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Take-home message

We can design optimal nonequilibrium MD simulations that
mimic full equilibrium statistics of any given observable at low
numerical cost (zero-variance estimators, shorter trajectories).
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Molecular conformation dynamics

1.3µs MD simulation of green tea at room temperature (visualization: Amira@ZIB).


GreenTeaTimeScalesMovie.mpg
Media File (video/mpeg)



Rare events in molecular simulation

Given a Markov process (Xt)t≥0, discrete or continuous in time, we
want to estimate probabilities p � 1, such as

p = P (τ < T ) ,

with τ the time to reach the target conformation, or rates

k =
1

E[τ ]
.



Guiding example: Bistable system

I Overdamped Langevin equation

dXt = −∇V (Xt)dt +
√

2εdBt

I Exit time asymptotics as ε→ 0

E[τ ] � e∆V /ε

I Hence, for moderate values of T ,

P(τ < T )

is exponentially small in ε.
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Rare events in molecular simulation, cont’d

Given N independent realizations of Xt = Xt(ω), the simplest
way to estimate probabilities, such as

p = P(τ < T )

is by Monte-Carlo:

p ≈ 1

N

N∑
i=1

1{τ(ωi )<T}



Probability of rare events, cont’d

Although the näıve MC estimator is unbiased with bounded
variance p(1− p)/N, the relative error is not:

δrel =
standard deviation

mean
=

1

p

√
p(1− p)

N

blows up as p → 0.

This is a common feature when estimating rare events.
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Nonequilibrium molecular dynamics

from: [Dame, Biochem Soc Trans, 2008]

I Enhanced sampling of rare barrier
crossing events by applying a force u:
umbrella sampling, TMD, SMD, ABF, . . .

I Forcing messes up the statistics; can
we force the system in a gentle way?

I Mathematically: change of measure
from P to Q = Q(u) with likelihood ratio

ϕ =
dQ

dP
.

[Schlitter et al, Mol Sim, 1993], [Darve & Pohorille, JCP, 2001], [Schulten & Park, JCP, 2004], . . .



Guiding example

I Mean first exit time for small ε

E[τ ] � exp(∆V /ε)

I Tilting the potential

U(x , t) = V (x)− utx

decreases the energy barrier.

I Overdamped Langevin equation

dXt = (ut −∇V (Xt)) dt +
√

2εdBt

with time-dependent forcing ut .
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Importance sampling identity I: change of measure

Let Q � P be two probability measures with likelihood ratio

ϕ =
dQ

dP
> 0 .

Then

E[τ ] =

∫
Ω
τ(ω)dP(ω) =

∫
Ω
τ(ω)ϕ−1(ω)dQ(ω) =: EQ [τϕ−1]



Guiding example, cont’d

I Unbiased MC estimator for E[τ ]

E[τ ] ≈ 1

N

N∑
i=1

τu(ωi )ϕ
−1(ωi ) ,

where
ϕ = e−ξ(u)/ε

is explicitly known.

I A näıve choice of u will increase the
variance, with much lower efficiency
than that of the vanilla MC estimator.
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Nonequilibrium molecular dynamics, cont’d

from: [Dame, Biochem Soc Trans, 2008]

I Aim: extract equilibrium properties from
nonequilibrium simulations.

I Calculation of equilibrium free energies
á la Jarzynski and Crooks:

∆F = −ε logEQ [exp(−W /ε)] ,

with W the work exerted under u.

I Note the second law like inequality

∆F ≤ EQ [W ]

[Jarzynski, PRL, 1997], [Crooks, J Stat Phys, 1998]



Nonequilibrium molecular dynamics: some observations

The free energy in Jarzynski’s formula has the form of a cumulant
generating function of the random variable W :

−ε logEQ [exp(−W /ε)] ≈ EQ [W ]− 1

2ε
EQ [(W − EQ [W ])2]

A cumulant generating functions encodes information about
moments, provided they exist. Moreover, to lowest order in 1/ε,
mean and variance are approximately decoupled.
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So, let’s go back to our rare event sampling problem. . .



Importance sampling identity II: Jensen’s inequality

E[f (X )] ≥ f (E[X ]) when f is a convex function, e.g. f (x) = ex .



Free energy as the CGF of a random variable

Define the generalized free energy of the random variable Z
with respect to the equilibrium distribution P as

FZ (ε) = −ε logE[exp(−Z/ε)] .

The free energy now describes the full equilibrium statistics of
the random variable Z , e.g., for the exit time Z = τ :

Fτ (∞) = E[τ ] , F ′τ (∞) = E[(τ − E[τ ])2] , . . .
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Importance sampling identities I & II

Change of measure & Jensen’s inequality entail

FZ (ε) ≤ EQ [Z + ε logϕ] .

with equality iff Z + ε logϕ is a.s. constant.

In thermodynamic language, the inequality reads

FZ (ε) = min
Q�P
{EQ [Z ] + εH(Q‖P)}

with H(Q‖P) the relative entropy between Q and P.

(The minimizer exists and is unique, but its normalization constant
is the quantity that we want to compute.)

[Dai Pra et al., Math Control Signals Systems, 1996]; cf. [Vaikuntanathan & Jarzynski, PRL, 2008]
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We have turned a difficult sampling problem into a potentially
more difficult minimization problem. Now let us turn it into
something more familiar and more useful. . .



Nonequilibrium diffusions

Assume overdamped Langevin dynamics (generating P)

dXt = −∇V (Xt)dt +
√

2ε dBt , X0 = x

The requirement Q � P leaves only one choice for the
nonequilibrium dynamics generating Q, namely

dX u
t = (ut −∇V (X u

t ))dt +
√

2ε dBt , X u
0 = x .

The control force u must be chosen so as to minimize the free
energy functional (i.e. the right hand side of the inequality).

[Fleming, SIAM J Control, 1978], [Dupuis & Wang, Ann Appl Probab, 2005], [H. & Schütte, JSTAT 2012]
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Guiding example, cont’d

I Free energy of the first exit time

Fτ (x ; ε) = min
u

EQ

[
τu +

1

2

∫ τu

0
|ut |2dt

]
I The optimal control is Markovian

and of gradient form:

u∗t = −2∇Fτ (X u∗
t ; ε) ,

I Optimally tilted potential

U = V + 2Fτ .
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Some remarks

Control Penalization: The relative entropy minimization puts a
quadratic penalty on the control force.

NFL Theorem: The optimal bias is the gradient of the quantity
that we want to compute:

u∗t = −2∇FZ (X u∗
t ; ε) .

(System is again in equilibrium—detailed balance holds.)

[H. & Schütte, JSTAT 2012], [Wang, H. & Schütte, Mol. Phys., 2013], [H. et al., submitted to Entropy, 2013]
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Numerical example I



Fast passage to a terminal set

− logE[exp(−στ)] = min
u

EQ

[
στu +

1

2

∫ τu

0
|ut |2 dt

]
where the minimization is subject to the tilted dynamics

dX u
t = (ut −∇V (X u

t )) dt +
√

2εdBt , X u
0 = x .

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

x

V
(x

)

−2 −1 0 1 2
0

20

40

60

80

100

120

140

160

x

E
x
(τ

)

Skew double-well potential V and MFPT of the set S = [−1.1,−1] for ε = 0.25 (FEM reference solution).

[H. & Schütte, JSTAT 2012]



Fast passage to a terminal set, cont’d
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ABF reversed: first 11 iterates of the EM algorithm using 10 Gaussians and limiting free energy.
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MFPT (unbiased estimate), based on 2000 realizations of the tilted dynamics. Total CPU speed-up is ∼ 100.



Numerical example II



Committor probabilities

Probability to hit target set A before B, when starting at X0 = x :

c(x) = E[1A(XτA∪B )]

−ε log c(x) = min
u

EQ

[
1

2

∫ τuA∪B

0
|us |2ds − ε log 1A(X u

τuA∪B
)

]



Committor probabilities, cont’d

Optimal biasing potential for the committor with A = (−4,−3.8) and B = (3.8, 4) or (−0.2, 0)

[H. et al., submitted to Entropy, 2013]



Numerical example III



α-helical conformation of alanine dipeptide

Maximize

J(u) = lim inf
T→∞

E
[

1

T

∫ T

0

(
σχα(X u

t )− 1

2
|ut |2

)
dt

]
,

subject to dX u
t = (ut −∇V (X u

t )) dt +
√

2ε dBt .

MD simulation of ADP in a box of 256 water molecules (TIP3P, CHARMM force field)



α-helical conformation of alanine dipeptide, cont’d

Approximation of the continuous dynamics by a Markov jump
process on S = {1, . . . , 100} with generator M = (Mij)i ,j , based
on a Galerkin discretization of the torsion angle space.
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[Schütte, Winkelmann & H, Math Program, 2011]
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Conclusions

Optimally driven nonequilibrium MD can mimic equilibrium
statistics, replacing a difficult sampling problem for rare events by
a potentially more difficult minimization problem.

But: the approach can only be useful for sampling rare events if
the underlying optimal control problems can be solved efficiently.
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Open problems (the bad news)



Open problems (and some good news)

Dynamics on the relevant time scale are relatively simple . . .

. . . and so are the controls (if one has an idea of what a sensible
order parameter might be to represent the bias potential).

The functional can be minimized directly using an EM algorithm.
Ideas from the machine learning community should be looked at.

The relation to Jarzysnki’s approach is yet an open question.
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Thank you for your attention.

further information on biocomputing.mi.fu-berlin.de
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