Hamiltonian Adaptive Resolution Simulations

Pep Español

CECAM-PsiK Meeting September 2013

Work in collaboration

Kurt Kremer Rafaelo Potestio Sebastian Frisch Davide Donadio Ralf Everaest Rafael Delgado-Buscalioni

April 2012 Kavli ITP at Santa Barbara

Results

Coarse-Graining

Using fewer degrees of freedom to describe a system, but still retaining realism

Results

Coarse-Graining

Using fewer degrees of freedom to describe a system, but still retaining realism

Hamiltonian Adaptive Resolution Simulations

Results

Coarse-Graining

Using fewer degrees of freedom to describe a system, but still retaining realism

Hamiltonian Adaptive Resolution Simulations

Results

Coarse-Graining

Using fewer degrees of freedom to describe a system, but still retaining realism

DUED

Hamiltonian Adaptive Resolution Simulations

Results

Coarse-Graining

Using fewer degrees of freedom to describe a system, but still retaining realism

Hamiltonian Adaptive Resolution Simulations

Results

Coarse-Graining

Using fewer degrees of freedom to describe a system, but still retaining realism

Hamiltonian Adaptive Resolution Simulations

Two strategies for Coarse-Graining

• "Vertical" or "Bottom-up" CG: Construct CG models and obtain the parameters of the CG model through MD.

Two strategies for Coarse-Graining

- "Vertical" or "Bottom-up" CG: Construct CG models and obtain the parameters of the CG model through MD.
- "Horizontal" or "parallel" CG: Hybrid schemes that couple CG models and MD. (Requires the former!)

Bottom up Coarse-Graining

Example: Star polymer melt

Hijón, vanden Eijden, Delgado-Buscalioni, Español, Faraday Discuss **144**, 302 (2010)

Hamiltonian Adaptive Resolution Simulations

Bottom up Coarse-Graining

Example: Star polymer melt

Hijón, vanden Eijden, Delgado-Buscalioni, Español, Faraday Discuss **144**, 302 (2010)

Obtain CG potential and friction

Bottom up Coarse-Graining

Example: Star polymer melt

Hijón, vanden Eijden, Delgado-Buscalioni,

Español, Faraday Discuss 144, 302 (2010)

Obtain CG potential and friction

Run a CG simulation of the DPD type

Bottom up Coarse-Graining

Example: Star polymer melt

Hijón, vanden Eijden, Delgado-Buscalioni,

Español, Faraday Discuss 144, 302 (2010)

Obtain CG potential and friction

Run a CG simulation of the DPD type

Dissipative Particle Dynamics but with microscopically defined parameters.

$$\partial_{t} \mathbf{R}_{\mu} = \mathbf{V}_{\mu}$$

$$\partial_{t} \mathbf{P}_{\mu} = -\frac{\partial V^{\text{eff}}}{\partial \mathbf{R}_{\mu}}(R) - \sum_{\nu} \gamma_{\mu\nu}(R) \mathbf{V}_{\mu\nu} + \tilde{\mathbf{F}}_{\mu}$$

with

Dissipative Particle Dynamics but with microscopically defined parameters.

$$\partial_{t} \mathbf{R}_{\mu} = \mathbf{V}_{\mu}$$

$$\partial_{t} \mathbf{P}_{\mu} = -\frac{\partial V^{\text{eff}}}{\partial \mathbf{R}_{\mu}}(R) - \sum_{\nu} \gamma_{\mu\nu}(R) \mathbf{V}_{\mu\nu} + \tilde{\mathbf{F}}_{\mu}$$

with

$$egin{aligned} V^{ ext{eff}}(R) &= -k_B \, T \ln \int dz
ho^{ ext{eq}}(z) \delta(R(z)-R) \ \gamma_{\mu
u}(R) &= rac{1}{k_B \, T} \int_0^\infty dt \langle \delta \mathbf{F}_\mu \delta \mathbf{F}_\mu(t)
angle^R \end{aligned}$$

DUED

The average force $\langle \mathbf{F}_{\mu\nu} \rangle^{R_{\mu\nu}}$

DUED

Hamiltonian Adaptive Resolution Simulations

The friction coefficient $\gamma(R_{\mu\nu}) = A(R_{\mu\nu})\mathbf{1} + B(R_{\mu\nu})\mathbf{e}_{\mu\nu}\mathbf{e}_{\mu\nu}$

משנו

Hamiltonian Adaptive Resolution Simulations

The velocity autocorrelation function of the CoM

DUED

Hamiltonian Adaptive Resolution Simulations

The velocity autocorrelation function of the CoM

Friction is crucial for dynamic properties!

DUED

Results

Adaptive Resolution

AdResS: resolution depends on the region

Hamiltonian Adaptive Resolution Simulations

Results

Adaptive Resolution

AdResS: resolution depends on the region Atomic detail where it is needed

ספחע

Hamiltonian Adaptive Resolution Simulations

Results

Adaptive Resolution

AdResS: resolution depends on the region Atomic detail where it is needed Cheap CG in the rest

DUED

Hamiltonian Adaptive Resolution Simulations

Results

Adaptive Resolution

AdResS: resolution depends on the region

Atomic detail where it is needed

Cheap CG in the rest

M. Praprotnik, L. Delle Site, K. Kremer J.Chem.Phys. **123**, 224106 (2005), Ann.Rev.Phys.Chem. **59**, 545 (2008)

DUED

The microscopic model

The microscopic Hamiltonian

$$H^1(r,p) = \sum_i rac{\mathbf{p}_i^2}{2m_i} + \sum_{\mu}^M \left(V_{\mu}^{\mathrm{intra}}(r) + V_{\mu}^{\mathrm{inter}}(r)
ight)$$

The microscopic model

The microscopic Hamiltonian

$$H^1(r,p) = \sum_i rac{\mathbf{p}_i^2}{2m_i} + \sum_{\mu}^M \left(V_{\mu}^{\mathrm{intra}}(r) + V_{\mu}^{\mathrm{inter}}(r)\right)$$

$$egin{aligned} V^{ ext{intra}}_{\mu}(r) &= rac{1}{2}\sum_{i_{\mu}j_{\mu}}^{N}\phi^{ ext{intra}}(r_{i_{\mu}j_{\mu}}) \ V^{ ext{inter}}_{\mu}(r) &= rac{1}{2}\sum_{
u
eq \mu}^{M}\sum_{i_{\mu}j_{
u}}^{N}\phi^{ ext{inter}}(r_{i_{\mu}j_{
u}}) \end{aligned}$$

DUED

The CG model

CoM variables

$$\hat{\mathsf{R}}_{\mu}(r) = \sum_{i_{\mu}}^{N_{\mu}} \mathsf{r}_{i_{\mu}} rac{m_{i_{\mu}}}{M_{\mu}} \qquad \hat{\mathsf{P}}_{\mu}(r) = \sum_{i_{\mu}}^{N_{\mu}} \mathsf{p}_{i_{\mu}} \qquad M_{\mu} = \sum_{i_{\mu}} m_{i_{\mu}}$$

Hamiltonian Adaptive Resolution Simulations

The CG model

CoM variables

$$\hat{\mathsf{R}}_{\mu}(r) = \sum_{i_{\mu}}^{N_{\mu}} \mathsf{r}_{i_{\mu}} rac{m_{i_{\mu}}}{M_{\mu}} \qquad \hat{\mathsf{P}}_{\mu}(r) = \sum_{i_{\mu}}^{N_{\mu}} \mathsf{p}_{i_{\mu}} \qquad M_{\mu} = \sum_{i_{\mu}} m_{i_{\mu}}$$

The potential of mean force

$$e^{-\beta V^{\rm mf}(R)} \equiv \int \frac{d^{3N}r}{\Lambda^{3N}} e^{-\beta \left[V^{\rm intra}(r) + V^{\rm inter}(r)\right]} \prod_{\mu}^{M} \delta(\mathbf{R}_{\mu} - \hat{\mathbf{R}}_{\mu})$$

DUED

Hamiltonian Adaptive Resolution Simulations

The CG model

CoM variables

$$\hat{\mathsf{R}}_{\mu}(r) = \sum_{i_{\mu}}^{N_{\mu}} \mathsf{r}_{i_{\mu}} rac{m_{i_{\mu}}}{M_{\mu}} \qquad \hat{\mathsf{P}}_{\mu}(r) = \sum_{i_{\mu}}^{N_{\mu}} \mathsf{p}_{i_{\mu}} \qquad M_{\mu} = \sum_{i_{\mu}} m_{i_{\mu}}$$

The potential of mean force

$$e^{-\beta V^{\rm mf}(R)} \equiv \int \frac{d^{3N}r}{\Lambda^{3N}} e^{-\beta \left[V^{\rm intra}(r) + V^{\rm inter}(r)\right]} \prod_{\mu}^{M} \delta(\mathbf{R}_{\mu} - \hat{\mathbf{R}}_{\mu})$$

Many body potential!

Hamiltonian Adaptive Resolution Simulations

UNED

The CG model

CoM variables

$$\hat{\mathsf{R}}_{\mu}(r) = \sum_{i_{\mu}}^{N_{\mu}} \mathsf{r}_{i_{\mu}} rac{m_{i_{\mu}}}{M_{\mu}} \qquad \hat{\mathsf{P}}_{\mu}(r) = \sum_{i_{\mu}}^{N_{\mu}} \mathsf{p}_{i_{\mu}} \qquad M_{\mu} = \sum_{i_{\mu}} m_{i_{\mu}}$$

The potential of mean force

$$e^{-\beta V^{\rm mf}(R)} \equiv \int \frac{d^{3N}r}{\Lambda^{3N}} e^{-\beta \left[V^{\rm intra}(r) + V^{\rm inter}(r)\right]} \prod_{\mu}^{M} \delta(\mathbf{R}_{\mu} - \hat{\mathbf{R}}_{\mu})$$

Many body potential! Approximate $V^{\rm mf}(R) \approx \sum_{\mu} V^0_{\mu}(R) = \frac{1}{2} \sum_{\mu\nu}^M V^0(\hat{\mathbf{R}}_{\mu} - \hat{\mathbf{R}}_{\nu})$

DUED

Matching the two models

In AA region

Matching the two models

In AA region

In CG region

Matching the two models

In AA region

In CG region

$$\begin{split} \dot{\mathbf{r}}_{i_{\mu}} &= \frac{\mathbf{p}_{i_{\mu}}}{m_{i_{\mu}}} \\ \dot{\mathbf{p}}_{i_{\mu}} &= -\frac{\partial V_{\mu}^{\text{intra}}}{\partial \mathbf{r}_{i_{\mu}}} - \sum_{\nu}^{M} \frac{\partial V_{\nu}^{\mathbf{0}}}{\partial \mathbf{r}_{i_{\mu}}}(R) \end{split}$$

$$\dot{\mathbf{R}}_{\mu} = rac{\mathbf{P}_{\mu}}{m_{\mu}}$$
 $\dot{\mathbf{P}}_{\mu} = -\sum_{
u}^{M} rac{\partial V_{
u}^{0}}{\partial \mathbf{R}_{\mu}} (R)$

DUED

Matching the two models

In AA region

In CG region

$$\dot{\mathbf{r}}_{i_{\mu}} = rac{\mathbf{p}_{i_{\mu}}}{m_{i_{\mu}}}$$
 $\dot{\mathbf{p}}_{i_{\mu}} = -rac{\partial V_{\mu}^{\text{intra}}}{\partial \mathbf{r}_{i_{\mu}}} - \sum_{
u}^{M} rac{\partial V_{
u}^{\mathbf{0}}}{\partial \mathbf{r}_{i_{\mu}}}(R)$

The CoM of the blobs move with a CG pair potential $V^0(R)$ that approximates $V^{mf}(R)$.

$$egin{aligned} \dot{\mathbf{R}}_{\mu} &= rac{\mathbf{P}_{\mu}}{m_{\mu}} \ \dot{\mathbf{P}}_{\mu} &= -\sum_{
u}^{M} rac{\partial V_{
u}^{\mathbf{0}}}{\partial \mathbf{R}_{\mu}}(R) \end{aligned}$$

DUED

H-AdResS

H-AdResS

$$H_{[\lambda]}(r,p) = \sum_{i}^{N} \frac{\mathbf{p}_{i}^{2}}{2m_{i}} + \sum_{\mu}^{M} V_{\mu}^{\text{intra}}(r)$$

DUED

Hamiltonian Adaptive Resolution Simulations

H-AdResS

$$egin{split} \mathcal{H}_{[\lambda]}(r, p) &= \sum_i^N rac{\mathbf{p}_i^2}{2m_i} + \sum_\mu^M V_\mu^{ ext{intra}}(r) \ &+ \sum_\mu^M \lambda(\hat{\mathbf{R}}_\mu) V_\mu^1(r) + \sum_\mu^M (1-\lambda(\hat{\mathbf{R}}_\mu)) V_\mu^0(R) \end{split}$$

DUED

H-AdResS

DUED

Hamiltonian Adaptive Resolution Simulations

Stat Mech

Results

The equations of motion

Hamiltonian Adaptive Resolution Simulations

Stat Mech

Results

The equations of motion

$$\begin{split} \dot{\mathbf{r}}_{i_{\mu}} &= \frac{\mathbf{p}_{i_{\mu}}}{m_{i_{\mu}}} \\ \dot{\mathbf{p}}_{i_{\mu}} &= -\frac{\partial V_{\mu}^{\text{intra}}}{\partial \mathbf{r}_{i_{\mu}}} - \sum_{\nu}^{M} \lambda(\hat{\mathbf{R}}_{\nu}) \frac{\partial V_{\nu}^{1}}{\partial \mathbf{r}_{i_{\mu}}} - \sum_{\nu}^{M} (1 - \lambda(\hat{\mathbf{R}}_{\nu})) \frac{\partial V_{\nu}^{0}}{\partial \mathbf{r}_{i_{\mu}}} \\ &- \nabla \lambda(\mathbf{R}_{\mu}) \frac{m_{i_{\mu}}}{m_{\mu}} \left(V_{\mu}^{1} - V_{\mu}^{0} + \Delta \mathcal{F}'(\lambda(\hat{\mathbf{R}}_{\mu})) \right) \end{split}$$

DUED

Hamiltonian Adaptive Resolution Simulations

Results

Free energies

$$F_{[\lambda]} = -k_B T \ln \int \frac{d^{3N} r}{\Lambda^{3N}} \exp\left\{-\beta V_{[\lambda]}(r)\right\}$$

$$F_{[\lambda]} = -k_B T \ln \int \frac{d^{3M} R}{\Lambda_0^{3M}} \exp \left\{ -\beta \left[\sum_{\mu}^M (1 - \lambda(\mathbf{R}_{\mu})) V_{\mu}^0(R) + V_{[\lambda]}^{\mathrm{mf}}(R) + \sum_{\mu}^M \Delta \mathcal{F}(\lambda(\mathbf{R}_{\mu})) \right] \right\}$$

$$V_{[\lambda]}^{\rm mf}(R) \equiv -k_B T \ln \int \frac{d^{3N} r}{\Lambda^{3N}} \exp\left\{-\beta \left[V^{\rm intra}(r) + \sum_{\mu}^{M} \lambda(\mathbf{R}_{\mu}) V_{\mu}^{1}(r)\right]\right\} \Lambda_{0}^{3M} \prod_{\mu}^{M} \delta(\mathbf{R}_{\mu} - \hat{\mathbf{R}}_{\mu})$$

DUED

Hamiltonian Adaptive Resolution Simulations

Results

Free energies

At constant $\lambda(\mathbf{r}) = 0, 1$

$$F_{[1]} = -k_B T \ln \int \frac{d^{3M} R}{\Lambda_0^{3M}} \exp\left\{-\beta V_{[1]}^{\mathrm{mf}}(R)\right\}$$
$$F_{[0]} = -k_B T \ln \int \frac{d^{3M} R}{\Lambda_0^{3M}} \exp\left\{-\beta \sum_{\mu}^{M} \left[V_{\mu}^0(R) + F_{\mu}^{\mathrm{intra}} + \Delta \mathcal{F}(0)\right]\right\}$$

DUED

Hamiltonian Adaptive Resolution Simulations

Results

Free energies

At constant $\lambda(\mathbf{r}) = 0, 1$

$$F_{[1]} = -k_B T \ln \int \frac{d^{3M} R}{\Lambda_0^{3M}} \exp\left\{-\beta V_{[1]}^{\mathrm{mf}}(R)\right\}$$
$$F_{[0]} = -k_B T \ln \int \frac{d^{3M} R}{\Lambda_0^{3M}} \exp\left\{-\beta \sum_{\mu}^{M} \left[V_{\mu}^0(R) + F_{\mu}^{\mathrm{intra}} + \Delta \mathcal{F}(0)\right]\right\}$$

Thermodynamic consistency

$$F_{[0]} = F_{[1]}$$

DUED

Results

Free energies

At constant $\lambda(\mathbf{r}) = 0, 1$

$$F_{[1]} = -k_B T \ln \int \frac{d^{3M} R}{\Lambda_0^{3M}} \exp\left\{-\beta V_{[1]}^{\text{mf}}(R)\right\}$$
$$F_{[0]} = -k_B T \ln \int \frac{d^{3M} R}{\Lambda_0^{3M}} \exp\left\{-\beta \sum_{\mu}^{M} \left[V_{\mu}^0(R) + F_{\mu}^{\text{intra}} + \Delta \mathcal{F}(0)\right]\right\}$$

Thermodynamic consistency

$$F_{[0]} = F_{[1]}$$

 $\Delta \mathcal{F}$ corrects errors of using $V^0(R)$ instead of $V_{[1]}^{\text{mf}}(R)$.

ספות

Equations of state: The temperature

The kinetic energy density field is

$$k_{\mathbf{r}}\equiv\sum_{\mu}^{M}rac{m_{\mu}}{2}\mathbf{V}_{\mu}^{2}\delta(\mathbf{r}-\mathbf{R}_{\mu})$$

with average

$$\langle k_{\mathsf{r}} \rangle^{[\lambda]} = \frac{3k_BT}{2} \langle n_{\mathsf{r}} \rangle^{[\lambda]}$$

The temperature field

$$k_B T(\mathbf{r}) \equiv \frac{2}{3} \frac{\langle k_{\mathbf{r}} \rangle^{[\lambda]}}{\langle n_{\mathbf{r}} \rangle^{[\lambda]}} = k_B T$$

מפחע

Consider the momentum density field

$$\hat{\mathbf{g}}_{\mathbf{r}}(z) \equiv \sum_{\mu}^{M} \hat{\mathbf{P}}_{\mu} \delta(\hat{\mathbf{R}}_{\mu} - \mathbf{r}) \qquad iL \hat{\mathbf{g}}_{\mathbf{r}} = -\nabla \hat{\mathbf{\Sigma}}_{\mathbf{r}} - \frac{\delta H^{[\lambda]}}{\delta \lambda(\mathbf{r})} \nabla \lambda(\mathbf{r})$$

Hamiltonian Adaptive Resolution Simulations

Consider the momentum density field

$$\hat{\mathbf{g}}_{\mathbf{r}}(z) \equiv \sum_{\mu}^{M} \hat{\mathbf{P}}_{\mu} \delta(\hat{\mathbf{R}}_{\mu} - \mathbf{r}) \qquad iL \hat{\mathbf{g}}_{\mathbf{r}} = -\nabla \hat{\mathbf{\Sigma}}_{\mathbf{r}} - \frac{\delta H^{[\lambda]}}{\delta \lambda(\mathbf{r})} \nabla \lambda(\mathbf{r})$$

Irwing-Kirkwood stress tensor

$$\hat{\boldsymbol{\Sigma}}_{\mathbf{r}} = \sum_{\mu}^{M} \hat{\mathbf{P}}_{\mu} \hat{\mathbf{V}}_{\mu} \delta(\hat{\mathbf{R}}_{\mu} - \mathbf{r}) + \frac{1}{2} \sum_{\mu\nu} \hat{\mathbf{G}}_{\mu\nu} \mathbf{R}_{\mu\nu} \int_{0}^{1} d\epsilon \delta(\mathbf{R}_{\nu} + \epsilon \mathbf{R}_{\mu\nu} - \mathbf{r})$$
$$\hat{\mathbf{G}}_{\mu\nu} \equiv \left[\frac{\lambda(\hat{\mathbf{R}}_{\mu}) + \lambda(\hat{\mathbf{R}}_{\nu})}{2} \right] \mathbf{F}_{\mu\nu}^{1}(R_{\mu\nu}) + \left[1 - \frac{\lambda(\hat{\mathbf{R}}_{\mu}) + \lambda(\hat{\mathbf{R}}_{\nu})}{2} \right] \mathbf{F}_{\mu\nu}^{0}(R_{\mu\nu})$$

DULED

Consider the momentum density field

. .

$$\hat{\mathbf{g}}_{\mathbf{r}}(z) \equiv \sum_{\mu}^{M} \hat{\mathbf{P}}_{\mu} \delta(\hat{\mathbf{R}}_{\mu} - \mathbf{r}) \qquad iL \hat{\mathbf{g}}_{\mathbf{r}} = -\nabla \hat{\mathbf{\Sigma}}_{\mathbf{r}} - \frac{\delta H^{[\lambda]}}{\delta \lambda(\mathbf{r})} \nabla \lambda(\mathbf{r})$$

$$\frac{\delta H_{[\lambda]}}{\delta \lambda(\mathbf{r})} = u_{\mathbf{r}}^{1} - u_{\mathbf{r}}^{0} + \Delta \mathcal{F}'(\lambda(\mathbf{r})) n_{\mathbf{r}}$$

where

$$u_{\mathbf{r}}^{1} \equiv \sum_{\mu}^{M} V_{\mu}^{1} \delta(\hat{\mathbf{R}}_{\mu} - \mathbf{r})$$
$$u_{\mathbf{r}}^{0} \equiv \sum_{\mu}^{M} V_{\mu}^{0} \delta(\hat{\mathbf{R}}_{\mu} - \mathbf{r})$$
$$n_{\mathbf{r}} \equiv \sum_{\mu}^{M} \delta(\hat{\mathbf{R}}_{\mu} - \mathbf{r})$$

DUED

Hamiltonian Adaptive Resolution Simulations

The average gives the condition of mechanical equilibrium

$$\langle i L \hat{\mathbf{g}}_{\mathbf{r}} \rangle^{[\lambda]} = -\nabla \left\langle \hat{\mathbf{\Sigma}}_{\mathbf{r}} \right\rangle^{[\lambda]} - \left\langle \frac{\delta H^{[\lambda]}}{\delta \lambda(\mathbf{r})} \right\rangle^{[\lambda]} \nabla \lambda(\mathbf{r})$$

The average gives the condition of mechanical equilibrium

$$\langle i L \hat{\mathbf{g}}_{\mathbf{r}} \rangle^{[\lambda]} = -\nabla \left\langle \hat{\mathbf{\Sigma}}_{\mathbf{r}} \right\rangle^{[\lambda]} - \left\langle \frac{\delta H^{[\lambda]}}{\delta \lambda(\mathbf{r})} \right\rangle^{[\lambda]} \nabla \lambda(\mathbf{r})$$

$$0 = k_B T \nabla n(\mathbf{r}) + \nabla \mathbf{\Pi}(\mathbf{r}) + \frac{\delta F^{[\lambda]}}{\delta \lambda(\mathbf{r})} \nabla \lambda(\mathbf{r})$$

Hamiltonian Adaptive Resolution Simulations

The average gives the condition of mechanical equilibrium

$$\langle i L \hat{\mathbf{g}}_{\mathbf{r}} \rangle^{[\lambda]} = -\nabla \left\langle \hat{\mathbf{\Sigma}}_{\mathbf{r}} \right\rangle^{[\lambda]} - \left\langle \frac{\delta H^{[\lambda]}}{\delta \lambda(\mathbf{r})} \right\rangle^{[\lambda]} \nabla \lambda(\mathbf{r})$$

$$0 = k_B T \nabla n(\mathbf{r}) + \nabla \Pi(\mathbf{r}) + \frac{\delta F^{[\lambda]}}{\delta \lambda(\mathbf{r})} \nabla \lambda(\mathbf{r})$$

$$\frac{\delta F_{[\lambda]}}{\delta \lambda(\mathbf{r})} = \left\langle u_{\mathbf{r}}^{1} - u_{\mathbf{r}}^{0} \right\rangle^{[\lambda]} + \Delta \mathcal{F}'(\lambda(\mathbf{r})) \left\langle n_{\mathbf{r}} \right\rangle^{[\lambda]}$$

DUED

The average gives the condition of mechanical equilibrium

$$\langle i L \hat{\mathbf{g}}_{\mathbf{r}} \rangle^{[\lambda]} = -\nabla \left\langle \hat{\mathbf{\Sigma}}_{\mathbf{r}} \right\rangle^{[\lambda]} - \left\langle \frac{\delta H^{[\lambda]}}{\delta \lambda(\mathbf{r})} \right\rangle^{[\lambda]} \nabla \lambda(\mathbf{r})$$

$$0 = k_B T \nabla n(\mathbf{r}) + \nabla \mathbf{\Pi}(\mathbf{r}) + \frac{\delta F^{[\lambda]}}{\delta \lambda(\mathbf{r})} \nabla \lambda(\mathbf{r})$$

$$\frac{\delta F_{[\lambda]}}{\delta \lambda(\mathbf{r})} = \left\langle u_{\mathbf{r}}^{1} - u_{\mathbf{r}}^{0} \right\rangle^{[\lambda]} + \Delta \mathcal{F}'(\lambda(\mathbf{r})) \left\langle n_{\mathbf{r}} \right\rangle^{[\lambda]}$$

 $\nabla \boldsymbol{\Sigma}(\mathbf{r}) = k_B T \nabla n(\mathbf{r}) + \nabla \boldsymbol{\Pi}(\mathbf{r}) = -\left\langle u_{\mathbf{r}}^1 - u_{\mathbf{r}}^0 \right\rangle^{[\lambda]} - \Delta \mathcal{F}'(\lambda(\mathbf{r})) \left\langle n_{\mathbf{r}} \right\rangle^{[\lambda]}$

DUED

The average gives the condition of mechanical equilibrium

$$\langle i L \hat{\mathbf{g}}_{\mathbf{r}} \rangle^{[\lambda]} = -\nabla \left\langle \hat{\mathbf{\Sigma}}_{\mathbf{r}} \right\rangle^{[\lambda]} - \left\langle \frac{\delta H^{[\lambda]}}{\delta \lambda(\mathbf{r})} \right\rangle^{[\lambda]} \nabla \lambda(\mathbf{r})$$

$$0 = k_B T \nabla n(\mathbf{r}) + \nabla \mathbf{\Pi}(\mathbf{r}) + \frac{\delta F^{[\lambda]}}{\delta \lambda(\mathbf{r})} \nabla \lambda(\mathbf{r})$$

$$\frac{\delta \mathcal{F}_{[\lambda]}}{\delta \lambda(\mathbf{r})} = \left\langle u_{\mathbf{r}}^{1} - u_{\mathbf{r}}^{0} \right\rangle^{[\lambda]} + \Delta \mathcal{F}'(\lambda(\mathbf{r})) \left\langle n_{\mathbf{r}} \right\rangle^{[\lambda]}$$

 $\nabla \mathbf{\Sigma}(\mathbf{r}) = k_B T \nabla n(\mathbf{r}) + \nabla \mathbf{\Pi}(\mathbf{r}) = - \left\langle u_{\mathbf{r}}^1 - u_{\mathbf{r}}^0 \right\rangle^{[\lambda]} - \Delta \mathcal{F}'(\lambda(\mathbf{r})) \left\langle n_{\mathbf{r}} \right\rangle^{[\lambda]}$

Crucial relation that allows to specify the free energy compensation term $\Delta \mathcal{F}(\lambda)$.

ספחע

The compensating term

$$\nabla \boldsymbol{\Sigma}(\mathbf{r}) = k_B T \nabla n(\mathbf{r}) + \nabla \boldsymbol{\Pi}(\mathbf{r}) = -\left\langle u_{\mathbf{r}}^1 - u_{\mathbf{r}}^0 \right\rangle^{[\lambda]} - \Delta \mathcal{F}'(\lambda(\mathbf{r})) \left\langle n_{\mathbf{r}} \right\rangle^{[\lambda]}$$

Hamiltonian Adaptive Resolution Simulations

The compensating term

$$\nabla \mathbf{\Sigma}(\mathbf{r}) = k_B T \nabla n(\mathbf{r}) + \nabla \mathbf{\Pi}(\mathbf{r}) = - \left\langle u_{\mathbf{r}}^1 - u_{\mathbf{r}}^0 \right\rangle^{[\lambda]} - \Delta \mathcal{F}'(\lambda(\mathbf{r})) \left\langle n_{\mathbf{r}} \right\rangle^{[\lambda]}$$

Constant stress

$$\Delta \mathcal{F}'(\lambda(\mathbf{r})) = -rac{\langle u_{\mathbf{r}}^1 - u_{\mathbf{r}}^0
angle^{[\lambda]}}{\langle n_{\mathbf{r}}
angle^{[\lambda]}}$$

DUED

Hamiltonian Adaptive Resolution Simulations

The compensating term

$$\nabla \mathbf{\Sigma}(\mathbf{r}) = k_B T \nabla n(\mathbf{r}) + \nabla \mathbf{\Pi}(\mathbf{r}) = - \left\langle u_{\mathbf{r}}^1 - u_{\mathbf{r}}^0 \right\rangle^{[\lambda]} - \Delta \mathcal{F}'(\lambda(\mathbf{r})) \left\langle n_{\mathbf{r}} \right\rangle^{[\lambda]}$$

Constant stress

$$\Delta \mathcal{F}_{n+1}'(\lambda(\mathbf{r})) = -rac{\langle u_{\mathbf{r}}^1 - u_{\mathbf{r}}^0
angle^{[\lambda, \Delta \mathcal{F}_n]}}{\langle n_{\mathbf{r}}
angle^{[\lambda, \Delta \mathcal{F}_n]}}$$

The compensating term

$$\nabla \mathbf{\Sigma}(\mathbf{r}) = k_B T \nabla n(\mathbf{r}) + \nabla \mathbf{\Pi}(\mathbf{r}) = - \left\langle u_{\mathbf{r}}^1 - u_{\mathbf{r}}^0 \right\rangle^{[\lambda]} - \Delta \mathcal{F}'(\lambda(\mathbf{r})) \left\langle n_{\mathbf{r}} \right\rangle^{[\lambda]}$$

Constant density

$$\Delta \mathcal{F}'(\lambda(\mathbf{r})) = -rac{
abla \mathbf{\Pi}(\mathbf{r}) + \langle u_{\mathbf{r}}^1 - u_{\mathbf{r}}^0
angle^{[\lambda]}}{\langle n_{\mathbf{r}}
angle^{[\lambda]}}$$

Hamiltonian Adaptive Resolution Simulations

The compensating term without iterations

 $\nabla \boldsymbol{\Sigma}(\mathbf{r}) = k_B T \nabla n(\mathbf{r}) + \nabla \boldsymbol{\Pi}(\mathbf{r}) = - \left\langle u_{\mathbf{r}}^1 - u_{\mathbf{r}}^0 \right\rangle^{[\lambda]} - \Delta \mathcal{F}'(\lambda(\mathbf{r})) \left\langle n_{\mathbf{r}} \right\rangle^{[\lambda]}$

The compensating term without iterations

 $\nabla \boldsymbol{\Sigma}(\mathbf{r}) = k_B T \nabla n(\mathbf{r}) + \nabla \boldsymbol{\Pi}(\mathbf{r}) = - \left\langle u_{\mathbf{r}}^1 - u_{\mathbf{r}}^0 \right\rangle^{[\lambda]} - \Delta \mathcal{F}'(\lambda(\mathbf{r})) \left\langle n_{\mathbf{r}} \right\rangle^{[\lambda]}$

Assume local equilibrium: Constant stress

$$\left\langle n_{\mathsf{r}}
ight
angle ^{\left[\lambda
ight]}\Delta\mathcal{F}'(\lambda(\mathsf{r}))=-\left\langle u_{\mathsf{r}}^{1}-u_{\mathsf{r}}^{0}
ight
angle ^{\lambda=\lambda(\mathsf{r})}$$

DUED

The compensating term without iterations

 $\nabla \boldsymbol{\Sigma}(\mathbf{r}) = k_B T \nabla n(\mathbf{r}) + \nabla \boldsymbol{\Pi}(\mathbf{r}) = - \left\langle u_{\mathbf{r}}^1 - u_{\mathbf{r}}^0 \right\rangle^{[\lambda]} - \Delta \mathcal{F}'(\lambda(\mathbf{r})) \left\langle n_{\mathbf{r}} \right\rangle^{[\lambda]}$

Assume local equilibrium: Constant stress

$$M\Delta \mathcal{F}'(\lambda) = -\left\langle U^1 - U^0
ight
angle^{\lambda}$$

DUED

The compensating term without iterations

 $\nabla \boldsymbol{\Sigma}(\mathbf{r}) = k_B T \nabla n(\mathbf{r}) + \nabla \boldsymbol{\Pi}(\mathbf{r}) = - \left\langle u_{\mathbf{r}}^1 - u_{\mathbf{r}}^0 \right\rangle^{[\lambda]} - \Delta \mathcal{F}'(\lambda(\mathbf{r})) \left\langle n_{\mathbf{r}} \right\rangle^{[\lambda]}$

Assume local equilibrium: Constant stress

$$M\Delta \mathcal{F}'(\lambda) = -\left\langle U^1 - U^0
ight
angle^{\lambda}$$

Kirkwood Thermodynamic Integration

$$egin{aligned} \Delta \mathcal{F}(\lambda) &= -rac{1}{M} \int_{0}^{\lambda} d\lambda' \left\langle rac{\partial U}{\partial \lambda'}
ight
angle^{\lambda'} \ &U \equiv \lambda U^1 + (1-\lambda) U^0 \end{aligned}$$

מפחע

Potestio et al. Phys.Rev.Lett. 110, 108301 (2013)

Hamiltonian Adaptive Resolution Simulations

Potestio et al. Phys.Rev.Lett. 110, 108301 (2013)

If we use Boltzman inversion to get the CG potential

Hamiltonian Adaptive Resolution Simulations

. .

Results

Density inhomogeneities are due to correlations in the hybrid zone

$$\langle n_{\mathbf{r}} \rangle^{[T_{\mathbf{a}}\lambda]} = \langle n_{\mathbf{r}+\mathbf{a}} \rangle^{[\lambda]}$$

$$\nabla \langle n_{\mathbf{r}} \rangle^{[\lambda]} = -\beta \int d\mathbf{r}' \left\langle \delta n_{\mathbf{r}} (u_{\mathbf{r}'}^{1} - u_{\mathbf{r}'}^{0} + \mathcal{F}'(\lambda(\mathbf{r}'))n_{\mathbf{r}'}) \right\rangle^{[\lambda]} \nabla' \lambda(\mathbf{r}')$$

Hamiltonian Adaptive Resolution Simulations

If we use a bad CG potential

DULED

Hamiltonian Adaptive Resolution Simulations

Stat Mech

Results

If we use a bad CG potential

Hamiltonian Adaptive Resolution Simulations

Stat Mech

Results

If we use a bad CG potential

DUED

Results: Mixtures

Potestio et al. Phys.Rev.Lett. 111, 060601 (2013)

Hamiltonian Adaptive Resolution Simulations

Results: Mixtures

Potestio et al. Phys.Rev.Lett. 111, 060601 (2013)

Hamiltonian Adaptive Resolution Simulations

Stat Mech

Results: Mixtures

DUED

Hamiltonian Adaptive Resolution Simulations

Stat Mech

Results: Mixtures

DUED

Hamiltonian Adaptive Resolution Simulations

Results: Mixtures

Case I: Different size molecules, equal concentrations

DULED

Hamiltonian Adaptive Resolution Simulations

Results: Mixtures

Case II: Equal size molecules, 70 %-30 %

DUED

Hamiltonian Adaptive Resolution Simulations

Results: Mixtures

Results: Mixtures

Density structure near a wall

Hamiltonian Adaptive Resolution Simulations

Conclusion

• Adaptive Resolution Simulations with a Hamiltonian

Conclusion

- Adaptive Resolution Simulations with a Hamiltonian
- We may run now MD and MC simulations

Conclusion

- Adaptive Resolution Simulations with a Hamiltonian
- We may run now MD and MC simulations
- Free energy compensating term corrects errors in bad approximations to the potential of mean force

Conclusion

- Adaptive Resolution Simulations with a Hamiltonian
- We may run now MD and MC simulations
- Free energy compensating term corrects errors in bad approximations to the potential of mean force

Open problems

• Atoms are still kept in the description.

- Atoms are still kept in the description.
- Dynamics? Challenges:

- Atoms are still kept in the description.
- Dynamics? Challenges:
 - Include friction

- Atoms are still kept in the description.
- Dynamics? Challenges:
 - Include friction
 - Coupling Stochastic Differential Equations with MD

- Atoms are still kept in the description.
- Dynamics? Challenges:
 - Include friction
 - Coupling Stochastic Differential Equations with MD
 - Non-Markovian effects

