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•  t-dependent averages in NEMD (Onsager-Kubo) 
•  sampling an initial condition ensemble by MD 
• beyond macroscopic Hydrodynamics: Convective cells 
and relaxation of an interface 
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What we mean by Non-Equilibrium 
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NEMD (1) 
•  Assume that a given, time-dependent external local 

field            is coupled to our system via a suitable 
local property 

•  The total Hamiltonian of the system is 
               standard equilibrium Hamiltonian 
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NEMD (2) 

•  Equations of motion 

•  Liouville equation 

with 

                                   

 

PERTURBED SYSTEM: 

  an observable J of the system evolves with 
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NEMD (2) 

•  Equations of motion 

•  Liouville equation 

with 

                                   

 

PERTURBED SYSTEM: 

�m

�t
= iLm = iL0m+ iLpm � {H0,m}+ {Hp,m}

                          is a given initial distribution which can be sampled 
by MD if it comes from a stationary state (in particular but not 
necessarily an equilibrium one) 

(
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ṗ = ��H0
�r � �Hp

�r = F + g �hp

�r �(t)

m(�, t) = S†m(�, 0)
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The time-dependent NE average of a given observable  
 
can be obtained as follows 
(Onsager-Kubo equation)   

Dynamical NEMD [Ciccotti, Jacucci ‘75] 

Stationary MD 
Trajectory, m0(Γ)  

NEMD t 

t t 
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“Direct Computation of Dynamical Response by Molecular Dynamics: The Mobility of a Charged Lennard-Jones 
Particle”, G. Ciccotti and G. Jacucci, Phys. Rev. Lett. 35 (1975), 789--792  
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Sampling of the initial distribution 

Direct (stationary  
fields, boundary 
conditions, …) 

Advanced 
sampling (Cond. 

Prob.) 

Non-Eq. 
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Restraint MD/
MC 

                      
by MD (or MC) 

Equilibrium 
(transport) 
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Benard 
cells 

Interface 
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Standard 
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Convection 

(a)
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FIG. 4. Setting !A", hot reservoir on the left side of the box, cold reservoir
on the right side of the box, case !i": Local velocity field averaged over 1000
independent initial configurations during the first oscillation of temperature
and density fields, i.e., at !a" t=4.5#! /4, !b" t=9#! /2, !c" t=13#3! /4,
and !d" t=18#!.
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FIG. 5. Setting !A", hot reservoir on the left side of the box, cold reservoir
on the right side of the box, case !i": Local velocity field averaged over 1000
independent initial configurations during the second oscillation of tempera-
ture and density fields, i.e., at !a" t=22.5#5 /4!, !b" t=27#3 /2!, !c" t
=31.5#7 /4!, and !d" t=36#2!.

FIG. 6. Setting !A", hot reservoir on the left side of the box, cold reservoir
on the right side of the box, case !i": Local velocity field averaged over 1000
independent initial configurations at t=250.

(a)

(b)

FIG. 7. !a" Setting !A", case !i": Horizontal profile of the vertical component
of the velocity field vz!x" !red symbols" and vertical profile of the horizontal
component of the velocity field vx!z" !green symbols". The red symbols refer
to values in a row of cells at the midheight of the simulation box !nz=8".
The green symbols refer to a column of cells at the midlength of the simu-
lation box !nx=8". The values of the velocity are sampled in the final steady
state, at t#250, and averaged over 1000 independent initial configurations.
!b" Setting !B", case !i": Horizontal profile of the vertical component of the
velocity field vz!x" !red symbols" and vertical profile of the horizontal com-
ponent of the velocity field vx!z" !green symbols". The red symbols refer to
values in a row of cells at nz=8. The green symbols refer to a column of
cells at nx=6. The values of the velocity are sampled in the final steady
state, at t#2500, and averaged over 480 independent initial configurations.
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rT(x) 6= 0

• Sampling                                   : 
standard stationary Non-Equilibrium  
MD with                         , 

• Sampling           : standard segments  
of MD, starting at t= 0, with   
                       , 

m0(�) = m(�, t = 0)

rT(x) = const.

rT(x) = const.

J(x, t) g 

g = 0

g = const.



Convection 

l > rcut of the 
potential 

Confining field 



Convection Cells 

l > rcut of the 
potential 

Confining field 

The particles interact via a WCA potential (a LJ  
truncated and shifted at the minimum). A completely  
repulsive potential has only solid and fluid states and  

the thermodynamic conditions are such that the  
system is everywhere fluid. 



Convection Cells 

l > rcut of the 
potential 

Confining field 
The particles interact via a WCA potential (a LJ  

truncated and shifted at the minimum). A completely  
repulsive potential has only solid and fluid states and  

the thermodynamic conditions are such that the  
system is everywhere fluid. 

The system is divided in 15*15 
cells, numbered from left to 
right 1-15. A generic cell is 

 



Establishing Convective Cells 



Circulation of the velocity field. The inset shows the path. 

Establishing Convective Cells 
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Interface Relaxation 

• Sampling 
                                                    , 
where                                       : 
restrained MD with 
for            and      a given  
initial interface  
  

• Sampling           :  
standard segments of MD with  
system Hamiltonian 

J(x, t)
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•  Field at the grid point     of a discrete 
decomposition of the simulation box, with the 
atoms in the phase space point                       : 

   Where: 
•                     for the density  
•                     for the momentum density 
•   … 

€ 
  

€ 

ˆ O (  x α ; r, p) = (1/Ωα ) d x δ
 x −  r i( )Oi(r, p)

i=1

N

∑
Ωα

∫

Hydrodynamics by NEMD 
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•   The field at time t given initial macroscopic 
conditions is (Onsager-Kubo) 

where 
 
 
 
and 

 

unrestrained MD started from a 
sample of points taken along a 
restrained MD (next slide) 
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Hydrodynamics by NEMD 
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•                   is smoothed by a Gaussian and the 
sampling of the ensemble at 

   on the surface    is performed by restrained MD   
 
 
 
 
 

where: 

€ 

Conditional Averages by Restrained MD 
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•  171500 particles: 88889 particles A, 82611 
particles B 

•  Pair potential:  

•  Simulation box: ~(90 x 45 x 45) σ 

•  Average density: 1.024 particles*σ3 

•  Temperature: 1.5 ε/kb 

•  Simulation time: 
•  Restrained MD: 75000 steps 
•  Unrestrained MD: 600000 steps 

•  fields are averaged over (only) 40 unrestrained 
trajectories (for the moment) 
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Simulation Details 
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domain of pure 
L-J 
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•  The surface relaxes to the equilibrium by forming initially a two-tail profile of the 
velocity field that then stabilizes into a double-roll profile 
•  The velocity field obtained via the local time average technique violates the symmetry 
of the problem 

Rigorous  non-equilibrium ensemble 
averages vs local time averages 
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Conclusions 

①  It is possible to compute, numerically but, otherwise, 
rigorously, time-dependent non-equilibrium 
responses, i.e. responses in non-stationary 
regimes. Local time-averages should be avoided 

②  Nonequilibrium atomistic dynamics possibly 
combined with the ability to compute conditional 
averages (restrained MD) allows to simulate 
hydrodynamic phenomena ab initio (without using 
phenomenological approximations).  

③  Coupling non-equilibrium non-stationary  
systems is a fundamental question of multi-scale 
approaches 
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