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Outline of Day 1

• Basics of the MC method

• Markov processes and the master equation

• Random walks and diffusion processes

• The Focker-Planck equation and the Itô SDE

• Diffusion in the double-well potential

• From the double-well to the egg-tray



Basics of the MC method

MC started and is mostly seen as a numerical way to calculate integrals

If we draw pairs of random numbers (xi, yi) where

the xi and the yi are uniformly distributed in [0, 1]
the probability for the point to lie within the circle

is equal to π/4.

When we turn to integration over a volume in a high-dimensional

space, it becomes advantageous to use integration grid points that

are randomly (uniformly) distributed in the volume.

For a regular grid and a finite number of total grid points N an

increasing number of grid points lies on the surface of the volume.

surface
volume ∝

d
N1/d



Statistical Physics

Let us consider the canonical partition function as an example of such

high-dimensional integrals

Z =
∫
C

dx e−βU(x)

for a Hamiltonian H =
∑
i
p2
i

2mi
+ U(x) and with β = 1

kBT
.

problem: only regions with small U(x) contribute significantly ⇒ a

uniform sampling “wastes” a lot of points to irrelevant regions of

configuration space.

solution: importance sampling



Importance Sampling

Rewrite the partition function

Z =
∫
C dµ(x) with the Gibbs measure dµ(x) = e−βU(x)dx

The expectation value for an observable is

〈O〉 =
1
Z

∫
C
O(x)dµ(x) = lim

n→∞

n∑
i=1

O(xi)µ(xi)/
n∑
i=1

µ(xi)

When we generate points in configuration space according to their

equilibrium distribution ρeq(x) = 1
Ze−βU(x) ≈ µ(xi)/

∑n
i=1 µ(xi) we

get

〈O〉 ≈ 1
n

n∑
i=1

O(xi)



Importance Sampling

How do we do this?

Idea: Simulate a Markov process which has ρeq(x) as unique stationary

distribution.

Consider the conditional probabilities for a stochastic process

Pn(xn, tn;xn−1, tn−1; . . . ;x1, t1) = P1|n−1(xn, tn|xn−1, tn−1; . . . ;x1, t1)

Pn−1(xn−1, tn−1; . . . ;x1, t1)

For a Markov process one has

Pn(xn, tn;xn−1, tn−1; . . . ;x1, t1) = P1|1(xn, tn|xn−1, tn−1)

Pn−1(xn−1, tn−1; . . . ;x1, t1)



Markov Chains

In discrete time we call this a Markov chain. The conditional

probabilities of Markov processes obey the Chapman-Kolmogorov

equation

P1|1(x3, t3|x1, t1) =
∫

dx2P1|1(x3, t3|x2, t2)P1|1(x2, t2|x1, t1)

For a stationary Markov process, we can write for its two defining

functions

p1(x, t) = peq(x) ,

p1|1(x2, t2|x1, t1) = pt(x2|x1) , t = t2 − t1 ,

where we want pt to denote a transition probability within the time

interval t from state x1 to state x2.



Markov Chains

Using the Chapman–Kolmogorov equation for pt, we get

pt+t′(x3|x1) =
∫
dx2 pt′(x3|x2)pt(x2|x1 ) .

When we consider a discrete probability space for xi it is easily seen

that this is a matrix multiplication, the pt being matrices transforming

one discrete state into another.

We now want to derive the differential form of the Chapman–

Kolmogorov equation for stationary Markov processes. For this

we consider the case of small time intervals t′ and write the transition

probability in the following way:

pt′(x3|x2) = (1− wtot(x2)t′) δ(x3 − x2) + t′w(x3|x2) + o(t′) .



Markov Chains

This equation defines w(x3|x2) as the transition rate (transition

probability per unit time) from x2 to x3. (1− wtot(x2)t′) is the

probability to remain in state x2 up to time t′, that is

wtot(x2) =
∫
dx3w(x3|x2) .

Inserting this into the Chapman–Kolmogorov equation results in

pt+t′(x3|x1) = (1− wtot(x3)t′) pt(x3|x1)+t′
∫
dx2w(x3|x2)pt(x2|x1) ,

and so

pt+t′(x3|x1)− pt(x3|x1)
t′

=
∫
dx2w(x3|x2)pt(x2|x1)−

∫
dx2w(x2|x3)pt(x3|x1) ,



Markov Chains

in which we have used the definition of wtot. In the limit t′ → 0 we

arrive at the master equation, which is the differential version of the

Chapman–Kolmogorov equation.

∂

∂t
pt(x3|x1)

=
∫
dx2w(x3|x2)pt(x2|x1)−

∫
dx2w(x2|x3)pt(x3|x1) .

It is an integro-differential equation for the transition probabilities of

a stationary Markov process.

When we do not assume stationarity and choose a p1(x1, t) 6=
peq(x) but keep the assumption of time-homogeneity of the transition

probabilities, i.e., they only depend on time differences, we can

multiply this equation by p1(x1, t) and integrate over x1 to get a

master equation for the probability density itself:



Markov Chains

∂

∂t
p1(x3, t)

=
∫
dx2w(x3|x2)p1(x2, t)−

∫
dx2w(x2|x3)p1(x3, t) .

Let us change the notation: p1→ p, x3→ x and x2→ x′

∂

∂t
p(x, t) =

∫
dx′w(x|x′)p(x′, t)−

∫
dx′w(x′|x)p(x, t) .

On a discrete state space we would write this equation in the following

way:

∂

∂t
p(x, t) =

∑
x′

(
w(x|x′)p(x′, t)− w(x′|x)p(x, t)

)
.



Markov Chains

Going back to discrete time as in a simulation

t = n∆t,
∂p(x, t)
∂t

→ p(x, n+ 1)− p(x, n)
∆t

, w̃ = w∆t

we get

p(x, n+ 1)− p(x, n) =
∑
x′

(
w̃(x|x′)p(x′, n)− w̃(x′|x)p(x, n)

)
.

In the stationary state we have

p(x, n+ 1) = p(x, n) = peq(x)

so that ∑
x′

(
w̃(x|x′)peq(x′)− w̃(x′|x)peq(x)

)
= 0 .



Detailed Balance

One way to fulfill this equation is to require detailed balance, i.e., the

net probability flux between every pair of states in equilibrium is zero.

w̃(x|x′)
w̃(x′|x)

=
peq(x)
peq(x′)

For thermodynamic averages in the canonical ensemble we have

peq(x) = 1
Z exp{−βH(x)} and

w̃(x|x′)
w̃(x′|x)

= exp{−β(H(x)−H(x′))}

When we use transition probabilities in our Monte Carlo simulation

that fulfill detailed balance with the desired equilibrium distribution

we are sure to have

lim
n→∞

p(x, n) = peq(x) .



Detailed Balance

The choice of transition rates is therefore not unique.

Common choices for these rates are

• the Metropolis rate

w(x′|x) = w0(x′|x)min(1, exp{−β(H(x′)−H(x))}

• the Glauber rate

w(x′|x) = w0(x′|x)
1
2
(1− tanh (exp{−β(H(x′)−H(x))})

In both of these rates we assumed w0(x′|x) = w0(x|x′) to be the

probability to choose a certain pair of states which are connected

through the selected set of moves, i.e., the flip of a single spin in an

Ising model simulation.



Random Walk

Let us assume that a walker can sit at regularly spaced positions along

a line that are a distance ∆x apart; so we can label the positions by

the set of whole numbers. Furthermore we require the walker to be at

position 0 at time 0. After fixed time intervals ∆t the walker either

jumps to the right with probability p or to the left with probability

q = 1 − p; so we can work with discrete time points, labeled by the

natural numbers including zero.
q p

m− 1 m m+ 1

What is the probability p(m,N) that the walker will be at position

m after N steps?

We can set up a rate equation

p(m,N + 1) = p p(m− 1, N) + q p(m+ 1, N)



Random Walk

Let us introduce the drift velocity, v, and the diffusion coefficient, D,

into this equation:

v = (2p− 1)
∆x
∆t

, D = 2pq
(∆x)2

∆t

We can write

q = (D − vq∆x)
∆t

(∆x)2

p = (D + vp∆x)
∆t

(∆x)2
.

Inserting this into the rate equation and subtracting p(m,N) we get



Random Walk

p(m,N + 1)− p(m,N)
∆t

= −vp p(m,N)− p(m− 1, N)
∆x

−vq p(m+ 1, N)− p(m,N)
∆x

+D
p(m+ 1, N)− 2p(m,N) + p(m− 1, N)

(∆x)2

+
(

2D
(∆x)2

− 1
∆t

+
vp

∆x
− vq

∆x

)
p(m,N) .

The last term vanishes identically. When we now perform the

continuum limit of this equation keeping v and D constant, we arrive

at the Fickian diffusion equation.



Random Walk

∂

∂t
p(x, t) = −v ∂

∂x
p(x, t) +D

∂2

∂x2
p(x, t) .

To derive this equation we had to perform a special continuum limit

in time and space in which both ∆x/∆t and (∆x)2/∆t stay finite.

This has to be understood in the sense that the average displacement

for many walkers scales as ∆t and the average squared displacement

scales as ∆t as well.

But what type of equation of motion for the walker in continuous

time gives rise to such behavior?

For v = 0 the solution to above equation is

p(x, t) =
1√

2π2Dt
exp

[
−1

2
x2

2Dt

]
,



Brownian Motion
This stochastic process is called Browian motion or Wiener process.

The Wiener process (like every diffusion process) has continuous

sample paths

Prob
[
|x(t + ∆t)− x(t)| > k

]
=
∫ ∞
k

dx
2√

2π∆t
exp

[
− x2

2∆t

]
,

lim
∆t→0

Prob
[
|x(t + ∆t)− x(t)| > k

]
= 0 ∀ k ,

since the argument of the integral is a representation of the δ

distribution as ∆t→ 0.

The sample paths are, with probability one, nowhere differentiable:

Prob
[∣∣∣∣x(t + ∆t)− x(t)

∆t

∣∣∣∣ > k
]

=
∫ ∞
k∆t

dx
2√

2π∆t
exp

[
− x2

2∆t

]
,

lim
∆t→0

Prob
[∣∣∣∣x(t + ∆t)− x(t)

∆t

∣∣∣∣ > k
]

= 1 ∀ k .



Brownian Motion

The equation for Brownian motion is a Itô stochastic differential

equation

dx(t) =
√

2DdW (t) .
The Wiener increments are Gaussian random variables with

〈dW (t)〉 = 0, 〈dW (t)dW (t′)〉 = 0 for t 6= t′, 〈dW 2(t)〉 = dt

From this we easily see

〈dx(t)〉 = 0, 〈dx2(t)〉 = 2Ddt

which was our definition for the diffusion coefficient of the random

walk for p = q = 1/2.

For our starting case including a drift term, the equation would be

dx(t) = vdt+
√

2DdW (t) .



When is MC kinetics reasonable?

For the random walk we have thus seen an example where we can

perform a Monte Carlo simulation of a master equation (our original

rate equation) and obtain a diffusive transport mechanism for large

time (∆t→ 0).

More general we can say that MC kinetics is reasonable for relaxational

processes and transport processes on “mesoscopic” to macroscopic

time scales.

“Mesoscopic” meaning a time scale where vibrational motion has

been damped out. This in turn means that the degrees of freedom

we are interested in have to be coupled to a heat bath and subject to

some friction mechanism.



Diffusion processes

Diffusive transport is equivalently described by

• a Fokker-Planck equation for the probability distribution

∂

∂t
p(x, t) = − ∂

∂x
[a1(x)p(x, t)] +

1
2
∂2

∂x2
[a2(x)p(x, t)]

• a Langevin equation (Itô SDE) for the sample paths

dx(t) = a1(x, t)dt+
√
a2(x, t)dW (t)

The numerical solution of the Langevin equation involves generating

random numbers to simulate the Wiener process. One can show, that

one can use any distribution reproducing the first 2n moments of the

Gaussian distribution of dW (t) for an algorithm of order n in dt.



Itô Formula

Suppose that x(t) fulfills the Langevin equation of the previous page

and that f is a functional of x and t. Then one has

df [x(t), t]

=
[
∂

∂t
f [x(t), t] + a[x(t), t]

∂

∂x
f [x(t), t] +

1
2
b2[x(t), t]

∂2

∂x2
f [x(t), t]

]
dt

+ b[x(t), t]
∂

∂x
f [x(t), t] dW (t) .

To derive this one has to use the special property of the diffusion

processes that “[dW (t)]2 = dt”.

This transformation property will be of importance in the discussion

of the application of Monte Carlo methods to finance problems.



Diffusion in the double well

xA xB xC

U(x)

ωB

Eb
+

Eb
−

K

K

ωA

+

−

External potential U(x)
as a function of some

general position coordinate

x. The particle starts in

the metastable minimum

around xA and crosses the

barrier to the equilibrium

state at xC by a thermally

activated stochastic

process

What is the average time the system needs to go from xA to xB?

This will be a thermally activated process.



Diffusion in the double well

We treat this problem in the overdamped case and only consider the

position of the particle and not its velocity. The Langevin equation

then reads

dx =
F (x)
γM

dt+

√
2kBT

γM
dW (t) .

The corresponding Fokker–Planck equation is also called

Smoluchowski equation because Smoluchowski treated free Brownian

motion with this approach

∂

∂t
p(x, t) = − ∂

∂x

[
F (x)
γM

p(x, t)
]

+
1
2
∂2

∂x2

[
2kBT

γM
p(x, t)

]
.

What is the mean first passage time for going from xA to xC.



Diffusion in the double well

For the general form of the Fokker-Planck equation

∂

∂t
p(x, t) = − ∂

∂x
[A(x)p(x, t)] +

1
2
∂2

∂x2
[B(x)p(x, t)] .

the result for the mean first passage time is

τ(x) = 2
∫ xC

x

dx′φ−1(x′)
∫ x′

−∞
dx′′

φ(x′′)
B(x′′)

.

with the abbreviation

φ(x) = exp
[∫ x

−∞
dx′

2A(x′)
B(x′)

]



Diffusion in the double well

Inserting

A(x) =
−U ′(x)
Mγ

and B(x) =
2kBT

Mγ
,

into this solution, we get

〈τxC〉 =
Mγ

kBT

∫ xC

x

dx′ exp
[
U(x′)
kBT

] ∫ x′

−∞
dx′′ exp

[
−U(x′′)
kBT

]
.

With a quadratic expansion of the potential around its stationary

points we arrive at Kramers result for the transition rate

1
K+

= 〈τAC〉 ≈
2πγ
ωBωA

exp

[
E+

b

kBT

]
.



From the double well to the egg-tray

An egg-tray is the naive picture for a surface with a simple square

lattice of adsorbtion sites and barriers between these sites which an

adsorbed atom has to surmount to perform surface diffusion. This

problem will be treated in much more detail on the third day of the

tutorial.

This type of modeling can also be used to treat the diffusion of

solutes through a glassy polymer matrix. The glassy matrix contains

preferred adsorption sites with barriers between them. These sites

and the paths connecting them define a random 3d network and the

solute diffusion can be modeled as a random walk on this network.



From the double well to the egg-tray

For simplicity, we will study a 1d version of this problem, i.e., we are

back to our random walk!

Suppose we identify a time interval

∆t =
2πγ
ωBωA

with each random walk step. Following Kramers’ result we can write

the probability for a jump to the right within 1 MCS:

p = exp

[
−
E+

b

kBT

]
and to the left q = exp

[
−
E−b
kBT

]
.

With a probability 1− p− q the RW remains at its position.



From the double well to the egg-tray

We can now look at the effect of different assumptions for the barrier

heights

• constant barrier heights,

• alternating large and small barriers,

• random barrier heights followin a Gaussian distribution,

• random barrier heights following a Cauchy distribution.

This is the task for this afternoon.
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