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Electronic time-scale

The atto-second is the natural time scale of electrons in
atoms and molecules. Atto-second physics allows to observe,
manipulate, and control electrons in real time.

From Krausz & Ivanov, Rev. Mod. Phys. 81, 169 (2009)
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The road to atto-second physics

From Krausz & Ivanov, Rev. Mod. Phys. 81, 169 (2009)
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Some initial break-throughs

“X-ray pulses approaching the attosecond frontier”, Drescher et al.
Science 291, 1923 (2001).
First generation of isolated “almost” atto-second pulses.
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Some initial break-throughs

“Attosecond metrology”, Hentschel et al, Nature 214, 509 (2001).
Trace of electronic dynamics with at time resolution of 150 as.
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Some initial break-throughs

“Time resolved atomic inner-shell spectroscopy”, Drescher et al, Nature
419, 803 (2002).
Measurement of the relaxation dynamics time-constants of core excited
atoms with atto-second resolution by means of a pump-probe scheme
based on a 7 fs 750 nm pulse and a sub-femtosecond soft X-ray pulse.
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Some initial break-throughs

“Direct measurement of light waves”, Goulielmakis et al, Science 305,
1267 (2004).
Full characterization of a visible femto-second pulse by making use of
250 as. electron bursts.
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Some initial break-throughs

“Steering atto-second electron wave packets with light”, Kienberger et
al, Science 297, 1144 (2004).
Control over the velocity of photo-electrons generated by
sub-femtosecond XUV pulses, by making use of a synchronized longer
femtoseconf pulse.
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Pump-probe spectroscopy on the atto-second
time-scale with TDDFT
Pump-probe spectroscopy with weak probes can be
considered as a generalized out-of equilibrium response
theory:

Ĥ(t) = H+ ε(t)V̂ + f(t)V̂

i
d

dt
ρ̂(t) =

[
Ĥ(t), ρ̂(t)

]
A(t) = TrÂρ̂(t)

δA(t) =

∫ T

0
dτ f(τ)χÂ,V̂ [ε](t, τ)

χÂ,V̂ (t, τ) = −iθ(t− τ)Tr{ρ̂(t0)
[
ÂH [ε](t), V̂H [ε](τ)

]
}
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Ĥ(t) = H+ ε(t)V̂ + f(t)V̂

i
d

dt
ρ̂(t) =

[
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Ĥ(t) = H+ ε(t)V̂ + f(t)V̂

i
d

dt
ρ̂(t) =

[
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Pump-probe spectroscopy on the atto-second
time-scale with TDDFT

I TDDFT:

n(~r, t)⇔ v(~r, t) → Ψ(t)

[Runge and Gross, Phys. Rev. Lett. 52, 997 (1984)]
I Kohn-Sham substitution: we work with a proxy system

of non-interacting electrons whose density is by
construction identical to that of the real system:

i
∂ϕi

∂t
(~r, t) =

[
−1

2
∇2ϕi(~r, t) + vHartree[n](~r, t)+

vxc[n](~r, t) + vext(~r, t)]ϕi(~r, t) ,

n(~r, t) =
N∑
i=1

2|ϕi(~r, t)|2 .
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Observables

I Dipole moment (for, e.g., absorption spectroscopy):

〈Ψ(t)| ~̂D|Ψ(t)〉 =

∫
d3r n(~r, t)~r

I High-harmonic generation

H(ω) = |
∫ T

0
dt

d2

dt2
〈 ~̂D〉(t)e−iωt|2

I Photo-electron spectroscopy

P (~p) ≈ lim
t→∞

∑
occ

|ϕ̃Bi (~r, t)|2
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Attosecond Transient Absorption Spectroscopy

“Simulating Pump-Probe Photoelectron and Absorption Spectroscopy on the Attosecond
Timescale with Time-Dependent Density Functional Theory”,

U. de Giovannini, G. Brunetto, AC, J. Walkenhorst, and A. Rubio ChemPhysChem 14, 1363

(2013)
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Attosecond Time Resolved Photo-electron
Spectroscopy

U. de Giovannini, G. Brunetto, AC, J. Walkenhorst, and A. Rubio ChemPhysChem 14, 1363

(2013)
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Optimal control theory
Typical formulation of a (general) optimal control problem:

I Dynamical system:

ẋ(t) = f(x(t), u(t), t)

x(0) = x0

Typically, u = u(t). But it can be a set of parameters
whatsoever.

I Minimize the cost functional:

F [x, u] = F terminal[x(T ), u] +

∫ T

0
dt L(x(t), u(t)]

I Since u→ x[u], it amounts to minimizing

G[u] = F [x[u], u]
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Essential theoretical results

I Pontryagin’s minimum principle (1956)
[V.G. Boltyanskii, R.V. Gamkrelidze, and L.S. Pontryagin,
“Towards a theory of optimal processes”, (Russian), Reports Acad.
Sci. USSR 110, 1 (1956)]
It provides a necessary condition for the minimum – in
practice, typically, an expression for ∇G[u] so that the
equation ∇G[u] = 0 can be posed.

I Hamilton-Jacobi-Bellman equation (1954)
(Theory of “dynamic programming”, Richard Bellman)
[R.E Bellman, “Dynamic Programming and a new formalism in the
calculus of variations” Proc. Nat. Acad. Sci. 40, 231 (1954)]
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Essential theoretical results

I Simpler approaches: direct or gradient-less algorithms.
They only require a means to compute G[u] (i.e. a
method to propagate the dynamical equation and
compute the resulting cost or target functional).

I The most fashionable, the families of evolutionary or
genetic algorithms.

I Our choices:
I The simplex algorithm [J.A. Nelder and R. Mead,

Computer Journal 7, 308 (1965)], and
I the NEWUOA algorithm [M. J. D. Powell, IMA J.

Numer. Anal. 28, 649 (2008)].
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Pontryagin’s minimum principle
If we define the “Hamiltonian”

H(λ(t), x(t), u(t), t) = λ†(t)f(x(t), u(t), t) + L(x(t), u(t))

where λ is the “costate”, an object of the same kind of x, the
following holds:
1. The optimal control u0, trajectory x0 and costate λ0

minimize H at all times:

H(λ0(t), x0(t), u0(t), t) ≤ H(λ(t), x(t), u(t), t)

2. The costate verifies the following equation of motion:

λ̇0†(t) = λ0†(t)
δf

δx
(x0(t), u0(t)) +

δL

δx
(x0(t), u0(t))

λ0†(T ) =
δ

δx
F terminal[x0(T ), u0(T )]
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Application to Hamiltonian systems

q̇i(t) =
∂H

∂pi
(q(t), p(t), u, t) ,

ṗi(t) = −∂H
∂qi

(q(t), p(t), u, t) .

In condensed vector notation:

q̇ =
∂H

∂p
,

ṗ = −∂H
∂q

.

In this case, x is the vector [q,p]†.
The cost (or target) functional can be, for example, any
expression in the form:

F [q,p, u] = J1[q(T ),p(T )] + J2[u] .
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Application to Hamiltonian systems

∂G

∂um
=

∂J2
∂um

−
∫ T

0
dt p̃(t) · ∂

∂um

∂H

∂p
(q(t),p(t), u, t)

+

∫ T

0
dt q̃(t) · ∂

∂um

∂H

∂q
(q(t),p(t), u, t)

The “costate” [q̃, p̃]† is itself a Hamiltonian system,
determined by the quadratic Hamiltonian:

H̃(q̃, p̃, q, p, u, t) =

1

2
q̃tHqq(q, p, u, t)q̃ +

1

2
q̃tHqp(q, p, u, t)p̃+

+
1

2
q̃tHpq(q, p, u, t)p̃ +

1

2
q̃tHpp(q, p, u, t)p̃ .
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Application to Hamiltonian systems

The matrices Hxy are defined as:

Hqq
ij =

∂2H

∂qi∂qj
(q, p, u, t)

Hqp
ij =

∂2H

∂qi∂pj
(q, p, u, t)

Hpq
ij =

∂2H

∂pi∂qj
(q, p, u, t)

Hpp
ij =

∂2H

∂pi∂pj
(q, p, u, t)
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Quantum optimal control theory

Ĥ = Ĥ[u1, . . . , uM ; t]

i
d

dt
|Ψ(t)〉 = Ĥ[u; t]|Ψ(t)〉

|Ψ(t0)〉 = |Ψ0〉

Ψ(t0) −→ Ψ[u](t) −→ Ψ[u](T )

Maximize a quantity

F = F [Ψ[u](t)] ,

that depends on the system evolution, or final state, or both.
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Is there anything new about QOCT?

Quantum mechanics as a particular case of Hamiltonian
systems:

|Ψ〉 =
∑
k

ck|Ψk〉

ck = qk + ipk → (qk, pk) ∈ R2n

d

dt
|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉 ≡

q̇ =
∂H

∂p
,

ṗ = −∂H
∂q

.

where
H(q, p, t) := 〈Ψ(q, p)|Ĥ(t)|Ψ(q, p)〉

is a quadratic expression in q,p, i.e. a “generalized harmonic
oscillator system”.



Analysis and
control of the

electronic motion
with TDDFT

Alberto Castro

Introduction:
Atto-second
physics:
electrons in real
time

TDDFT for the
analysis of
ultrafast
pump-probe
experiments

Optimal Control
Theory
Optimal control
theory
Control of
quantum
processes
TDDFT +
QOCT

Summary

Is there anything new about QOCT?

Quantum mechanics as a particular case of Hamiltonian
systems:

|Ψ〉 =
∑
k

ck|Ψk〉

ck = qk + ipk → (qk, pk) ∈ R2n

d

dt
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QOCT + TDDFT

Also in:
AC and E. K. U. Gross, “Quantum Optimal Control”, in “Fundamentals
of Time-Dependent Density Functional Theory”, edited by M.A.L.
Marques, N. Maitra, F. Nogueira, E.K.U Gross. and Angel Rubio
(Springer, Berlin, 2012), pages 265-276.
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QOCT + TDDFT
I We have a system of N electrons, driven by an external

potential vext(~r, t, u).
I The time-dependent density is therefore determined by
u:

u −→ n[u](~r, t) = 〈Ψ[u](t)|n̂(~r)|Ψ[u](t)〉
I The objective is to maximize some function G of the

control parameters u, defined in terms of a functional of
the density:

G[u] = F̃ [n[u], u] .

I Since the definition is given in terms of the density,
everything can be reformulated for the Kohn-Sham
system, and the optimization will be equivalent. Since
we use the Kohn-Sham substitution, we may use the
Kohn-Sham orbitals instead:

F [ϕ[u], u] ≡ F̃ [n[u], u] , n[u](~r, t) =
∑
|ϕi[u](~r, t)|2 .
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QOCT + TDDFT

Optimal control theory equations for TDDFT (terminal target only):

∇uG[u] = ∇uF [ϕ[u], u] +

2Im

[
N∑
i=1

∫ T

0

dt 〈λi[u](t)|∇uĤ[n[u](t), u, t]|ϕi[u](t)〉

]

ϕ̇[u](t) = −iĤ[n(t), u, t]ϕ[u](t) ,

ϕ
u
(0) = ϕ

0
,

λ̇[u](t) = −i
[
Ĥ[n(t), u, t] + K̂[ϕ[u](t)]

]
λ[u](t) ,

λ[u](T ) =
δF

δϕ∗
[ϕ[u](T ), u] .



Analysis and
control of the

electronic motion
with TDDFT

Alberto Castro

Introduction:
Atto-second
physics:
electrons in real
time

TDDFT for the
analysis of
ultrafast
pump-probe
experiments

Optimal Control
Theory
Optimal control
theory
Control of
quantum
processes
TDDFT +
QOCT

Summary

QOCT + TDDFT

λ̇[u](t)=−i
[
Ĥ
†
[n[u](t), u, t] + K̂[ϕ[u](t)]

]
λ[u](t) ,

λ̇i[u](t) = −iĤ†[n[u](t), u, t]λi[u](t)− i
N∑

j=1

K̂ij [ϕ[u](t)]λj [u](t)

〈~r|K̂ij [ϕ[u](t)]|λj [u](t)〉 =

−2iϕi[u](~r, t)Im

[∫
d3r′λj [u]∗(~r′, t)fHxc[n[u](t)](~r, ~r′)ϕj [u](~r′, t)

]

fHxc[n[u](t)](~r, ~r′) =
1

|~r − ~r′| + fxc[n[u](t)](~r, ~r′)



Analysis and
control of the

electronic motion
with TDDFT

Alberto Castro

Introduction:
Atto-second
physics:
electrons in real
time

TDDFT for the
analysis of
ultrafast
pump-probe
experiments

Optimal Control
Theory
Optimal control
theory
Control of
quantum
processes
TDDFT +
QOCT

Summary

QOCT + TDDFT



Analysis and
control of the

electronic motion
with TDDFT

Alberto Castro

Introduction:
Atto-second
physics:
electrons in real
time

TDDFT for the
analysis of
ultrafast
pump-probe
experiments

Optimal Control
Theory
Optimal control
theory
Control of
quantum
processes
TDDFT +
QOCT

Summary

QOCT + TDDFT

Most important theoretical difficulty: many targets are easily
formulated in terms of states (or projectors), e.g.:

F [Ψ(T )] = |〈ΨI |Ψ(T )〉|2

However, those states are the true many-body states, and we
only have access to the time-dependent density, and to the
Kohn-Sham orbitals.
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Femtosecond laser pulse shaping for enhanced
ionization

[AC, E. Räsänen, A. Rubio, and E. K. U. Gross, EPL 87, 53001 (2009)]

I Target: Maximal ionization
of H+

2 molecule (clamped
nuclei).

I F [Ψ(T )] = 〈Ψ(T )|Ψ(T )〉 -∑
bound |〈Ψ|ΨI〉|2

I Use of absorbing boundary
conditions

I Use of direct optimization
algorithm.

I Expansion of control field
into a Fourier series ⇒
automatic existence of a
frequency constraint.

I Further constraints: total
length (5fs) and total fluence.
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Femtosecond laser pulse shaping for enhanced
ionization

I Using a stringent frequency
cut-off, the optimization
attempts to build a peak with
maximum intensity. With
short, intense pulses, most
ionization occurs during the
maximum.

I With parallel orientation,
zero carrier envelope phase
(half-cycle pulse), and π/2
with perpendicular
orientation.
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Femtosecond laser pulse shaping for enhanced
ionization

I Higher cut-off frequency
implies more complicated
structure for the optimal
pulse.

I Ionization is not a direct
ground-state to continuum
step.
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Optimal Control of Quantum Rings by Teraherz
Laser Pulses

[E. Räsänen, AC, J. Werschnik, A. Rubio, and E. K. U. Gross, Phys.
Rev. Lett. 98, 157404 (2007)]

I Electron trapped in a ring
edged into a 2D
semiconductor
heterostructure (2D electron
gas).

I Levels are coupled in a
consecutive fashion, ordered
by angular momentum.

I Use of a two-component laser
pulse.

I The target is the population
of any of the levels, from any
of the other levels (precise
control over the electronic
current).
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Optimal Control of Quantum Rings by Teraherz
Laser Pulses
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Optimal laser control of the harmonic generation
He atom, EXX:

He atom, EXX, frozen H+xc:

I Target: selective
enhancement or quenching of
harmonics:

F [ϕ] =
∑
k

αk max
ω≈kω0

{log10H[ϕ](ω)}

H(ω) = |
∫ T

0

dt
d2

dt2
〈~̂µ〉(t)e−iωt|2

I Time-dependent target, it
depends on the full evolution
of the system.

I “TDDFT-friendly” target: it
only depends on the
time-dependent density.
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Optimal laser control of the harmonic generation
He atom, EXX: He atom, froze H+xc
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Optimal laser control of the harmonic generation:
Cut-off extension

F [ϕ] =

∫
dωα(ω)H[ϕ](ω)

=

∫
dωα(ω)|~f [ϕ](ω)|2 ,

~f(t) =

∫
d3r n(~r, t)∇v(~r) +Nε(t)~π .

The functional derivative of F , needed for the propagation of
the co-state, is:

δF

δϕ∗(~r, t)
= ~g[ϕ](t) · ∇v(~r) ϕ(~r, t) ,

where

~g[ϕ](t) = 2µ

∫
dω α(ω)Re

[
~f [ϕ](ω)e−iωt

]
.
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Optimal laser control of the harmonic generation:
Cut-off extension

α(ω) = step(ω − ωc)
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Optimization Schemes for Selective Molecular
Cleavage with Tailored Ultrashort Laser Pulses
Coupled electron-ion model: Ehrenfest dynamics:

Ĥ[q, p, u, t] = Hclas[q, p, u, t]Î + Ĥquantum[q, p, u, t] .

q̇a(t) =
∂Hclas

∂pa
[q(t), p(t), u, t]

+〈Ψ(t)|∂Ĥquantum

∂pa
[q(t), p(t), u, t]|Ψ(t)〉

ṗa(t) = −∂Ĥclas

∂qa
[q(t), p(t), u, t]

−〈Ψ(t)|∂Ĥquantum

∂qa
[q(t), p(t), u, t]|Ψ(t)〉

Ψ̇(x, t) = −iĤquantum[q(t), p(t), u, t]Ψ(x, t) ,
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Optimization Schemes for Selective Molecular
Cleavage with Tailored Ultrashort Laser Pulses

Several options:
I Assume the dynamical system is the electronic system

only: the ions are clamped during the action of the laser
pulse. One can then use the usual QOCT. Valid only for
very short pulses.

I The dynamical system is the Ehrenfest sytem:
I Use a direct, or gradient-less optimization scheme. No

need to develop new theory, since the only operation
required is the forward propagation of the Ehrenfest
system.

I Full use of the QOCT equations, that require the
gradient.
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Optimization Schemes for Selective Molecular
Cleavage with Tailored Ultrashort Laser Pulses

F = n · (v1 − v2)− 10
∑6

i=1 |vi − v2|

[K. Krieger, AC, and E. K. U. Gross, Chem. Phys. 391, 50 (2011)]
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Ultrafast photo-dissociation of the Hydrogen
molecule

I During the laser irradiation, the nuclei do not have time
to move, but the electrons are shaked, and communicate
a sudden dissociative momentum to the nuclei.

I Hybrid quantum-classical model (Ehrenfest model):
definition of the targets in terms of the classical forces
on the nuclei:

~Pα =

∫ T

0
dt ~Fα(t) ,

~Fα = ~Fα[n(t)] = −
∫

d3r n(~r, t)~∇αv0(~r, {~Rα}) .

I Therefore

~Pα[n] =

∫ T

0
dt

∫
d3r n(~r, t)~∇αv0(~r, {~Rα}) .
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Definition of the target

I The target is then defined in terms of a function of
these momenta:

F [ϕ] = F̃ [n] = T (P [n]) ,

for example:

F̃ [n] = P1x[n]− P2x[n] .

I The remaining ingredient in order to compute the
gradient is the functional derivative:

δF [ϕ]

δϕ∗i (~r, t)
=

K∑
α=1

∑
µ=x,y,z

2
∂T

∂Pαµ
(p[n])

∂v0(~r; ~R)

∂Rαµ
ϕi(~r, t) .
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Results

[AC, ChemPhysChem 14, 1488 (2013)]
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QOCT+TDDFT+Ehrenfest
[AC and E. K. U. Gross, “Optimal control theory for quantum-classical
systems: Ehrenfest Molecular Dynamics based on TDDFT”
arXiv:1308.4162]

q̇a(t) =
∂Hclas

∂pa
[q(t), p(t), u, t]

+〈Ψ(t)|∂Ĥquantum

∂pa
[q(t), p(t), u, t]|Ψ(t)〉

ṗa(t) = −∂Ĥclas

∂qa
[q(t), p(t), u, t]

−〈Ψ(t)|∂Ĥquantum

∂qa
[q(t), p(t), u, t]|Ψ(t)〉

Ψ̇(x, t) = −iĤquantum[q(t), p(t), u, t]Ψ(x, t) ,

G[u] = F [q[u], p[u], ϕ[u], u]
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I TDDFT can be used to study ultra-fast pump-probe
spectroscopy (TAS and TRPES). The treatment must
be non-perturbative (explicitly time-dependent).

I QOCT and TDDFT can be successfully merged in a
numerically tractable way. The targets must be
formulated in terms of the density, in order to be
consistent with TDDFT. This is not always possible.

I Very fast photo-dissociation can be tackled in a static
manner: by optimizing the electron system only, and
placing the system in a state that leads to
photo-dissociation after the pulse.

I However, a general treatment would require the
construction of a QOCT+TDDFT+Ehrenfest
methodology.
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Rederivation in the language of linear response

(A) Generalized, out of equilibrium linear response:

Ĥ(T ) = Ĥ0(t) + f(t)V̂

i
d

dt
ρ̂(t) =

[
Ĥ(t), ρ̂(t)

]
A(t) = TrÂρ̂(t)

δA(t) =

∫ T

0
dτ f(τ)χÂ,V̂ (t, τ)

χÂ,V̂ (t, τ) = −iθ(t− τ)Tr{ρ̂(t0)
[
ÂH(t), V̂H(τ)

]
}
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Rederivation in the language of linear response

(A) Corollarium: QOCT equations

Ĥ[u1, . . . , um + δum, . . . ; t] = Ĥ[u; t] + δu
∂Ĥ

∂um
[u; t]

Ĥ0(t) + f(t)V̂

Assuming Ĥ[u] = Ĥ+ ε(u, t),

∂G

∂um
=

∂J2
∂um

+

∫ T

0
dt

∂ε

∂um
χÂ,V̂ (T, t)

[AC and I. Tokatly, Phys. Rev. A 84, 033410 (2011)]
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Laser control

Adaptive feedback control:

“Whither the future of controlling quantum phenomena?”, Rabitz et al,
Science 288, 824 (2000).
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“Coherent control of bond breaking in amino acid complexes with
tailored femtosecond pulses”, Laarmann et al, J. Chem. Phys. 127,
201101 (2007).
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