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tested by the final CE, five are identified in the first iteration
and two are missed; however, the first iteration CE predicts
another three ground states which are “wrong,” i.e., they are
not ground states when calculated in LDA. This situation
improves significantly only in iteration 4, after which one
incorrect ground-state prediction remains. The latter is rem-
edied in the final step by the application of fit weights. A
sufficiently large LDA data base is necessary to capture the
correct ground-state line of Mo-Ta.

2. The converged cluster expansion for Mo-Ta

The final CE for Mo-Ta employs the five MB shown in
Fig. 6, and npairs=8 pair interactions, constrained by t=9 and
!=4 [Eq. (8)]. Figure 8(a) shows the symmetry-weighted
interaction strengths DfJf for the pairs and MB figures se-
lected by the MBCE construction scheme (Sec. V B and Fig.
6). The clearly dominant interaction is an attractive nearest-
neighbor term !DnnJnn=108 meV", which is more than three
times stronger than any other in the system. However, the
many further interactions are by no means numerically neg-
ligible. Pair interactions are of considerable magnitude up
the eighth nearest neighbor !D8nnJ8nn=21 meV", and at least
two many-body figures (labeled M2 and M4) are of similar
strength.
By all available criteria, the predictive accuracy of this

CE is of the order of very few meV: The final "HCE for all
56 input configurations compared with "HLDA (both listed in
Table IV, Appendix A) gives an average fit error slsq
=2.5 meV and a maximum deviation of only 6.3 meV. With

scv=3.6 meV, its CV score (lowest panel of Fig. 7) is reas-
suringly small—less than 2% of "Hf!B2 MoTa"
=−204.8 meV. As an additional reliability estimate, the av-
erage prediction error sreal between iterations 4 and 5 of the
CE construction (i.e., the error of the seven LDA input struc-
tures calculated after iteration 4, when predicted by the op-
timum MBCE of iteration 4) amounts to 3.3 meV. The fact
that slsq, scv, and sreal are all of the same magnitude is a good
indicator for the absence of any overoptimization. The
present MBCE of Mo-Ta is a reliable parametrization of the
underlying LDA-PAW energetics.
The converged MBCE allows us to reexamine the short-

range CE approach of Sec. II and explore the reasons for its
quantitative failure. The short-range and the converged CE
both identify the main qualitative feature of Mo-Ta: a strong
nearest-neighbor pair interaction. However, the short-range
CE neglects all other parts of the full MBCE, and its predic-
tion errors (several tens of meV) are of the same order as the
missing interactions. Beyond Jnn, the interactions of the
short-range CE have little to do with the converged results:
Its second-nearest-neighbor pair has the wrong sign, and its
smallest three-body interaction is not even part of the final
CE. Rather, its value is determined by the numerical neces-
sity to compensate for the point interaction J1. There are two
obvious reasons for this wrong description of interactions.
First, the number of input structures in the short-range CE is
too low for the number of relevant interactions. Second, the
MB interactions of the final MBCE would be impossible to
guess from intuition alone. Overcoming both obstacles ne-
cessitates a systematic construction algorithm, such as de-
scribed above.

VI. RESULTS: GROUND STATES AND ALLOY
THERMODYNAMICS

A. Ground-state structures
Figure 8(b) shows the "HCE!!" versus the concentration

map of all three million structures with bcc-based supercells
up to 20 atoms. As in Sec. II, ground states can be read from
this plot as the breaking points of the convex hull about all
structures. There are seven distinct deep breaking points in
Fig. 8(b). Full atomic coordinate sets as computed by VASP
can be found in Appendix C. The five distinct small-cell
ground states between 20% and 60% Ta are all superlattice
sequences of (100) atomic planes: A4B, A2B !C11b", A3B2,
AB (B2), and A2B3. They are contrasted by two much more
complex Ta-rich nonsuperlattice structures, A4B9 and A4B12.
An in-depth discussion of these structures and their interme-
diate regions is given in Ref. 23. The unexpectedly feature-
rich ground-state line of Mo-Ta emphasizes the power of a
systematically constructed MBCE. Five of these structures
are true predictions of the MBCE construction process, and
only subsequently confirmed by direct LDA calculations.
Simply guessing this variety of atomic arrangements from an
intuition-based, short-range CE approach (Sec. II) is practi-
cally impossible.

B. Order-disorder transitions of Mo-Ta
In the approximation of nearest-neighbor interactions

only, the transition between the ordered B2 and disordered

FIG. 8. (a) Symmetry-weighted pair and many-body interactions
DfJf of the converged cluster expansion of Mo-Ta. (b) Exhaustive
ground-state search (three million structures) based on the con-
verged cluster interactions. Seven ground states are clearly identi-
fied between 20% and 80% Ta (large circles).
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Monte Carlo, phase transitions...

A2 states is theoretically well understood as a model second-
order transition. For this case, both the analytic (series-
expansion) limit58 and early Monte Carlo simulations59 agree
on a transition temperature kBTc=6.35Jnn. Since the nearest
neighbor interaction Jnn is the clearly dominant term of our
Mo-Ta MBCE [Fig. 8(a)], it would seem natural that a
simple nearest-neighbor-only formula should give a good
idea of the true A2-B2 Tc. In this approximation, DnnJnn
=108 meV of Mo-Ta corresponds to a Tc of almost 2000 K.
This conflicts with experiment, since the published phase
diagram reports only a continuous A2 solid solution, and
early x-ray diffraction measurements60 revealed no super-
structure for samples sintered either at 1773 K !5 h" or
673 K !100 h". Ordering might have been inhibited at 673 K
since diffusion in Mo-Ta is slow,61 but should have been
sufficiently fast at 1773 K.
This failure can be related to the neglected high-order pair

and many-body interactions of real Mo-Ta. To verify this, we
performed canonical Monte Carlo simulations using our con-
verged MBCE Hamiltonian. We used Mo0.5Ta0.5 supercells
sized up to 32!32!32 unit cells, cooling down stepwise
from the high-T solid solution into the B2-ordered regime,
with 2000 or 4000 spin flips per site and step for proper
equilibration. Figure 9 displays the resulting mixing enthalpy
"HCE and the configurational heat capacity Cv for 16!16
!16 supercells. The Monte Carlo simulation agrees with

Ref. 59 when restricted to the nearest-neighbor-only approxi-
mation [Fig. 9(a)]: As expected for a second-order transition,
"Hnn-only varies smoothly with T, and a clear peak in the
specific heat indicates Tc=1980±50 K. In striking contrast,
the maximum of Cv is located around 800 K for the full
Mo-Ta CE [Fig. 9(b)], more than a factor of 2 below the
short-range approximation. The transition is still of second
order, but the presence of additional high-order pair and MB
figures leads to a dramatic slowdown. Once more, the use of
a short-range approximation proves severely dangerous, and
underlines the need for a full MBCE even for qualitative
purposes.
Table III lists critical temperatures, i.e., the upper limits of

thermodynamic stability, also for the remaining ground states
of Mo-Ta. In each case, supercell sizes above 20!20!20
were found sufficiently accurate, and clearly pinpointed first-
order transitions occur everywhere but for B2. Reassuringly,
all ordered ground states are thermodynamically stable only
well below 1000 K. Additionally, the canonical MC simula-
tions suggest an extension of B2 long-range order to the
Mo-rich side at finite T. Both the C11b and A3B2 ground
states transition into a B2 arrangement with one disordered
Ta-rich sublattice rather than directly into A2. For fixed con-
centration and accessible cell sizes, possible interfacial ef-
fects preclude a definitive conclusion on whether the disor-
dered B2 area prevails also in the thermodynamic limit, or
whether a phase-separated A2-B2 regime could provide an
even lower free energy on a very large scale. In any case, the
full MBCE predicts all transitions well below the tempera-
ture range assessed in earlier experiments, and thus yields a
consistent picture of Mo-Ta.

C. Mixing enthalpies

The MBCE also allows us to investigate finite-T energet-
ics of the A2 solid solution. In the fully random limit !T
→#", the mixing enthalpy "Hmix!x ,T" is given analytically
by inserting correlation function averages over all configura-
tions ! at fixed composition x into the MBCE Hamiltonian
Eq. (3). Since #$̄ f%$&x= !2x−1"l for figures f with l vertices,
we obtain20

FIG. 9. (Color online) (a) Monte Carlo simulation of the classic
A2-B2 transition in the nearest-neighbor-only approximation, using
Jnn of the full Mo-Ta MBCE. (b) Same, but using all interactions of
the full MBCE for Mo-Ta.

TABLE III. Critical temperatures of ordered ground states from
Monte Carlo simulations (cell sizes 20!20!20 and above).

Ground state Transition to Tc (K) Transition to Tc (K)

A4B A2 195
A2B B2 400 A2 560
A3B2 B2 275 A2 550
AB A2 600–1000a

A2B3 A2 610
A4B9 A2 490
A4B12 A2 385

aSecond-order transition.
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treatment at and above 500 !C, neither the initially cold
worked nor the initially quenched samples exhibited
evidence of ordering. This is consistent with Schneider
and Esch’s value of around 500 !C for the order/disorder
temperature Tc at these compositions [3].

An increase in hardness after heat treatment is consis-
tently recorded only for those heat treatments which result
in an ordering transformation; where no ordering is
observed, hardness does not increase. The increase in hard-
ness after heat treatment thus arises from the development
of the CuPt7 superlattice structure. Although heat treat-
ment below 500 !C resulted in formation of this structure
for all specimens, the initially cold worked specimens con-
sistently exhibited greater hardening than the initially
quenched specimens.

Transmission electron microscopy shows that after heat
treatment below 500 !C the alloys were not completely
ordered, exhibiting instead a heterogeneous structure of
ordered domains in a disordered matrix even after pro-
longed heat treatment. Specimens which were initially cold
worked exhibit domains of around 5–10 nm after heat
treatment below 500 !C, whereas the domain size for ini-
tially quenched specimens was around 20 nm. The higher
degree of hardening exhibited by the initially cold worked
specimens is thus associated with a smaller domain size.

This is consistent with Stoloff and Davies’ observation that
a peak in hardening occurs at a domain size of around
6 nm [7], during the early stages of isothermal ordering.
What is unusual in the present alloy is that domain size
does not appear to grow beyond this size in the initially
cold worked specimens even when isothermal heat treat-
ment is continued for several weeks. As a result the high
hardness, obtained as a result of the small domain size, is
maintained even after long heat treatments.

For both initial conditions, specimens contain excess
vacancies which enhance diffusion and hence facilitate the
formation of ordered domains. Although the cold worked
specimens are expected to contain a high excess vacancy
concentration at the outset, this may reduce significantly
as isothermal heat treatment continues. The high density
of vacancy sinks such as dislocations may result in the
annihilation of vacancies which migrate to nearby sinks
in the early stages of heat treatment, leading to a significant
reduction in diffusion and, consequently, no further growth
of ordered domains.

5. Conclusions

Platinum 14 at.% copper increases in hardness after heat
treatment below 500 !C, as a result of the formation of
ordered CuPt7 domains. A significant increase in hardness
is observed for initially cold worked specimens, which exhi-
bit ordered domains of around 5–10 nm in size. Initially
quenched specimens, which exhibit comparatively larger
ordered domains after the same heat treatments, harden
to a lesser degree. The limited growth of domains in cold
worked specimens is attributed to the reduction in vacancy
concentration during the early stages of heat treatment,
owing to the presence of a high density of vacancy sinks,
which significantly reduces diffusion.
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treatment at and above 500 !C, neither the initially cold
worked nor the initially quenched samples exhibited
evidence of ordering. This is consistent with Schneider
and Esch’s value of around 500 !C for the order/disorder
temperature Tc at these compositions [3].

An increase in hardness after heat treatment is consis-
tently recorded only for those heat treatments which result
in an ordering transformation; where no ordering is
observed, hardness does not increase. The increase in hard-
ness after heat treatment thus arises from the development
of the CuPt7 superlattice structure. Although heat treat-
ment below 500 !C resulted in formation of this structure
for all specimens, the initially cold worked specimens con-
sistently exhibited greater hardening than the initially
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Transmission electron microscopy shows that after heat
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ordered domains in a disordered matrix even after pro-
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degree of hardening exhibited by the initially cold worked
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6 nm [7], during the early stages of isothermal ordering.
What is unusual in the present alloy is that domain size
does not appear to grow beyond this size in the initially
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ment is continued for several weeks. As a result the high
hardness, obtained as a result of the small domain size, is
maintained even after long heat treatments.

For both initial conditions, specimens contain excess
vacancies which enhance diffusion and hence facilitate the
formation of ordered domains. Although the cold worked
specimens are expected to contain a high excess vacancy
concentration at the outset, this may reduce significantly
as isothermal heat treatment continues. The high density
of vacancy sinks such as dislocations may result in the
annihilation of vacancies which migrate to nearby sinks
in the early stages of heat treatment, leading to a significant
reduction in diffusion and, consequently, no further growth
of ordered domains.

5. Conclusions

Platinum 14 at.% copper increases in hardness after heat
treatment below 500 !C, as a result of the formation of
ordered CuPt7 domains. A significant increase in hardness
is observed for initially cold worked specimens, which exhi-
bit ordered domains of around 5–10 nm in size. Initially
quenched specimens, which exhibit comparatively larger
ordered domains after the same heat treatments, harden
to a lesser degree. The limited growth of domains in cold
worked specimens is attributed to the reduction in vacancy
concentration during the early stages of heat treatment,
owing to the presence of a high density of vacancy sinks,
which significantly reduces diffusion.
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treatment at and above 500 !C, neither the initially cold
worked nor the initially quenched samples exhibited
evidence of ordering. This is consistent with Schneider
and Esch’s value of around 500 !C for the order/disorder
temperature Tc at these compositions [3].

An increase in hardness after heat treatment is consis-
tently recorded only for those heat treatments which result
in an ordering transformation; where no ordering is
observed, hardness does not increase. The increase in hard-
ness after heat treatment thus arises from the development
of the CuPt7 superlattice structure. Although heat treat-
ment below 500 !C resulted in formation of this structure
for all specimens, the initially cold worked specimens con-
sistently exhibited greater hardening than the initially
quenched specimens.

Transmission electron microscopy shows that after heat
treatment below 500 !C the alloys were not completely
ordered, exhibiting instead a heterogeneous structure of
ordered domains in a disordered matrix even after pro-
longed heat treatment. Specimens which were initially cold
worked exhibit domains of around 5–10 nm after heat
treatment below 500 !C, whereas the domain size for ini-
tially quenched specimens was around 20 nm. The higher
degree of hardening exhibited by the initially cold worked
specimens is thus associated with a smaller domain size.

This is consistent with Stoloff and Davies’ observation that
a peak in hardening occurs at a domain size of around
6 nm [7], during the early stages of isothermal ordering.
What is unusual in the present alloy is that domain size
does not appear to grow beyond this size in the initially
cold worked specimens even when isothermal heat treat-
ment is continued for several weeks. As a result the high
hardness, obtained as a result of the small domain size, is
maintained even after long heat treatments.

For both initial conditions, specimens contain excess
vacancies which enhance diffusion and hence facilitate the
formation of ordered domains. Although the cold worked
specimens are expected to contain a high excess vacancy
concentration at the outset, this may reduce significantly
as isothermal heat treatment continues. The high density
of vacancy sinks such as dislocations may result in the
annihilation of vacancies which migrate to nearby sinks
in the early stages of heat treatment, leading to a significant
reduction in diffusion and, consequently, no further growth
of ordered domains.

5. Conclusions

Platinum 14 at.% copper increases in hardness after heat
treatment below 500 !C, as a result of the formation of
ordered CuPt7 domains. A significant increase in hardness
is observed for initially cold worked specimens, which exhi-
bit ordered domains of around 5–10 nm in size. Initially
quenched specimens, which exhibit comparatively larger
ordered domains after the same heat treatments, harden
to a lesser degree. The limited growth of domains in cold
worked specimens is attributed to the reduction in vacancy
concentration during the early stages of heat treatment,
owing to the presence of a high density of vacancy sinks,
which significantly reduces diffusion.
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incidence, from Pt 14 at.% Cu specimens that were (a) dis-
ordered, (b) heat treated after cold work, and (c) heat trea-
ted after quenching. Additional reflections at 1/2 (220), 1/2
(131) and 1/2 (111) type positions are observed in the heat
treated samples. These diffraction patterns are consistent
with Fig. 2(d), which shows a simulated [112] zone axis
electron diffraction pattern for the CuPt7 ordered structure.
Diffraction patterns viewed along [001] and [103] inci-
dence are shown in Figs. 3 and 4, respectively: heat treated
samples exhibit reflections at the 1/2 (200), 1/2 (220) and
1/2 (131) type positions, also consistent with the CuPt7
structure as shown.

Experiments with Pt 12.5 at.% Cu samples, which have
the stoichiometric composition for CuPt7, resulted in the
same diffraction patterns as observed for Pt 14 at.% Cu.
It was not possible to distinguish the A7B ordered structure
[3] from the ABC6 [8] ordered structure on the basis of elec-
tron diffraction patterns from ordered Pt 14 at.% Cu and Pt
12.5 at.% Cu.

3.2. Microhardness testing

Fig. 5 shows the hardness of specimens which were heat
treated for 3 h in the range 100–700 !C. Before heat treat-
ment, the cold rolled specimens had a measured hardness
of 241 ± 9 HV. After heat treatment for three hours at
100–400 !C the hardness increased, the maximum hardness
(362 ± 17 HV) occurring after heat treatment at 200 !C.
Before heat treatment the measured hardness of the
quenched specimens was 124 ± 10 HV, increasing slightly

to 150–160 HV after heat treatment at 100–400 !C. For
both initial conditions, heat treatment at 500 !C resulted
in no significant change in hardness. A significant decrease
in hardness was observed for the initially cold worked spec-
imen after heat treatment at 700 !C.

Prolonged isothermal heat treatment at 200 !C, for both
initial conditions, resulted in no significant additional hard-
ness increase with increased time at temperature, as shown
in Fig. 6.

Fig. 3. Electron diffraction patterns of Pt 14 at.% Cu viewed along the [001] zone axis: (a) disordered specimen, (b) initially cold worked specimen after
heat treatment at 200 !C, (c) initially quenched specimen after heat treatment at 200 !C and (d) simulated electron diffraction pattern for CuPt7.

Fig. 4. Electron diffraction pattern of Pt 14 at.% Cu viewed along the [103] zone axis: (a) disordered specimen, (b) initially cold worked specimen after
heat treatment at 200 !C, (c) initially quenched specimen after heat treatment at 200 !C and (d) simulated electron diffraction pattern for CuPt7.

Fig. 5. Hardness vs. heat treatment temperature for initially cold worked
and initially quenched Pt 14 at.% Cu after heat treatment for 3 h.
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Periodic signals as Fourier series
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Periodic structures as “cluster” series
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Cluster expansion: 2D
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Expanding in a power series

optimize {a0, a1, a2, . . . } to minimize error

f(x) = a0 + a1x + a2x
2 + a3x
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How do we find the coefficients?
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Expanding in a power series

0 1 2 3 4 50

1

2

3

4

5

Saturday, September 21, 13



Expanding in a power series

0 1 2 3 4 50

1

2

3

4

5

Saturday, September 21, 13



Expanding in a power series
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Cluster expansion

Saturday, September 21, 13



0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.

10.

100

1000

10000

Cluster expansion

Saturday, September 21, 13



In a nutshell: Better models, faster

Basic idea:

Instead of adding complexity (terms) to a model until it 
fits the data and predicts well...(normal approach)...

...start with an infinite set of models (containing all 
possible terms). Discard all models except the simplest 
one (Compressive Sensing approach). Surprisingly 
perhaps, this is really efficient.

Model building with compressive sensing

Saturday, September 21, 13



Going beyond a linear model fit (adding terms)
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Going beyond a linear model fit (adding terms)
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Going beyond a linear model fit (adding terms)

But the matrix isn’t square!
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“Solving” an under-determined problem
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Models built via Compressive Sensing

NELSON, HART, ZHOU, AND OZOLIŅŠ PHYSICAL REVIEW B 87, 035125 (2013)

Unit of cluster radius Unit of cluster radius Unit of cluster radius

FIG. 5. (Color online) Comparison of the interaction coefficients found using the DO method implemented in ATAT software and compressive
sensing. The upper pane shows a comparison of two typical fits from CS and ATAT. The lower pane shows the coefficients that were found to be
statistically relevant from both methods. The x axis is the cluster radius, which is defined as the average distance from the center of mass of all
cluster vertices, given as a fraction of the lattice parameter. The cluster interactions are given in meV/cluster. (Blue dots were placed on the x

axis even for clusters not found to be relevant to help the reader know the ordinal number of the relevant clusters.) Physical intuition suggests
that shorter-radius, fewer-vertex clusters are the most important contributors in alloy energetics. Pair interaction coefficients found by both
methods are similar. As the number of vertices increases, CS finds coefficients in harmony with physical intuition, while DO finds spurious,
long-ranged three- and four-body interactions. CS solutions also demonstrate a convergence to one specific solution as the size of the fitting set
increases. (Note: triplets and quadruplets are shown on a scale from −20 to 20 meV, different from the scale used for the pairs.)

vertices increases (note that triplets and quadruplets are shown
on a scale from −20 to 20 meV, as opposed to −50 to 50 meV
for pairs). This is in harmony with long-standing claims in
the CE community, and it confirms that a stable solution has
been found. DO-determined clusters follow this pattern for pair
clusters only. At higher vertex numbers, a typical DO fit finds
nonphysical, spurious coefficients for three- and four-body
interactions. The set of statistically-relevant DO coefficients
appear to be lacking several important interactions, specifically
short-ranged three- and four-body interactions. This indicates
that (i) current DO methods are much too slow to be able to
gather enough statistics to do a meaningful statistical analysis
and/or (ii) current DO methods are very sensitive to the choice
of the training set and fall short in their ability to identify
physically relevant interactions without user guidance.

Note that the mathematical framework of CS has no
knowledge of the spatial extent or geometry of the cluster
functions. Remarkably, the dominant expansion coefficients,
regardless of spatial extent, are efficiently retrieved using CS.
In cases where a purely real-space cluster expansion fails to
converge, CS may fail to construct a suitable model, but it

could be combined (as has been done with other approaches)
with reciprocal-space fomulations.30,31,59,60

Figure 6 shows the results of a ground-state search per-
formed by using the statistically significant M = 400 coeffi-
cients to predict the energies of all fcc-based superstructures up
to 12 atoms. Error bars were calculated from randomly drawn
sets of M = 400 structures. The ground-state line in this figure
is consistent with first-principles data for this system, which
finds the same ground states as in Fig. 6, with a few degenerate
structures lying on the convex hull between c = 0.4 and 0.5.

This example shows that, in comparison with traditional
cluster selection methods, CS is not only simpler and faster
(less than a minute on a single CPU for CS versus days
for LOOCV at M = 400), but also produces more physical
solutions that result in a significant improvement in physical
accuracy.

D. Protein folding application

We now turn to a technically much more challenging case—
that of protein design in biology. Modeling the protein folding

035125-10

Pair
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vertices increases (note that triplets and quadruplets are shown
on a scale from −20 to 20 meV, as opposed to −50 to 50 meV
for pairs). This is in harmony with long-standing claims in
the CE community, and it confirms that a stable solution has
been found. DO-determined clusters follow this pattern for pair
clusters only. At higher vertex numbers, a typical DO fit finds
nonphysical, spurious coefficients for three- and four-body
interactions. The set of statistically-relevant DO coefficients
appear to be lacking several important interactions, specifically
short-ranged three- and four-body interactions. This indicates
that (i) current DO methods are much too slow to be able to
gather enough statistics to do a meaningful statistical analysis
and/or (ii) current DO methods are very sensitive to the choice
of the training set and fall short in their ability to identify
physically relevant interactions without user guidance.

Note that the mathematical framework of CS has no
knowledge of the spatial extent or geometry of the cluster
functions. Remarkably, the dominant expansion coefficients,
regardless of spatial extent, are efficiently retrieved using CS.
In cases where a purely real-space cluster expansion fails to
converge, CS may fail to construct a suitable model, but it

could be combined (as has been done with other approaches)
with reciprocal-space fomulations.30,31,59,60

Figure 6 shows the results of a ground-state search per-
formed by using the statistically significant M = 400 coeffi-
cients to predict the energies of all fcc-based superstructures up
to 12 atoms. Error bars were calculated from randomly drawn
sets of M = 400 structures. The ground-state line in this figure
is consistent with first-principles data for this system, which
finds the same ground states as in Fig. 6, with a few degenerate
structures lying on the convex hull between c = 0.4 and 0.5.

This example shows that, in comparison with traditional
cluster selection methods, CS is not only simpler and faster
(less than a minute on a single CPU for CS versus days
for LOOCV at M = 400), but also produces more physical
solutions that result in a significant improvement in physical
accuracy.

D. Protein folding application

We now turn to a technically much more challenging case—
that of protein design in biology. Modeling the protein folding
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vertices increases (note that triplets and quadruplets are shown
on a scale from −20 to 20 meV, as opposed to −50 to 50 meV
for pairs). This is in harmony with long-standing claims in
the CE community, and it confirms that a stable solution has
been found. DO-determined clusters follow this pattern for pair
clusters only. At higher vertex numbers, a typical DO fit finds
nonphysical, spurious coefficients for three- and four-body
interactions. The set of statistically-relevant DO coefficients
appear to be lacking several important interactions, specifically
short-ranged three- and four-body interactions. This indicates
that (i) current DO methods are much too slow to be able to
gather enough statistics to do a meaningful statistical analysis
and/or (ii) current DO methods are very sensitive to the choice
of the training set and fall short in their ability to identify
physically relevant interactions without user guidance.

Note that the mathematical framework of CS has no
knowledge of the spatial extent or geometry of the cluster
functions. Remarkably, the dominant expansion coefficients,
regardless of spatial extent, are efficiently retrieved using CS.
In cases where a purely real-space cluster expansion fails to
converge, CS may fail to construct a suitable model, but it

could be combined (as has been done with other approaches)
with reciprocal-space fomulations.30,31,59,60

Figure 6 shows the results of a ground-state search per-
formed by using the statistically significant M = 400 coeffi-
cients to predict the energies of all fcc-based superstructures up
to 12 atoms. Error bars were calculated from randomly drawn
sets of M = 400 structures. The ground-state line in this figure
is consistent with first-principles data for this system, which
finds the same ground states as in Fig. 6, with a few degenerate
structures lying on the convex hull between c = 0.4 and 0.5.

This example shows that, in comparison with traditional
cluster selection methods, CS is not only simpler and faster
(less than a minute on a single CPU for CS versus days
for LOOCV at M = 400), but also produces more physical
solutions that result in a significant improvement in physical
accuracy.

D. Protein folding application

We now turn to a technically much more challenging case—
that of protein design in biology. Modeling the protein folding
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vertices increases (note that triplets and quadruplets are shown
on a scale from −20 to 20 meV, as opposed to −50 to 50 meV
for pairs). This is in harmony with long-standing claims in
the CE community, and it confirms that a stable solution has
been found. DO-determined clusters follow this pattern for pair
clusters only. At higher vertex numbers, a typical DO fit finds
nonphysical, spurious coefficients for three- and four-body
interactions. The set of statistically-relevant DO coefficients
appear to be lacking several important interactions, specifically
short-ranged three- and four-body interactions. This indicates
that (i) current DO methods are much too slow to be able to
gather enough statistics to do a meaningful statistical analysis
and/or (ii) current DO methods are very sensitive to the choice
of the training set and fall short in their ability to identify
physically relevant interactions without user guidance.

Note that the mathematical framework of CS has no
knowledge of the spatial extent or geometry of the cluster
functions. Remarkably, the dominant expansion coefficients,
regardless of spatial extent, are efficiently retrieved using CS.
In cases where a purely real-space cluster expansion fails to
converge, CS may fail to construct a suitable model, but it

could be combined (as has been done with other approaches)
with reciprocal-space fomulations.30,31,59,60

Figure 6 shows the results of a ground-state search per-
formed by using the statistically significant M = 400 coeffi-
cients to predict the energies of all fcc-based superstructures up
to 12 atoms. Error bars were calculated from randomly drawn
sets of M = 400 structures. The ground-state line in this figure
is consistent with first-principles data for this system, which
finds the same ground states as in Fig. 6, with a few degenerate
structures lying on the convex hull between c = 0.4 and 0.5.

This example shows that, in comparison with traditional
cluster selection methods, CS is not only simpler and faster
(less than a minute on a single CPU for CS versus days
for LOOCV at M = 400), but also produces more physical
solutions that result in a significant improvement in physical
accuracy.

D. Protein folding application

We now turn to a technically much more challenging case—
that of protein design in biology. Modeling the protein folding
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FIG. 5. (Color online) Comparison of the interaction coefficients found using the DO method implemented in ATAT software and compressive
sensing. The upper pane shows a comparison of two typical fits from CS and ATAT. The lower pane shows the coefficients that were found to be
statistically relevant from both methods. The x axis is the cluster radius, which is defined as the average distance from the center of mass of all
cluster vertices, given as a fraction of the lattice parameter. The cluster interactions are given in meV/cluster. (Blue dots were placed on the x

axis even for clusters not found to be relevant to help the reader know the ordinal number of the relevant clusters.) Physical intuition suggests
that shorter-radius, fewer-vertex clusters are the most important contributors in alloy energetics. Pair interaction coefficients found by both
methods are similar. As the number of vertices increases, CS finds coefficients in harmony with physical intuition, while DO finds spurious,
long-ranged three- and four-body interactions. CS solutions also demonstrate a convergence to one specific solution as the size of the fitting set
increases. (Note: triplets and quadruplets are shown on a scale from −20 to 20 meV, different from the scale used for the pairs.)
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FIG. 7. Comparison between re-weighted Bayesian compressive sensing and genetic algorithm methods for constructing a
cluster expansion model for the binary systems Ag-Pt, (left) Ag-Pd, (center) and Cu-Pt (right). The dashed curves indicate
BCS results and the solid curves indicate GA results. The upper plot show the `0 norm of the solution vector as the training
set increases. The middle plot show the `1 norm of the solution vector, and the lower plot gives the rmse over a holdout
dataset. Approximately 100 BCS fits were performed at each training set size, and the results of these fits are depicted using
box-and-whiskers. Due to it’s high computational cost, only 5 GA fits were performed, and hence GA results are not depicted
using box-and-whiskers.

It is curious that the BCS and GA models achieve sim-
ilar predictive capacities but di↵er wildly in the nature of
their solutions. One possible explanation for this is that
since the GA does not limit the `1 norm of the solution
vector, its solutions are dense and encompass an approx-
imate null space. Hence, approximate linear dependen-
cies will exist between ECIs of a dense solution, but are
much less likely for sparse solutions, like those found by
compressive sensing. This could explain how contribu-
tions from large ECI coe�cients may cancel each other
and result in relatively small RMS errors, but this issue
certainly needs to be investigated further.

Another key feature of BCS is the e�ciency of the
algorithm. For the three systems discussed here BCS fits
were constructed in a fraction of the time needed for the
GA. BCS required on the order of minutes to construct
100 fits, whereas the GA needed ⇠ 24 hours for a single
fit.

VI. CONCLUSION

It has been shown that the CS paradigm is uniquely
well-suited to building CE lattice models. Re-weighted
BCS-based provides a fast, e�cient, and parameterless
framework for constructing CE models. These models are
constructed in a fraction of the time required by current
state-of-the art techniques and with minimal time and
e↵ort required by the user. BCS-constructed CE mod-
els converge to solutions which agree with widely-held
intuition about the nature of physically relevant interac-
tions and predict more accurately than other modern CE
construction methods.

From a broader perspective, the CS paradigm is poised
to have a big impact on computational physics problems
of all types. The CS-paradigm is well suited to tackle any
highly-underdetermined linear problem: A~x = ~

b where ~x

is known to be sparse. One possible application is the ex-
pansion of high-throughput databases to include lattice
models. This approach relies heavily on being able to
automatically perform first-principles calculations, and

Bayesian Compressive Sensing vs. GA
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Challenges
Thermodynamics: How to extract thermodynamic data?

Lose the lattice! 
The most important question is “how can we coarse grain 
materials properties without using a lattice gas model?”
Fitting classical potentials is time consuming and unreliable. 
Can it be automated and improved? Or is there another coarse 
grained approach that we can invent that will be better?
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