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Outline of Day 2

• Background on phase transformation kinetics

• The Ising model and its lattice gas interpretation

• Phase transition kinetics studied with the Ising model

• The physics of polymer chain dynamics

• Chemically realistic versus lattice polymer modeling

• Kinetic MC simulation of polymer melt dynamics



Background on phase transformation kinetics
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Many systems show a two-phase coexisitence below a critical

temperature Tc. Examples include the paramagnetic-ferromagnetic

transition, the liquid-gas transition or the demixing of a binary

mixture.



Background on phase transformation kinetics
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Within the spinodal the homogeneous (disordered) phase is

thermodynamically unstable. Between the spinodal and binodal one

needs nucleation events of the opposite phase (thermal activation) to

induce the phase transformation.



Background on phase transformation kinetics

The relaxational kinetics of phase transformations can be simulated

using, for instance kinetic Ising models.

Left: S. Herminghaus et al. Science 282, 916 (1998)

Right: J.Sethna, Ising simulation, published on the WEB



Background on phase transformation kinetics
The patterns we saw on the last page coarsen self-similarly in time,

i.e., when we take a pattern at time t2 > t1 and rescale its linear

dimension by a factor b(t1, t2) we regain the pattern from time t1.

Experimentally we would see this in the intermediate scattering

function (dynamic structure factor)

S(q, t) = S(q/L(t))

The time dependence of the typical scale L(t) depends on the presence

of conservation laws in the system

• non-conserved order parameter: L(t) ∝ t1/2 (Allen-Cahn law)

• conserved order parameter: L(t) ∝ t1/3 (Lifshitz-Slyozov law)

• importance of hydrodynamcs: L(t) ∝ t2/3 or t depending on the

regime



Ising Model
The Hamiltonian of the Ising model is given as

H(~s) = −Jq
∑
i

∑
j∈n(i)

sisj − µBH
∑
i

si ,

where the spins si = ±1 represent the magnetic moments fixed

in space on some lattice structure, n(i) denotes the set of spins

interacting with spin i, Jq is the strength of interaction between

spins, q is the number of interacting neighbors (qJq = const = kBTc
where the last equality is valid in mean field), and H is an external

magnetic field .

The lattice gas interpretation of the Ising model is obtained by the

transformation si = 2ci − 1, ci = 0, 1

H = −4Jq
∑
i

∑
j∈n(i)

cicj + 2(qJq − µBH)
∑
i

ci −N(qJq − µBH)



Ising Model

The canonical probability for a microstate is

µ(~s) =
1
Z
e−βH(~s) ,

with β = 1/kBT and the partition function

Z =
∑
~s

e−βH(~s) .

The kinetics is given by a master equation in discrete time

p(~s, n+ 1) = p(~s, n) +
∑
~s ′

w(~s|~s ′)p(~s ′, n)

−
∑
~s ′

w(~s ′|~s)p(~s, n) .



Ising Model

Two popular choices are the Glauber and the Metropolis transition

probabilities:

w(~s ′|~s) = w0(~s ′|~s)1
2

[
1 + tanh

(
−1

2
β∆H

)]
(Glauber) ,

w(~s ′|~s) = w0(~s ′|~s) min (1, exp [−β∆H]) (Metropolis) ,

where ∆H = H(~s ′)−H(~s), and w0(~s ′|~s) is the probability to suggest

~s ′ as the next state, starting from ~s. We have to require the symmetry

w0(~s ′|~s) = w0(~s|~s ′) .

In a computer simulation of we would choose an arbitrary starting

configuration ~s0 and then use some algorithm to generate the next

configurations ~s1, ~s2 and so on. One such algorithm is the single

spin-flip kinetic Ising model, in which we select one spin at random



Ising Model

(i.e., w0(~s ′|~s) = 1/N) and try to reverse it.

wG(~s ′|~s) =
1

2N

[
1 + tanh

(
−1

2
β∆H

)]
(Glauber) ,

wM(~s ′|~s) =
1
N

min (1, exp [−β∆H]) (Metropolis) ,

We can therefore write the master equation in the form

p(s1, . . . , si, . . . , sn, n+ 1)

= p(s1, . . . , si, . . . , sn, n) +
∑
i

w(−si→ si)p(s1, . . . ,−si, . . . , sn, n)

−
∑
i

w(si→ −si)p(s1, . . . , si, . . . , sn, n) .



Ising Model

Monte Carlo algorithm

• generate a starting configuration ~s0,

• select a spin, si, at random,

• calculate the energy change upon spin reversal ∆H,

• calculate the probability w for this spin-flip to happen, using the

chosen form of transition probability,

• generate a uniformly distributed random number, 0 < r < 1,

• if w > r, flip the spin, otherwise retain the old configuration.



Ising Model

So far we have discussed a Monte Carlo method for non-conserved

order parameter (magnetization).

For a conserved oder parameter (concentration) one uses Kawasaki

dynamics:

• choose a pair of (neighboring) spins, i.e., w0(~s ′|~s) = 1/2dN if we

chose a spin at random and then a neighbor on a simple cubic

lattice at random

• exchange the spins subject to the Metropolis acceptance criterion

This algorithm would suggest itself for the lattice gas interpretation.

For surface diffusion one often works with non-conserved particle

number mimicking desorbtion/adsorbtion events.



Ising Model
Let us now discuss the case of a magnetization reversal induced by a

switching of the external field below Tc. In mean field we have

m = tanh
[
µBH

kBT
+
Tc
T
m

]



Ising Model

For the mean-field kinetic Ising model the kinetic equation can be

greatly simplified. For the single spin-flip mean-field kinetic Ising

model, the energy change can be written (for large N)

∆H(si→ −si) = 2JNsi
∑
j∈n(i)

sj + 2µBHsi

= 2JNsiNm+ 2µBHsi .

Noting that δm = −2si/N , we get

∆H(m, δm) = −JNN2mδm− µBHNδm ,

The transition probabilities in the master equation are therefore given

by



Ising Model

w(si| − si) → w(m− δm, δm)

w(−si|si) → w(m,−δm)

if m is supposed to be the magnetization of the state

(s1, . . . , si, . . . , sN) and δm the magnetization difference between

this state and the one with si reversed. Summing the master

equation over all configurations ~s with a fixed m, we get

p(m,n+ 1)− p(m,n)

=
∑
~sm

N∑
i=1

w(m− δm, δm)p(s1, . . . ,−si, . . . , sN , n)

−
N∑
i=1

w(m,−δm)p(m,n) ,



Ising Model

in which we have used p(m,n) =
∑
~sm
p(~s, n). Performing the

combinatorics for magnetization changes δm = 2/N and δm = −2/N
leading to or leaving from the magnetization m, one arrives at

p(m,n+ 1)− p(m,n)

=
N

2

(
1 +m+

2
N

)
w
(
m+ 2/N,−2/N

)
p
(
m+ 2/N, n

)
+
N

2

(
1−m+

2
N

)
w
(
m− 2/N, 2/N

)
p
(
m− 2/N, n

)
−N

2
(1 +m)w

(
m,−2/N

)
p
(
m,n

)
−N

2
(1−m)w

(
m, 2/N

)
p
(
m,n

)
.



Ising Model

Let us introduce a time scale δt for a single spin-flip and consider the

limit δt → 0, Nδt = τ = const. Dividing the master equation by δt

we derive in this limit

∂

∂t
p(m, t) =

N

2

(
1 +m+

2
N

)
w̃
(
m+ 2/N,−2/N

)
p
(
m+ 2/N, n

)
+
N

2

(
1−m+

2
N

)
w̃
(
m− 2/N, 2/N

)
p
(
m− 2/N, n

)
−N

2
(1 +m) w̃

(
m,−2/N

)
p
(
m,n

)
−N

2
(1−m) w̃

(
m, 2/N

)
p
(
m,n

)
.



Ising Model

The transition rates are now given as (with Tc = JNN/kB):

w̃G(m, δm) =
1
2τ

[
1 + tanh

(
Tc

2T
Nmδm+

µBH

2kBT
Nδm+

Tc

NT

)]
,

w̃M(m, δm) =
1
τ

min
(

1, exp
[
Tc

T
Nmδm+

µBH

kBT
Nδm+

2Tc

NT

])
.

The master equation we obtained is one for a so-called birth-and-

death process. It can be elegantly rewritten following van Kampen

using the following definitions:



Ising Model

• rate of jumps to the right: r(m) = (1−m)w̃(m, 2/N),

• rate of jumps to the left: l(m) = (1 +m)w̃(m,−2/N),

• translation by 2/N : T = exp
(
2/N ∂

∂m

)
,

• translation by −2/N : T −1 = exp
(
−2/N ∂

∂m

)
.



Ising Model

The master equation becomes

∂

∂t
p(m, t) =

N

2
(
T − 1

)[
l(m)p(m, t)

]
+
N

2
(
T −1 − 1

)[
r(m)p(m, t)

]
.

Considering that the translation operator is defined through the Taylor

series of the exponential function, we can see that this equation is

a version of the so-called Kramers–Moyal expansion of the master

equation. The expansion parameter is the magnetization change

δm = ±2/N upon a single spin-flip. The expansion contains an

infinite series of terms.



Ising Model

For large N we will now use the Fokker–Planck approximation to this

equation, truncating the expansion after the second order:

τ
∂

∂t
p(m, t) =

∂

∂m

[
U ′(m)p(m, t)

]
+

1
2
∂2

∂m2

[
D(m)p(m, t)

]
.

This equation describes a diffusion process in an external potential

with the derivative

U ′(m) = τ
[
l(m)− r(m)

]
and a position dependent diffusion coefficient

D(m) =
2τ
N

[
l(m) + r(m)

]
.



Ising Model

Comparison of the external potential for the magnetization relaxation

in mean field approximation as applicable to the choice of Glauber

rates and the mean field free energy per particle

(T = 0.7Tc, h = 0.5hsp).



Ising Model

The form of the external potential is mirrored in the time dependence

of the magnetization relaxation upon a field switch for T < Tc.



Polymer Dynamics

• linear polymers, the chemist’s view

– X − (CH2)n −X, polyethylene

– X − (C4H6)n −X, polybutadiene

– . . .

• linear polymers, the physicist’s view

– the configuration of a lattice random walk

– a sequence of hard spheres connected by finite tethers

– . . .

These views are compatible because of the large degree of universality

in polymer physics.



Polymer Dynamics

• static properties

– end-to-end distance R2
e = σ2N

– radius of gyration R2
g ∝ N

– . . .

• dynamic properties

– chain center of mass diffusion D = kBT
ζN , where ζ is the segmental

friction

– longest relaxation time τR ∝ N2

– . . .

The proportionality constants are material (model) dependent.

Can one devise a mapping between a chemically realistic polymer

model and for instance a lattice model, such that the prefactors of

the universal laws are reproduced?



Polymer Dynamics

A segment of a polyethylene chain overlaid with the repeat units of a

coarse-grained representation of this chemically realistic chain.

What is the statistics (effective potential) for P (L) and P (Θ)? What

is the mobility of the coarse-grained segments?



Polymer Dynamics

A chemically realistic united atom model of polyethylene is given by

• bond lengths: lCC = const. = 1.53 Å

• bond angles: U(θ) = 1
2kθ(cos(θ)− cos(θ0))2

• torsion angles: U(Φ) =
∑6
n=0 an cos(nΦ)

• non-bonded interaction: ULJ(rij) = εαβ

[(
σαβ
rij

)12

− 2
(
σαβ
rij

)6
]

energy scales: kθ ≈ 105 K, an ≈ 103 K, εαβ ≈ 102 K



Polymer Dynamics

The distributions P (L) and P (Θ) for atoms along the polyethylene

chain which are 10 bonds apart.
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These distributions contain structural information about the polymer

chain but no information on its local mobility.



Polymer Dynamics

The local mobility on the length and time scales on which we want

to model the polymer is determined by transitions among different

states of the local torsion potential.



Polymer Dynamics

To map this mobility onto the lattice model, the jump probability per

Monte Carlo step in the simulation is equated with the average jump

rate of the torsional degrees of freedom

1
τMC(T )

〈
min

(
1, exp

{
−∆H
kBT

})〉
=

1
τ0

∑
i exp

{
−Ei
kBT

}∑
j exp

{
−∆Eij
kBT

}
∑
i exp

{
−Ei
kBT

} ,

where τ0 is a typical time constant for the torsional degrees of freedom

setting their attempt frequency, τMC is the Monte Carlo time unit,

Ei is the energy of minimum i in the torsional potential and ∆Eij is

the barrier to minimum ’j’.



Polymer Dynamics

We can now make use of the fact that the Monte Carlo time step

τMC is as yet undefined in its relation to physical time. We can fix

our Monte Carlo time unit, which is then a function of temperature,

to be always equal to the mean time between two such transitions for

the fastest degree of freedom

τMC(T ) = ABFL(∞)τ0 exp
{

∆Emin
kBT

}
.

We end up with the mapping condition〈
min

(
1, exp

{
−∆H
kBT

})〉
= ABFL(∞) exp

{
−〈∆E〉 −∆Emin

kBT

}
.



Polymer Dynamics

5 different bond

lengths L,

87 different bond

angles Θ
random hopping MC

kinetics

The bond-fluctuation model of polymer chains



Polymer Dynamics
We will use bond lengths and bond angles as the dynamic degrees of

freedom

H(l, θ) = Φ0u0 (l − l0)2 + Φ1u1 (l − l1)2

+ Φ0v0 (cos θ − c0)2 + Φ1v1 (cos θ − c1)2

Here Φ0 = 1 and Φ1(T ) = 1
T −

〈
1
T

〉
are orthonormal basis functions

on the set of temperatures, where input information for the mapping

is given, i.e., we have determined the coarse-grained structure and

mobility at temperatures T1, T2, . . . , Tn then

Φ1(Ti) =
1
Ti
− 1
n

n∑
j=1

1
Tj

The last point assures that the parameters can be optimized

independently.



Polymer Dynamics

This 4-bond segment of a BFL chain

can be treated by exact enumeration

of its 1084 states.



Polymer Dynamics

After determination of the optimal parameters u0, . . . , c1 in the

Hamiltonian, Monte Carlo simulations of a dense melt in the

bond fluctuation model are perfomed as a function of temperature.

Measures of the kinetics are

• g1(t): mean square displacement of center monomers of a chain

• g2(t): same in the center of mass reference frame of the chain

• g3(t): mean square center of mass displacement of a chain

• g4(t): mean square displacement of end monomers of a chain

• g5(t): same in the center of mass reference frame of the chain



Polymer Dynamics
To map the Monte Carlo time onto real time we equate the center

of mass diffusion coefficient of a chain at T = 450 K with the

experimental value: S[ps/MCS] = Dsim[cm2/MCS]/Dexp[cm2/ps]



Polymer Dynamics

Comparison of mean square displacements at 509 K from the MD

simulation of the chemically realistic model (left, 3 months of CPU

time) and the MC simulation of the BFL model (right, 1 day of CPU

time). The agreement is within 40% which is about twice the typical

discrepancy of a good chemically realistic model from experiment.



Polymer Dynamics
To conclude I want to emphasize again that the ability of kinetic

MC simulations to quantitatively model real relaxation and transport

processes lies in their universality (general diffusion processes, polymer

dynamics).
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