanding bonding and *reactivity*
- Advanced understanding of surface and interfacial phenomena
- Synthesis of new nanomaterials and architectures

Potential for low-T/highly selective chemistry using Au Nanoparticle catalysts

Complex material, not readily amenable to detailed mechanistic study

K. Okazaki, S. Ichikawa, Y. Maeda, M. Haruta and M. Kohyama, APPLIED CATALYSIS A-GENERAL, 2005, 291, 45-54.

http://unit.aist.go.jp/isc/english_ver/ each_groups_e/nano-cat_e/nano-cat_e.htm

Model systems: insight into roles of components in determining activity

Au(111)

Goal: Deconvolute reactivity of catalyst components

Nanoporous Au

Nano-TiO₂/Au(111)

Schematic PE surface

What can theory provide?

- Information on *bonding* of surface species, including binding energy; structure; charge distribution
- Insight into *reactivity*, including TS, barrier heights, branching
- Generalization is desirable—must include chemical complexity
- Kinetic modeling—should include surface heterogeneity and be "chemically accurate"

Model system informs catalysis

VE 🚺 RI

TAS

Challenges in Au-based catalysis

- O_{ads} is reactive site: low rate of O₂ dissociation on Au limits the production of key intermediates
- High reaction selectivity for alcohol functionalization is critical for viable chemical processes.
- Supported Au catalysts rapidly sinter, leading to short catalyst lifetime; a consequence of atom mobility

Bridging the pressure gap in Au catalysis

- Reaction only occurs when O is present
- Spectators, including H₂O, do not accumulate on the surface due to weak bonding
- Low SS coverage of reactants and products

No detectable dissociation at 400 K and pressures of $\sim 10^{-6}$ torr for up to 10 minutes

Upper bound of dissociation probability ~10⁻⁷

Au is incorporated into metal complexes when O atoms are adsorbed

Au is oxidized by other methods in UHV: O_3 , electron-induced NO₂ dissociation, O_2^+ sputtering

Increasing concentration of O atoms on the surface of Au

No Oxygen clean Au

0.2 ML

Rough Surface morphology remains after reacting away all O via CO oxidation

~0.3 ML O deposited at 200 K

No residual O

In situ scanning

Atomically resovled images of larger islands have rectangular symmetry indicating the presence of O

Metastable nanostructures formed at 200 K, have high reactivity & selectivity—attributed to mobile species

 $T_{\rm D} = 200 {\rm K}$

 $T_{\rm D} = 400 {\rm K}$

O-coverage

3D islands

2D islands

Thermal annealing leads to larger islands with local 2-D order

Au-O bonding is robust, Bond energy ~140 kJ/mol

Local Bonding of O depends on Coverage

Molecular Dynamics with DFT: understand local bonding of O species at higher coverage

Chemisorbed O 380 cm⁻¹ peak

2-D "oxide" 380 & 560 cm⁻¹ peaks

Subsurface "oxide" 380 & 560 cm⁻¹ peaks

Low T, Low θ₀ Most reactive and selective; e.g. CO oxidation faster

High T, High θ_0

Baker, Xu, Liu, Kaxiras, & Friend, J. Phys. Chem. C., 2009, 113, 16561-16564.

CO oxidation: simple prototype

Rate of CO oxidation depends on temperature:

- Local bonding and morphology of surface
- Surface lifetime of reactants

CO₂

The surface lifetime of CO decreases with increasing T; However the lifetime does not account for the rate...

CO oxidation rate measured isothermally at 200K—dependence on O coverage

CO Oxidation Rate higher for metastable O phase

Metastable state has a higher free energy, increasing reactivity

most active for oxidation, are more readily released from metastable phases

Extension to more complex reactions

O Adsorbed on metallic Au is required for bond activation

Methanol partial oxidation on Au(111): Partial oxidation at low O coverage

Xu, B., Liu, X., Haubrich, J., Madix, R. & Friend, C. Angew. Chem., Int. Ed. 48, 4206-4209 (2009).

Selectivity for methanol esterification: O coverage dependence

Predictions from molecular mechanism:

- High CH₃OH: O₂ favors esterification
- Low temperature reaction anticipated
- Rate limitation: supply of O

Predictions born out @atmospheric pressure using nanoporous Au

Wittstock & Bäumer, Science, 2010, 327, 319-322

Methanol Esterification over NP Au

Mechanism at low pressure *is* predictive of catalytic reactivity and selectivity

Atmospheric pressure, *catalytic* transformation

Methanol oxidation on NP Au

As predicted: esterification dominates at low O₂ partial pressures

NP Au is stable: activity maintained after 14 days of operation,TON~687,000

As predicted: Selectivity= $ester:CO_2$ decreases with T and O_2 partial pressure

Confirmation that NP Au dissociates O₂--Ag key

O₂ dosed at 130 K, varying the pressure from 1x10⁻⁹ to 1x10⁻⁷ torr

The atomic O₂ stays relatively the same with each dose

Molecular oxygen is adsorbed onto the Ag/Au alloy at a temperature of 130 K

Increase in Ag content lowers selectivity: Suggests increase in θ_0

Note similarity in low Ag content/high O_2 pressure and high Ag content/low O_2 pressure

Bridging the pressure and materials gap

Clear correspondence between NP Au and single crystal Au

DFT: Attack of H₂C=O by CH₃O is spontaneous—no barrier

Adsorbed O facilitates last β -H elimination step; low barrier for transfer to Au (0.22 eV)

B. Xu, J. Haubrich, T. A. Baker, Kaxiras. Friend, JPC C (2011) doi.org/10.1021/jp110835w

(b)

VASP, GGA-PW91

Insights from DFT studies

- Loss of H from CH₃O is determines rate —adsorbed O, OH and CH₃O all promote formaldehyde formation
- Weak binding of reactants, e.g. H₂C=O, OH, & H₂O, facilitates rearrangement to preferred reaction geometry for coupling key aspect of Au reactivity

Guiding principle for designing new reactions

Electron distribution leads to reaction of negatively polarized species with positively charged one

Prediction: Any molecule with electrondeficient carbon should react with OCH₃ on O/Au—e.g. CO

Design of new synthetic routes: Dimethylcarbonate production using Au

Biofuel production

http://www.greener-industry.org.uk/pages/ safer/safer 4 reactions.htm

http://blogs.rsc.org/cy/files/2011/02/ biofuels_1.gif

IVEL IRI ITASI

Dimethyl carbonate production on Au(111)/O

Spectroscopic identification of CH₃OC=O intermediate

DFT probes structure & used for vibrational assignments

Xu, Madix, Friend, JACS(2011); dx.doi.org/10.1021/ja207389z

Surface Chemistry as a platform for reaction *discovery:* Dimethyl carbonate production

Low temperature process
No noxious byproducts existing process produces HCI

Insights from DFT studies

- Loss of H from CH₃O is determines rate —adsorbed O, OH and CH₃O all promote formaldehyde formation
 - Insight: longer chain alcohols will form aldehydes at a faster rate/lower temperature
- Weak binding of reactants, e.g. H₂C=O, OH, & H₂O, facilitates rearrangement to preferred reaction geometry for coupling key aspect of Au reactivity

What controls selectivity for the different possible coupling pathways?

Xu, Friend, Madix, Chemical Sciences (2010) 1, 310-314, DOI: 10.1039/C0SC00214C.

Higher Alcohols: Displacement & β-H elimination are key factors

Relative surface coverage determined by equilibrium

Rate of β -H elimination from RCH₂O(ads): CH₃O reacts slowest

Madix, R.J. & Friend, C.M. JACS (2010).

Reactant binding determines competition for reaction sites

Relative surface concentration of intermediates determined by equilibrium:

Xu, B., Madix, R.J. & Friend, C.M. JACS (2010).

MethanoI: only coupling product observed; no formaldehyde **EthanoI**: Acetaldehyde produced in significant quantitites; also coupling

1-Butanol: Aldehyde primary product; formed at lower T; minor amount of coupling

O₂-assisted self-coupling of alcohols on NP Au: Same trend as for O/Au(111)

NP Au is also active in oxidative coupling of alcohols other than methanol

O₂-assisted cross-coupling of dissimilar alcohols on NP Au

VETRI

TAS

General Reaction Patterns for Atomic Oxygen on Ag and Au

I. Activation of Acidic Hydrogens: O_a as Brønsted Base

 $1.BH(g) + O(a) \rightarrow B(a) + OH(a): BH(g) + OH(a) \rightarrow B(a) + H_2O(g)$

(Reactions of BH(g) suggested by <u>gas phase</u> acidity) $RCH_2OH \rightarrow RCH_2O_a$ $C_6H_5CH_3 \rightarrow C_6H_5C\equiv_a$

 $\label{eq:HCOOH} \mathsf{HCOO}_{a} \qquad \qquad \mathsf{C_2H_2} \qquad \rightarrow \ \mathsf{C_2H_a} \rightarrow \mathsf{C_{2a}}$

 $NH_3 \rightarrow N, NH_a RCH_2NH_2 \rightarrow RCH_2NH_a$

M.A. Barteau and R.J. Madix, Surf. Sci. 94 (1980) 303.

X. Liu, R.J. Madix and C.M. Friend, Chem. Soc. Rev. 137 (2008) 2243

General concept: Acid-base reactions determine surface concentrations

Current outlook: Alloy catalysts

Single crystal models

Catalyst synthesis and testing

Challenge for theory: electronic and geometric structure under reaction conditions

Overview

- Fundamental mechanistic studies provide basis for predicting *new* reactions
- New nanoscale architectures, e.g. nanoporous materials, are promising materials
- Theoretical insight provides guiding principles

"Wish list" for advancement of theory

- Prediction/modeling of metal atom release
- Accurate description of charge distribution
- Inclusion of weak interactions; more accuracy
- Kinetic modeling over various time scales
- Treatment of complex materials multicomponent and over different length scales
- Excited state dynamics (photochemistry) —"hot topic"

Friend Group

Funding: DOE NSF Harvard/NSEC Humboldt Foundation **Co-workers**: M. Baeumer T. Baker **M.Biener** J. Biener T. Cremer S.C. Jensen J. Haubrich E. Kaxiras J. Klobas R. Madix K. Phillips M. Schmid C. Siler K. Stowers L.-C. Wang B. Xu