Deformation behaviour of nanocrystalline metal alloys simulated by *hybrid MD/MC simulations*

Karsten Albe, Jonathan Schäfer, Alexander Stukowski, Yvonne Ritter

TU Darmstadt. Institut für Materialwissenschaft, FG Materialmodellierung Funded by DFG "Forschergruppe 714"

Plastic deformation

Strengthening metals and alloys

Nanocrystalline metals

TECHNISCHE UNIVERSITÄT DARMSTADT

Microstructure

- Grain size D < 100 nm</p>
- Large fraction of grain boundaries

Special properties

- Increased strength
- High wear resistance
- Superplasticity

Linear Flow Splitting

Bohn et al., J Mater Sci 43 (2008) 7307

nc-Metals: Insights and Puzzles

ADVANCED ENGINEERING MATERIALS 2005, 7, No. 4

nc-Metals: Insights and Puzzles

H. Rösner, J. Markmann, J. Weissmüller, *Philos. Mag. Lett.* 2004, *84*, 321.

Example: Dislocation-Twin Interaction

ZH Jin, K. Albe et al. Scripta Materialia 54 (6), 1163-1168

GB sliding

Coupled GB motion

MD-Simulations of nc-metals

- Realistic interatomic potentials?
- How to get realistic virtual structures?
- How do we deal with the presence of solutes?
- How to analyse the data and transfer information from atomistic into continuum models?
- How to get to realistic strain rates?

H. Rösner, J. Markmann, J. Weissmüller, *Philos. Mag. Lett.* 2004, *84*, 321.

nc-Metals: Insights and Puzzles

H. Rösner, J. Markmann, J. Weissmüller, *Philos. Mag. Lett.* **2004**, *84*, 321.

Distribution of solutes

MC-Algorithms

Canonical

$$\mathcal{A}_{\mathrm{C}} = \min\left\{1, \exp\left[-\beta\Delta U\right]\right\}$$

MC-Algorithms

Semi-Grandcanonical

 $\mathcal{A}_{S} = \min \left\{ 1, \exp \left[-\beta (\Delta U + \Delta \mu N \Delta c) \right] \right\}$

Variance constrained semi-grandcanonical scheme

$$\mathcal{A}_{\mathrm{V}} = \min\left\{1, \exp\left[-\beta\left(\Delta U + N\Delta c(\phi + 2\kappa N\tilde{c})\right)\right]\right\}$$

 The VCSGC-MC method imposes a constraint on the variance of the concentration, and allows for equilibration at arbitrary global concentrations.

A scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys

Babak Sadigh,^{1, *} Paul Erhart,^{1,†} Alexander Stukowski,¹ Alfredo Caro,^{1,2} Enrique Martinez,^{1,2} and Luis Zepeda-Ruiz¹

Variance constrained semi-grandcanonical scheme: *Parallelization*

Annealing + Alloying: PdAu

TECHNISCHE UNIVERSITÄT DARMSTADT

OVITO (Open Visualization Tool)

Visualization and analysis software for atomistic simulation data:

- Platform-independent
- Easy-to-use graphical user interface
- Extendable (plug-in architecture)
- Supports scripting / batch-processing
- >110.000 lines of code (C++)
- Freely available at http://ovito.org/

Dislocation Analysis: The challenge

Dislocation Extraction Algorithm (DXA)

Modelling Simul. Mater. Sci. Eng. 18 (2010), 085001

Modelling Simul. Mater. Sci. Eng. 20 (2012), 085007

Example: Nanocrystalline microstructures under deformation

Automated dislocation detection

What can we do with it?

- Measure..
 - Dislocation density
 - Dislocation characters
 - Activation rate of slip systems
 - Types of dislocation junctions
 - ...
- Reduce output data size (by ~99.9 %)
- Link MD to other models...
 - Discrete dislocation dynamics (DD) models
 - Continuum plasticity models (via dislocation density tensor)

Coupled Motion vs. Sliding: nc Cu-Nb (10nm)

Coupled Motion vs. Sliding: nc Cu-Nb (10nm)

Coupled Motion vs. Sliding: nc Cu-Nb (10nm) randomly alloyed

Schäfer, Albe, Sripta Materialia, 66 (5) pp. 315-317, 2011

Coupled Motion vs. Sliding: State GB Relaxation State

Schäfer, Albe, Acta Mat, 60, 6076 (2012)

Dislocation nucleation

Role of GB equilibration and reloading

PdAu: equilibration effects

PdAu: Equilibration effects ?

Redistribution of Solutes?

GB composition during straining

Studying Strain Rate Effects: Stortcutting Diffusion

Shortcutting Diffusion

Overshoot and Reversible Strain (MD)

Overshoot and Reversible Strain (MD/MC)

Mimicking "Strain-Rate" Effects

Schäfer, Stukowski, Albe, J. Appl. Phys. In print

Mimicking "Strain-Rate" Effects

Schäfer, Stukowski, Albe, J. Appl. Phys. In print

Shortcutting diffusion

Conclusions

- MD simulations are in principle a powerfull tool to investigate mechanical deformation mechanisms in detail, but are limited due to large strain rates and thus, diffusionless" conditions
- Hybrid MD/MC simulations reveal that
 - The GB state not the grain interior governing the plastic response of nanocrystalline alloys
 - >MD simulations overestimate the slip contributions of dislocations
- There is an urgent need to quantitative methods that allow accerated MD/KMC simulations