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The atto-second is the natural time scale of electrons in
atoms and molecules. Atto-second physics allows to observe,
manipulate, and control electrons in real time.
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Introduction: Atto-second physics: electrons in real time
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Introduction:
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From Krausz & lvanov, Rev. Mod. Phys. 81, 169 (2009)
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Some initial break-throughs
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“X-ray pulses approaching the attosecond frontier”, Drescher et al.
Science 291, 1923 (2001).

First generation of isolated “almost” atto-second pulses.
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Some initial break-throughs
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“Attosecond metrology”, Hentschel et al, Nature 214, 509 (2001).

Trace of electronic dynamics with at time resolution of 150 as.
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Some initial break-throughs
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“Time resolved atomic inner-shell spectroscopy”, Drescher et al, Nature
419, 803 (2002).

Measurement of the relaxation dynamics time-constants of core excited
atoms with atto-second resolution by means of a pump-probe scheme
based on a 7 fs 750 nm pulse and a sub-femtosecond soft X-ray pulse.
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"Direct measurement of light waves”’, Goulielmakis et al, Science 305,
1267 (2004).
Full characterization of a visible femto-second pulse by making use of

250 as. electron bursts.
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Introduction:
Atto-second
physics:
electrons in real
time

Some initial break-throughs

Laser electric field [a.u.]
X-ray intensity [a.u]

“Steering atto-second electron wave packets with light”, Kienberger et
al, Science 297, 1144 (2004).

Control over the velocity of photo-electrons generated by
sub-femtosecond XUV pulses, by making use of a synchronized longer
femtoseconf pulse.
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TDDFT for the analysis of ultrafast pump-probe experiments
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Pump-probe spectroscopy with weak probes can be
considered as a generalized out-of equilibrium response
theory:

TDDFT for the -

analysis of H(t) - H + c(t)v + f(t)v
ultrafast

pump-probe

experiments
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Pump-probe spectroscopy with weak probes can be
considered as a generalized out-of equilibrium response
theory:

S H(t) =H+eOV + f(O)V
ultrafas

p:mp.—ptrobe

experiments d
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Pump-probe spectroscopy with weak probes can be
considered as a generalized out-of equilibrium response
theory:

s H(t)=H+t)V + f(t)V

ultrafast

pump-probe
experiments d
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Pump-probe spectroscopy on the atto-second
time-scale with TDDFT

Pump-probe spectroscopy with weak probes can be
considered as a generalized out-of equilibrium response
theory:

A(t) = TrAp(t)

T
340 = [ ar o gl )

Yo () = =it = 7)Tr{p(to) [ AnE](2), Vul=)(7)] }
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» TDDFT:
n(r,t) < o(r,t) —  U(t)
A ap e [Runge and Gross, Phys. Rev. Lett. 52, 997 (1984)]
pump-probe » Kohn-Sham substitution: we work with a proxy system

experiments

of non-interacting electrons whose density is by
construction identical to that of the real system:

0pi _ 1 2 o o
¢ ot (T7t) - |:_2v 501(7’715) +UHartree[n](T7t)+
Use[n] (7', 1) + Vet (7, )] i (7, 1)
N
7’L(7?, t) = Z2|(pl(7?7 t)|2 .
=1
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TDDFT for the
analysis of
ultrafast
pump-probe
experiments

Observables

» Dipole moment (for, e.g., absorption spectroscopy):

(U ()| D) (t)) = /d3r n(7, )7

» High-harmonic generation

_ = o it]2
.y / at S (D) (B

» Photo-electron spectroscopy

1111’1 Z ’901 7
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FIG. 2. Out of equilibrium absorption spectrum as function
of the pump laser frequency for one-dimensional Helium. The
system is driven out of equilibrium by 45 cycle sin® envelope
laser pulses of intensity I = 5.26 x 10'" W/cm?, at differ-
ent carrier frequencies and then probed right after. Maximal
response is observed for frequencies close to the first optical
transition w = 0.533 a.u..

“Simulating Pump-Probe Photoelectron and Absorption Spectroscopy on the Attosecond
Timescale with Time-Dependent Density Functional Theory”,

U. de Giovannini, G. Brunetto, AC, J. Walkenhorst, and A. Rubio ChemPhysChem 14, 1363

(2013)
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Figure 7. Helium transient photoelectron spectrum on a logarithmic scale.
The pump laser (upper panel) is the same as that given in Figure 5 and the
probe is a 40 cycle trapezoidal laser pulse with an 8 cycle ramp,
w,=18au., |=54x10°Wem “ aligned with the pump pulse.

U. de Giovannini, G. Brunetto, AC, J. Walkenhorst, and A. Rubio ChemPhysChem 14, 1363
(2013)
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Optimal Control Theory
Optimal control theory
Control of quantum processes
TDDFT + QOCT
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Optimal control

theory

Optimal control theory

Typical formulation of a (general) optimal control problem:

» Dynamical system:

o(t) = fla(t),u(t)t)
z(0) = xo

Typically, u = u(t). But it can be a set of parameters
whatsoever.
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Optimal control theory

Typical formulation of a (general) optimal control problem:

» Dynamical system:

o(t) = fla(t),u(t)t)
z(0) = xo

Typically, u = u(t). But it can be a set of parameters
whatsoever.

» Minimize the cost functional:

) T
Flz,u] = Fterminalip (7 o) 4 /0 dt L(x(t), u(t)]
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Optimal control

theory

Optimal control theory

Typical formulation of a (general) optimal control problem:
» Dynamical system:

o(t) = fla(t),u(t)t)
z(0) = xo

Typically, u = u(t). But it can be a set of parameters
whatsoever.

» Minimize the cost functional:

) T
Flz,u] = Fterminalip (7 o) 4 /0 dt L(x(t), u(t)]

» Since u — z[u], it amounts to minimizing
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Optimal control
theory

Essential theoretical results

» Pontryagin's minimum principle (1956)
[V.G. Boltyanskii, R.V. Gamkrelidze, and L.S. Pontryagin,
“Towards a theory of optimal processes’, (Russian), Reports Acad.
Sci. USSR 110, 1 (1956)]
It provides a necessary condition for the minimum — in
practice, typically, an expression for VG[u] so that the
equation VG|u] = 0 can be posed.
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Optimal control
theory

Essential theoretical results

» Pontryagin's minimum principle (1956)
[V.G. Boltyanskii, R.V. Gamkrelidze, and L.S. Pontryagin,
“Towards a theory of optimal processes’, (Russian), Reports Acad.
Sci. USSR 110, 1 (1956)]
It provides a necessary condition for the minimum — in
practice, typically, an expression for VG[u] so that the
equation VG|u] = 0 can be posed.

» Hamilton-Jacobi-Bellman equation (1954)
(Theory of “dynamic programming”, Richard Bellman)
[R.E Bellman, “Dynamic Programming and a new formalism in the
calculus of variations” Proc. Nat. Acad. Sci. 40, 231 (1954)]
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theory

Essential theoretical results

» Simpler approaches: direct or gradient-less algorithms.
They only require a means to compute G[u] (i.e. a
method to propagate the dynamical equation and
compute the resulting cost or target functional).

» The most fashionable, the families of evolutionary or
genetic algorithms.
» Our choices:
> The simplex algorithm [J.A. Nelder and R. Mead,
Computer Journal 7, 308 (1965)], and
> the NEWUOA algorithm [M. J. D. Powell, IMA J.
Numer. Anal. 28, 649 (2008)].
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Optimal control
theory

Pontryagin's minimum principle
If we define the “Hamiltonian”
HA(®), 2(t), u(t), t) = AT(0) f (1), u(t), t) + Lx(t), u(t))

where X is the “costate”, an object of the same kind of z, the
following holds:
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Optimal control
theory

Pontryagin's minimum principle
If we define the “Hamiltonian”
HA(®), 2(t), u(t), t) = AT(0) f (1), u(t), t) + Lx(t), u(t))

where X is the “costate”, an object of the same kind of z, the
following holds:

1. The optimal control u, trajectory z° and costate \°
minimize H at all times:

HO(t), 2°(t),u’(t),t) < H(\(t), z(t), u(t),t)
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. If we define the “Hamiltonian

H(A(), z(t), ult),t) = AT(0) f(2(t), u(t), t) + L(x(t), u(t))

where X is the “costate”, an object of the same kind of z, the
following holds:

Alberto Castro

1. The optimal control u, trajectory z° and costate \°
minimize H at all times:

HOO(t), 20(),u0(2),£) < HOAE), 2(2), u(t), )
2. The costate verifies the following equation of motion:

301 (1) = X (0) 2 (a(0), (1)) + 0 (2°(0), (1)

0 rmin,
5oL terminaliz0(T), u”(T)]

Optimal control

theory

A\T(T) =
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Optimal control
theory

Application to Hamiltonian systems

) _ 0OH
¢(t) = api(q(t)jp(t),u,t),
) OH
Bilt) =~ (a(t).p(0). ).
In condensed vector notation:
. _on
q. - ap?
. oH

In this case, x is the vector [q, p].
The cost (or target) functional can be, for example, any
expression in the form:

Fla,p,u] = La(T), p(T)] + Jz[u] .
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oG o
Oupm, Oum
T 0 O0H
- [fatb0) 5= G @ pl). w0

T o oH
N /0 At (1) 55 (alt). p(), w.)

The “costate” [q, p] is itself a Hamiltonian system,
determined by the quadratic Hamiltonian:

Optimal control

theory

H(q,p,q,p,u,t) =

1. 1. 5
thH‘”(q, p,u,t)a+ §thqp(q, p,u,t)p+

1. 1. 5
+§thpq(q7p7 u, t)p + ithpp(q,p, u,t)p.
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Optimal control
theory

Application to Hamiltonian systems

The matrices H*Y are defined as:

99
ij

P
ij

FPe
ij

pp
H;;

2
O (¢,p;u,t)
0q;0q;

0’H
0q;0p;
O’H
Opi0q;
0’H

OpiOp;

(¢,p,u,t)
(¢,p,u,t)

(q7p’ u? t)
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Control of
quantum
processes

Quantum optimal control theory

H = H[ul, ..

Suns;t]
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Control of
quantum
processes

Quantum optimal control theory

H = Hluy,...,uy;t]

.d -
i) = A
W(ty)) = [
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Control of

Quantum optimal control theory

H = Hluy,...,uy;t]

.d -
i) = A
W(ty)) = [

U(to) — W[u](t) — W[ul(T)
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H = Hluy,...,uy;t]

.d -
i) = A
W(ty)) = [

U(ty) — V[u](t) — Y[ul(T)

Control of

Maximize a quantity
F = F[¥[u(t)],

that depends on the system evolution, or final state, or both.
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Quantum mechanics as a particular case of Hamiltonian
systems:
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) =l W)
k

Control of
quantum
processes
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) =l W)
k

ck = qr +ipk — (g, pr) € R*"

Control of
quantum
processes
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Control of
quantum
processes

Is there anything new about QOCT?

Quantum mechanics as a particular case of Hamiltonian
systems:

) =l W)
k

ck = qr +ipk — (g, pr) € R*"

g 01
d " — Q. >
Flee) =AORE) = %’ﬁ

p__aq'

where
H(g,p,t) == (¥(q,p)|H(t)|¥(q,p))

is a quadratic expression in q, p, i.e. a “generalized harmonic
oscillator system”.
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k endin;
PRL 109, 153603 (2012) PHYSICAL REVIEW LETTERS 12 OCTOBER 3012

Controlling the Dynamics of Many-Electron Systems from First Principles: A Combination
of Optimal Control and Time-Dependent Density-Functional Theory

A Cmm‘ J. Werschnik. and E. K. U. Gross®
'ARAID i 1 for and Physics of Complex Sysiems (BIFI)
and Zaragoza Scientific Center. fm Advanced Modeling (ZCAM), University of Zaragoza, E-50018 Zaragoza, Spain
2 Jenoptik Optical Systems GmbH, Jena, Germany
*Max-Planck-Institut fiir Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
(Received 14 September 2010; revised manuscript received 16 February 2012; published 12 October 2012)

Also in:

AC and E. K. U. Gross, “Quantum Optimal Control”, in “Fundamentals

TODET + of Time-Dependent Density Functional Theory”, edited by M.A.L.
Marques, N. Maitra, F. Nogueira, E.K.U Gross. and Angel Rubio

(Springer, Berlin, 2012), pages 265-276.
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QOCT + TDDFT

» We have a system of NV electrons, driven by an external
potential vext (7, ¢, u).
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QOCT + TDDFT

>

We have a system of NV electrons, driven by an external
potential vext (7, ¢, u).
The time-dependent density is therefore determined by
u:

w — nfu] (7, 1) = (L] (@) (7)[¥]u](t))
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» We have a system of NV electrons, driven by an external
potential vext (7, ¢, u).

» The time-dependent density is therefore determined by
u:

Alberto Castro

w — n[u](7,t) = (¥[u](t) |2 (7)[¥]u](t))

» The objective is to maximize some function G of the
control parameters u, defined in terms of a functional of
the density: )

Glu] = Fnlu],u] .

TDDFT +
QOCT
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» We have a system of NV electrons, driven by an external
potential vext (7, ¢, u).

» The time-dependent density is therefore determined by
u:

Alberto Castro

uw — nlu|(7,t) = (Vu](t) |0 (7)) [¥[u](t))

» The objective is to maximize some function G of the
control parameters u, defined in terms of a functional of
the density:

Glu) = F[n[u],u].

» Since the definition is given in terms of the density,

everything can be reformulated for the Kohn-Sham

qocr t system, and the optimization will be equivalent. Since

we use the Kohn-Sham substitution, we may use the

Kohn-Sham orbitals instead:

Flplu],u] = Flnfu),u], nlu](7t) =Y leilul (7).
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Optimal control theory equations for TDDFT (terminal target only):

VoG] = VuFplul,u] +

2Im

N T R
Z/Odt <Ai[U](t)|VuH[n[U](t),u,t}lw[?t](t»]

pll(t) = —iHn(t),u, tplul (1),
2, 0) = ¢,

o () = =i [An(),u, ] + Klplul(8)] Aul(1
M) = L ppu)(r),ul
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Mu)(®)=—i [ [nfu] (8), u. 1] + Klplu] (1)]] Alul 1),

Ailu](8) = —iH [n[u)(t), u, ) ilu] () — ZZ Kijlp[u] ()]s [u(2)

(P [lul ()] [l (1)) =

—2ipi[u] (7, £)Im [/dST'Aj [u]” (7', 8) frasce [n[u) ()] (7, 7 ) o5 [ (7, 1)

TDDFT +
QOCT
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QOCT + TDDFT

Most important theoretical difficulty: many targets are easily
formulated in terms of states (or projectors), e.g.:

F[9(T)] = [(¥1|¥(T))[?

However, those states are the true many-body states, and we
only have access to the time-dependent density, and to the
Kohn-Sham orbitals.
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Femtosecond laser pulse shaping for enhanced

jonization

[AC, E. Rasdnen, A. Rubio, and E. K. U.
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Fig. 1: (Color online) Tonization probability for the initial pulse
(cireles) and for the optimized pulse (squares) as a Function of
the peak intensity of the initial pulse. The polarization of the
pulse is (a) parallel and (b) perpendicular to the molecule

>

Gross, EPL 87, 53001 (2009)]

Target: Maximal ionization
of Hi molecule (clamped
nuclei).

FW(T)] = (¥ (T)[¥(T)) -
Pbouna (T[T

Use of absorbing boundary
conditions

Use of direct optimization
algorithm.

Expansion of control field
into a Fourier series =
automatic existence of a
frequency constraint.

Further constraints: total
length (5fs) and total fluence.
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03

> Using a stringent frequency
cut-off, the optimization
attempts to build a peak with

2 o1 s < . . . .
Y maximum intensity. With
Ty L short, intense pulses, most
> ab ionization occurs during the
= maximum.

> With parallel orientation,
zero carrier envelope phase

1 ]

7‘2 N 37‘ 4 5 1 2 3
tifs) t(is)
TDDFT + (half-cycle pulse), and 7/2
QOCT Fig. 2: (Color online) (a) Initial and optimized pulses . .
polarization) and their power spectrs (in arbitrary un with perpendicular
(b) oceupation of sel d single-eles

optimized ionize s, when I orientation.

(d) Same as (a), (b) but for perpendicular polarization

stion. proces
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TDDFT +
QOCT

Femtosecond laser pulse shaping for enhanced

jonization
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Fig. 4: (Color online) Upper panel:
jonization when the cutoff fre £ ext) and the
intensity is fixed to 0.5 x 10" W /cm®. Lower panel: occupation
of a few lowest states during the pulse interaction.

- pulse for the

Higher cut-off frequency
implies more complicated
structure for the optimal
pulse.

lonization is not a direct
ground-state to continuum
step.
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[E. Rasdnen, AC, J. Werschnik, A. Rubio, and E. K. U. Gross, Phys.

Rev. Lett. 98, 157404 (2007)]
» Electron trapped in a ring
edged into a 2D
semiconductor

@ ® [= p
el s heterostructure (2D electron
i gas).
af =+ + {4 .
I ol > Levels are coupled in a
Vo) . I
: o A consecutive fashion, ordered
by angular momentum.
£() 3 e 2 y ang
AT g > Use of a two-component laser
TDDFT
QOCT i FIG. 1 (color online). (a) Shape of the external confining pU|Se'
potential for a quantum ring and an example of a circularly
polarized laser field. (b) Energy-level spectrum of a quantum » The target is the population
ring. The transitions are allowed along the dashed line so that
Al= 21, of any of the levels, from any

of the other levels (precise
control over the electronic
current).
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FIG. 3 (color online). Maximum occupation of the target state t(a.u) t(a.u)

in transition |1) — |2} as a function of the pulse length. The open
TDDFT + (blue) circles correspond to continuous waves and the filled (red) FIG. 4 (color online). Schematic picture of transitions from
QocT circles to the optimal-control result. The insets show the den- I=—1tol=1(a)and from] = —2to ! = 2 (b) (upper panel),

sities | W(T = 100)|> when the corresponding achieved occupa-
tions are (.99 and 0.9998 for these pulse types, respectively.

optimized fields for these transitions (middle panel), and the
occupations of the states (lower panel).
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> Target: selective
enhancement or quenching of

: f harmonics:
"y WULMMH ]
Flg] = Zak max {log;o Hlp](w)}

15913172125293337414549

mmar‘uom
S e — —)
H(w)

logio H(w)

) | dt ,EI: 71wt‘2
He atom, EXX, frozen H+xc dt2
2 J ~ » Time-dependent target, it
TDDFT + R 2 depends on the full evolution
QocT z e L‘)‘W\ of the system.
"l l > “TDDFT-friendly” target: it
a2 ‘HH’T only depends on the
e time-dependent density.

1 5 9 13 17 21 25 20 33 37 41 45 49
Harmonic order
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TDDFT +
QOCT

Optimal laser control of the harmonic generation
He atom, froze H4xc

He ato

Harmonic order (w/wp)
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QOCT

Optimal laser control of the harmonic generation:
Cut-off extension

Flg] = /dwawmso](w)

=

_ /dwa(w)\f[w](w)‘zv

Flt) = /d% n(F, 1)Vo(F) + Ne(t)7

The functional derivative of I, needed for the propagation of
the co-state, is:

glel(t) - Vo(7) (71),

F0) = 2u [der aeo)Re [Flgl(w)e
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Coupled electron-ion model: Ehrenfest dynamics:
f[[(b b, u, t] = Hclas[Qap) u, t]j + ﬁquan‘num[%pa Uu, t] .

0H, clas

nlt) = %5 g(0).p(0) .
+<w<t>|”fg§:“m[q<t>,p<t>,u,tnw<t>>
BB Palt) = —%If[qu),p(t),u,ﬂ
() P iy 6), 10 (1)

94a
\il(a:,t) = _iﬁquantum[Q(t)ap(t)vuvt]qj(x’t)7
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Optimization Schemes for Selective Molecular
Cleavage with Tailored Ultrashort Laser Pulses

Several options:

» Assume the dynamical system is the electronic system
only: the ions are clamped during the action of the laser
pulse. One can then use the usual QOCT. Valid only for
very short pulses.

» The dynamical system is the Ehrenfest sytem:

» Use a direct, or gradient-less optimization scheme. No
need to develop new theory, since the only operation
required is the forward propagation of the Ehrenfest
system.

» Full use of the QOCT equations, that require the
gradient.



Analysis and

weivtsll Optimization Schemes for Selective Molecular

electronic motion

RERECE Cleavage with Tailored Ultrashort Laser Pulses

Alberto Castro

002 " A f Lo — / f’
003 ,A \ ( 01 /\
008 w h“” 3 oos| \ /\_
DDF g ‘ 2 / \ / .
IDDETRS %ot 1 ’l . \ .

0.08 { ot} \

-0.00 [ \]

0 10 20 30 40 50 60 70 80 9 0 50 100 150 200 250 300 350 400
iteration time (a.u]

id
o
&

laser field [a.u]

[K. Krieger, AC, and E. K. U. Gross, Chem. Phys. 391, 50 (2011)]
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» During the laser irradiation, the nuclei do not have time
to move, but the electrons are shaked, and communicate
a sudden dissociative momentum to the nuclei.

» Hybrid quantum-classical model (Ehrenfest model):
definition of the targets in terms of the classical forces
on the nuclei:

— T —
a:/aa@,
0

Fy = Bafn(t)] = /di’w n (7, ) oo (7, { B}

» Therefore

T
Poln] = /0 i /d3r D )V avo (7 R} -




btV Definition of the target
electronic motion
Witth TDDFtT

Alberto Castro

» The target is then defined in terms of a function of
these momenta:

for example:

F[n] = Piz[n] — Paz[n].

» The remaining ingredient in order to compute the

gradient is the functional derivative:

TDDFT +
QOCT

£ (R
ot Z > 2013 T UL

a=1p=r,y,z
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TDDFT +
QOCT

Results
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[AC, ChemPhysChem 14, 1488 (2013)]
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with TDDFT [AC and E. K. U. Gross, “Optimal control theory for quantum-classical
Alberto Castro systems: Ehrenfest Molecular Dynamics based on TDDFT"
arXiv:1308.4162]

0H, clas

Ga(t) = o, [q(t),p(t),u,t]

aH quantum

(D) g

[q(2), p(t), u, t][¥(t))

. aﬁ clas

pa(t) = aqa [Q(t)vp(t)7u7t]

Wi 1) ) 0,0

\il(xvt) = 7iﬁquantUm[Q(t)ap(t>vu’t]q](x7t)a

peer —(w ()|
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numerically tractable way. The targets must be
formulated in terms of the density, in order to be
consistent with TDDFT. This is not always possible.
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» Very fast photo-dissociation can be tackled in a static
manner: by optimizing the electron system only, and
placing the system in a state that leads to
photo-dissociation after the pulse.
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» TDDFT can be used to study ultra-fast pump-probe
spectroscopy (TAS and TRPES). The treatment must
be non-perturbative (explicitly time-dependent).

» QOCT and TDDFT can be successfully merged in a
numerically tractable way. The targets must be
formulated in terms of the density, in order to be
consistent with TDDFT. This is not always possible.

» Very fast photo-dissociation can be tackled in a static
manner: by optimizing the electron system only, and
placing the system in a state that leads to
photo-dissociation after the pulse.

Summary

» However, a general treatment would require the
construction of a QOCT+TDDFT+Ehrenfest
methodology.
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(A) Generalized, out of equilibrium linear response:

H(T) = Ho(t) + f()V

T
3A() = [ dr foa ple)

Xap(tm) = =it = T)Tr{p(to) [ An (), Via (7) |}
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(A) Corollarium: QOCT equations

~

5 H
Hluy, ..., up + Otup,...;t] = H[u;t]—%&u%[u;t]
Ho(t) + f(H)V

Assuming Hu] = H + £(u, 1),

oG o, 9=
Dum  Oum /dta Xy

Summary

[AC and I. Tokatly, Phys. Rev. A 84, 033410 (2011)]
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Laser control

Adaptive feedback control:

"Whither the future of controlling quantum phenomena?’, Rabitz et al,
Science 288, 824 (2000).
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FIG. 1. (Color online) Optimal tailoring of intense ferntosecond light can be

used to preferentilly break peptide bonds. such as the indicated N1-C3
bond in the amino acid complex Ac-Phe-NHMe.
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"“Coherent control of bond breaking in amino acid complexes with
tailored femtosecond pulses”, Laarmann et al, J. Chem. Phys. 127,
201101 (2007).
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