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OUTLINE

• Basics of TDDFT

• Linear response regime: 
-- Calculation of excitation spectra

• Beyond the linear regime:    
-- TD Electron Localisation Function 
-- TD transport
-- Demagnetization of ferromagnetic solids
-- Control of harmonic generation



What do we want to describe?

System in laser field:
Generic situation
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Bias between L and R is turned on: U(t) V 

Electronic transport: Generic situation
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Weak laser (vlaser(t) << ven) :

Calculate 1. Linear density response ρ1(r t)

2. Dynamical polarizability

3. Photo-absorption cross section
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Strong laser (vlaser(t) ≥ ven) :

Non-perturbative solution of full TDSE required

Photo-absorption in weak lasers
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Example: Oxygen atom (8 electrons)

depends on 24 coordinates

rough table of the wavefunction

10 entries per coordinate:  1024 entries

1 byte per entry:  1024 bytes

1010 bytes per DVD:  1014 DVDs

10 g per DVD:  1015 g DVDs

= 109 t DVDs

( )81 r,,r
Ψ

Why don’t we just solve the many-particle SE?

ESSENCE OF DENSITY-FUNTIONAL THEORY

• Every observable quantity of a
quantum system can be calculated
from the density of the system
ALONE

• The density of particles interacting
with each other can be calculated as
the density of an auxiliary system of
non-interacting particles



Basic 1-1 correspondence:
The time-dependent density determines uniquely
the time-dependent external potential and hence all
physical observables for fixed initial state.

( ) ( )v rt rt1-1←⎯→ ρ

Time-dependent density-functional formalism 

KS theorem:

The time-dependent density of the interacting system of interest can
be calculated as density

of an auxiliary non-interacting (KS) system

with the local potential
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(E. Runge, E.K.U.G., PRL 52, 997 (1984))

The functional  vxc[ρ]  is universal:
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The functional  vxc[ρ]  is universal:

Curse or blessing?

Only ONE functional needs to 
be approximated

Functional can be systematically improved, i.e. results will 
improve -on average- for all systems. Systematic improvement
for a single given system is not possible. 



proof (basic idea):

i.e. v(r t) ≠ v’(r t) + c(t)  ρ(r t) ≠ ρ’(r t)→

to be shown that is impossible
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Simplest possible approximation for [ ]( )trρvxc



Adiabatic Local Density Approximation (ALDA)
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ρ=

=

hom
stat,xcv = xc potential of static homogeneous e-gas

Approximation with correct asymptotic -1/r behavior:
time-dependent optimized effective potential (TDOEP)

C. A. Ullrich, U. Gossmann, E.K.U.G., PRL 74, 872 (1995)

LINEAR RESPONSE THEORY

t = t0 : Interacting system in ground state of potential v0(r) with density ρ0(r)

t > t0 : Switch on perturbation v1(r t) (with v1(r t0)=0). 

Density: ρ(r t) = ρ0(r) + δρ(r t)

Consider functional ρ[v](r t) defined by solution of interacting TDSE

Functional Taylor expansion of ρ[v] around vo:
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ρ1(r,t) = linear density response of interacting system
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interacting system

Analogous function ρs[vs](r t) for non-interacting system
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non-interacting system

GOAL: Find a way to calculate ρ1(r t) without explicitly evaluating 

χ(r t,r't') of the interacting system

starting point:    Definition of xc potential

[ ]( ) [ ]( ) [ ]( ) [ ]( )r tρvr tρvr tρv:r tρv HextSxc     −−=

vxc is well-defined through non-interacting/ interacting 1-1 mapping.
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Act with this operator equation on arbitrary v1(r t) and use χ v1 = ρ1 :

• Exact integral equation for ρ1(r t), to be solved iteratively

• Need approximation for

(either for fxc directly or for vxc)
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Total photoabsorption cross section of the Xe atom versus photon
energy in the vicinity of the 4d threshold.

Solid line: self-consistent time-dependent KS calculation [A. Zangwill and P.
Soven, Phys. Rev. A 21, 1561 (1980)]; crosses: experimental data [R. Haensel, G.
Keitel, P. Schreiber, and C. Kunz, Phys. Rev. 188, 1375 (1969)].
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Previous slide



Looking at those frequencies, Ω, for which ρ1(ω) has poles,
leads to the  (non-linear) eigenvalue equation

(T. Grabo, M. Petersilka, EKUG, J. Mol. Struc. (Theochem) 501, 353 (2000))
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Atom 
Experimental Excitation 

Energies 1S→1P 
(in Ry) 

KS energy 
differences 
Δ∈KS (Ry) 

Δ∈KS + K 

Be 0.388 0.259 0.391 

Mg 0.319 0.234 0.327 

Ca 0.216 0.157 0.234 

Zn 0.426 0.315 0.423 

Sr 0.198 0.141 0.210 

Cd 0.398 0.269 0.391 

from: M. Petersilka, U. J. Gossmann, E.K.U.G., PRL 76, 1212 (1996)

TDDFT



Excitation energies of CO molecule

State Ωexpt KS-transition Δ∈KS Δ∈KS + K

A 1Π 0.3127 5Σ→2Π 0.2523 0.3267

a 3Π 0.2323 0.2238

I
1Σ - 0.3631 1Π→2Π 0.3626 0.3626

D 1Δ 0.3759 0.3812

a'
3Σ+ 0.3127 0.3181

e
3Σ - 0.3631 0.3626

d
3Δ 0.3440 0.3404

approximations made: vxc and fxc
LDA ALDA

T. Grabo, M. Petersilka and E.K.U. Gross, J. Mol. Struct. (Theochem) 501, 353 (2000)

TDDFT

Failures of ALDA in the linear response regime

• response of long chains strongly overestimated
(see: Champagne et al., J. Chem. Phys. 109, 10489 (1998) and 110, 11664 (1999))

• in periodic solids, whereas,

for insulators, divergent.
2

0q
exact
xc q1   f ⎯⎯→⎯ →

( ) ( )ρ=ρω c,,qf ALDA
xc

• charge-transfer excitations not properly described 
(see: Dreuw et al., J. Chem. Phys. 119, 2943 (2003))

• H2 dissociation is incorrect:

(see: Gritsenko, van Gisbergen, Görling, Baerends, J. Chem. Phys. 113, 8478 (2000))
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• H2 dissociation is incorrect:

(see: Gritsenko, van Gisbergen, Görling, Baerends, J. Chem. Phys. 113, 8478 (2000))
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++ (in ALDA)

These difficulties have largely been solved by xc 
functionals more advanced than ALDA

Source: Web of Science as of June 2015
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How can one give a rigorous mathematical meaning to 
chemical concepts such as

• Single, double, triple bonds
• Lone pairs

Note: • Density ρσ (r) is not useful!
• Orbitals are ambiguous (w.r.t. unitary 

transformations)

Time-Dependent Electron Localization Function
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= conditional probability of finding an electron
with spin σ at if we know with certainty that
there is an electron with the same spin at .

=  diagonal of two-body density matrix
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=  probability of finding an electron with spin σ at    
and another electron with the same spin at    .
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Coordinate transformation

r'

r

s If we know there is an electron with spin σ at , then
is the (conditional) probability of

finding another electron at .
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Expand in a Taylor series:

The first two terms vanish.

Spherical average ( ) ( )
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If we know there is an electron with spin σ at , then is the
conditional probability of finding another electron at the distance s
from .

( )p ,r sσ
r



is a measure of electron localization.

small means strong localization at

( )σC r


Why? , being the s2-coefficient, gives the probability of

finding a second like-spin electron very near the reference

electron. If this probability very near the reference electron is

low then this reference electron must be very localized.

( )σC r


( )σC r


r




Cσ is always ≥ 0 (because pσ is a probability) and is not
bounded from above.

Define as a useful visualization of localization
(A.D. Becke, K.E. Edgecombe, JCP 92, 5397 (1990))

1  ELF  0 ≤≤Advantage:  ELF is dimensionless and

where

is the kinetic energy density of the 
uniform gas.
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ELF

A. Savin, R. Nesper, S. Wengert, and T. F. Fässler, Angew. Chem. Int. Ed.  
36, 1808 (1997)



For a determinantal wave function one obtains
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in the static case:

(A.D. Becke, K.E. Edgecombe, JCP 92, 5397 (1990))

in the time-dependent case:

(T. Burnus, M. Marques, E.K.U.G., PRA (Rapid Comm) 71, 010501 (2005))
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Acetylene in laser field
(ħω = 17.15 eV, I = 1.2×1014 W/cm2)

Scattering of a proton from ethylene
(Ekin(proton) = 2 keV) 



TDELF for acetylene in strong laser field
(ħω = 17.15 eV, I = 1.2×1014 W/cm2)

TDELF for scattering process
2 keV proton colliding with ethylene 



TDELF movies produced from TD Kohn-Sham equations 
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 ρ+∇−=ϕ

∂
∂ 

propagated numerically on real-space grid using  octopus code

octopus: a tool for the application of time-dependent density functional theory, 
A. Castro, M.A.L. Marques, H. Appel, M. Oliveira, C.A. Rozzi, X. Andrade, 
F. Lorenzen, E.K.U.G., A. Rubio, Physica Status Solidi 243, 2465 (2006).

T. Burnus, M. Marques, E.K.U.G, PRA (Rapid Comm) 71, 010501 (2005)

Electronic transport with TDDFT
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Electronic transport with TDDFT
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TDKS equation (E. Runge, EKUG, PRL 52, 997 (1984))
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TDKS equation

Electronic transport with TDDFT



Effective TDKS Equation for the central (molecular) region only

S. Kurth, G. Stefanucci, C.O. Almbladh, A. Rubio, E.K.U.G.,
Phys. Rev. B 72, 035308 (2005)
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source term:   L → C  and  R → C  charge injection

memory term:   C → L → C and  C → R → C hopping

( ) ( ) ( ) ( )00,tGiH00,tGiH RRCRLLCL ϕ+ϕ+   

( ) ( )[ ] ( ) ϕ++
t

0

CRCRCRLCLCL 'tH't,tGHH't,tGH'dt  

Note: So far, no approximation has been made. 

U
V(x)

left lead right leadcentral region

Numerical examples for non-interacting electrons

Recovering the Landauer steady state

Time evolution of current in response to bias switched on at time t = 0, 

Fermi energy  εF = 0.3 a.u.

Steady state coincides with Landauer formula 

and is reached after a few femtoseconds

U



Does one always reach a steady 
state after switching-on the bias?

Two-site Anderson model

E. Khosravi, A.M. Uimonen, A. Stan, G. Stefanucci, S. Kurth, R. van Leeuwen, 
E.K.U. Gross, Phys. Rev. B 85, 075103 (2012)



ELECTRON PUMP

Device which generates a net current between two
electrodes (with no static bias) by applying a time-
dependent potential in the device region

Experimental realization : Pumping through carbon
nanotube by surface acoustic waves on piezoelectric
surface (Leek et al, PRL 95, 256802 (2005))

-8 -4 0 4 8
x/a.u.

-0.05

-0.025

0

0.025

0.05

n(
x,

t)
/a

.u
.

-0.5

-0.25

0

0.25

0.5

U
(x

,t)
/a

.u
.

Pumping through a square barrier 
(of height 0.5 a.u.) using a 
travelling wave in device region
U(x,t) = Uosin(kx-wt)
(k = 1.6 a.u., w = 0.2 a.u.
Fermi energy = 0.3 a.u.)

Patent: Archimedes (250 b.c.)



Experimental result:

Current flows in direction opposite to sound wave 



Current goes in direction opposite to the external field !!

G. Stefanucci, S. Kurth, A. Rubio,  E.K.U. Gross, Phys. Rev. B 77, 075339 (2008)

Laser-induced ultrafast demagnetization of solids:
The first 100 femto-seconds



Beaurepaire et al, PRL 76, 4250 (1996)

First experiment on ultrafast laser induced demagnetisation

Beaurepaire et al, PRL 76, 4250 (1996)

First experiment on ultrafast laser induced demagnetisation

More recent experiments show demagnetization in less than 100 fs



Possible mechanisms for demagnetisation
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Possible mechanisms for demagnetisation

• Direct interaction of spins with  the magnetic component of the laser
Zhang, Huebner, PRL 85, 3025 (2000)

• Spin-flip electron-phonon scattering
(ultimately leading to transfer of spin angular momentum to the lattice)
Koopmans et al, PRL 95, 267207 (2005)

• Super-diffusive spin transport
Battiato, Carva, Oppeneer, PRL 105, 027203 (2010) 

• Ab-initio (TDDFT) result for the first 50 fs: 
Laser-driven charge excitation followed by spin-orbit-driven 
demagnetization of the localized d-electrons

K. Krieger, J.K. Dewhurst, P.Elliott, S. Sharma, E.K.U. Gross, 
arXiv:1406.6607 (2014), to appear in JCTC (2015). 
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Theoretical approach: TDDFT with SOC
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( ),k r tϕwhere                 are Pauli spinors



• Wave length of laser in the visible regime
(very large compared to unit cell)

• Dipole approximation is made
(i.e. electric field of laser is assumed to be spatially constant)

• Laser can be described by a purely time-dependent vector potential

• Periodicity of the TDKS Hamiltonian is preserved!

• Implementation in ELK code (FLAPW)
(http://elk.sourceforge.net)

Aspects of the implementation



Cr monolayer

Analysis of  the results



components of spin moment

Calculation without spin-orbit coupling



Demagnetization occurs in two steps:

- Initial excitation by laser moves magnetization from MT region
into interstitial region. Total Moment is basically conserved
during this phase.

- Spin-Orbit term drives demagnetization of localized electrons 
until stabilization at much lower moment is achieved 

K. Krieger, J.K. Dewhurst, P. Elliott, S. Sharma, E.K.U. Gross, 
arXiv:1406.6607 (2014)



Playing with laser parameters



Influence of approximation for xc functional



Problem: In all standard approximations of Exc (LSDA, GGAs)
m(r) and Bxc(r) are locally collinear 

S. Sharma, J.K. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N. Helbig, S. Pittalis, 
S. Shallcross, L. Nordstroem E.K.U.G., Phys. Rev. Lett. 98, 196405 (2007)

Why is that important?

Ab-initio description of spin dynamics:

microscopic equation of motion (following from TDSDFT)

XC Sm(r, t) m(r, t) B (r, t) J (r, t)= × − ∇⋅
       

in absence of external magnetic field

Consequence of local collinearity:  m×Bxc = 0: 
→ wrong spin dynamics
→ how important is this term in real-time dynamics?



Construction of a novel GGA-type functional

Traditional LSDA:  Start from uniform electron gas 
in collinear magnetic state.  Determine  
from QMC or MBPT and parametrize to
use in LSDA.

New non-collinear functional: Start from spin-spiral
phase of e-gas. Determine                     from MBPT and
parametrize to use as non-collinear GGA.

XCe [n, m]


XCe [n, m]


XCe [n, m]
XCe [n, m]

F.G. Eich and E.K.U. Gross, Phys. Rev. Lett. 111, 156401 (2013)

( )
( )
( )

2

scos

m m ssin

1 s

 ⋅
 

= ⋅ 
  − 

q r

r q r

Magnetisation of a spin-spiral state in the uniform electron gas

SSW SSW
xc xc (n, m,q,s)ε = ε

Illustration of spin spiral waves 
along one spatial coordinate for two 
different choices of wavevector
q=k1/2.
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( ) ( ) ( )( ) 2
2

Td m m= × ∇r r r
 ( ) ( ) ( )( ) 2

TD m m= × ∇⊗r r r
 

F.G. Eich and E.K.U. Gross, Phys. Rev. Lett. 111, 156401 (2013)

m×Bxc



Summary
• No demagnetization without Spin-Orbit coupling

• Demagnetization in first 100 fs is a two-step process:
1. Initial excitation of electrons into highly excited states 

(without much of a change in the total magnetization)
2.  Spin-orbit coupling drives demagnetization of localized 

electrons (mainly d electrons)

• Similar demagnetization behavior for Fe, Co, Ni

• No significant change in Mx and My

• New xc functional derived from spin-spiral phase of uniform e-gas

• Very little difference in demagnetization dynamics comparing
the new xc functional with the traditional non-collinear LSDA 



Optimal control of ultra-short processes

Review Article on Quantum Optimal Control Theory: 
J. Werschnik, E.K.U. Gross, J. Phys. B 40, R175-R211 (2007)

Normal question:

What happens if a system is exposed to a given laser pulse?

Inverse question (solved by OCT):

Which is the laser pulse that achieves a prescribed goal (target)?

Optimal Control Theory (OCT) of static targets

possible targets: a) system should end up in a given final state φf

at the end of the pulse
b) wave function should  follow a given trajectory in 

Hilbert space
c) density should  follow a given classical trajectory r(t)



Optimal control of static targets
(standard formulation)

( ) ( ) ( ) ( ) ( )TÔTTTTJ    f f  
2

  f  1 ΨΨ=ΨΦΦΨ=ΦΨ=

For given target state Φf  , maximize the functional: 
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Optimal control of static targets
(standard formulation)
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TDSE
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T

0

t3 t tV̂T̂ tdtIm2,,J  

For given target state Φf  , maximize the functional: 

Optimal control of static targets
(standard formulation)

( ) ( ) ( ) ( ) ( )TÔTTTTJ    f f  
2

  f  1 ΨΨ=ΨΦΦΨ=ΦΨ=

Ô

( ) 







−εα−=  0
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TDSE

[ ] ( ) ( )[ ] ( ) Ψμε−+−∂ι−χ−=χΨε
T

0

t3 t tV̂T̂ tdtIm2,,J  

For given target state Φf  , maximize the functional: 

GOAL:  Maximize  J = J1 +  J2 +  J3



Control equations                         

1. Schrödinger equation with initial condition:

2. Schrödinger equation with final condition:

3. Field equation:

ˆ( ) ( ) ( ), (0)ti t H t tψ ψ ψ φ∂ = =

ˆˆ( ) ( ) ( ), ( ) ( )ti t H t t T O Tχ χ χ ψ∂ = =

1
ˆ( ) Im ( ) ( )t t tε χ μ ψ

α
=

0Jχδ = →

0Jψδ = →

0Jεδ = →

Set the total variation of  J = J1 + J2 + J3 equal to zero:

Algorithm

Forward propagation

Backward propagation

New laser field

Algorithm monotonically convergent: W. Zhu, J. Botina, H. Rabitz,
J. Chem. Phys. 108, 1953 (1998))

Quantum ring: Control of circular current

TDSE:

30 nm

1

1.04

1.12

1.24



Control of currents
|ψ(t)|

l = -1 l = 1

l = 0

|ψ(t)|2 j (t)j and

I ~ μA

E. Räsänen, A. Castro, J. Werschnik, A. Rubio, E.K.U.G., PRL 98, 157404 (2007)

OCT of ionization

• Calculations for 1-electron system H2
+ in 3D

• Restriction to ultrashort pulses (T<5fs)

 nuclear motion can be neglected

• Only linear polarization of laser (parallel or 

perpendicular to molecular axis)

• Look for enhancement of ionization by pulse-shaping 

only, keeping the time-integrated intensity (fluence) 

fixed



Control target to be maximized:

( ) ( )1
ˆJ T O T= Ψ Ψ

with  ϕϕ−=
bound

i
ii1̂Ô

Standard OCT algorithm (forward-backward propagation) does not
converge:

Acting with before the backward-propagation eliminates the smooth
(numerically friendly) part of the wave function.

Ô

Instead of forward-backward propagation, parameterize the laser pulse to be
optimized in the form

( ) ( ) ( )0t cot s t ,∈ = ωf

( ) ( ) ( )
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n n
n

n
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2 2
cos t sin t ,

T T
t

=

 
= ω + ω 

 
f f g

Maximize J1 (f1…fN, g1…gN) directly with constraints:

( ) ( ) ( )

( )

N

n
n 1

T 2
00

i f 0 f T 0 f 0

ii dt (t) E .

=

= =  =

ε =





using algorithm NEWUOA (M.J.D. Powell, IMA J. Numer. Analysis 28, 649 (2008))

with ωn = 2πn/T

with ω0 = 0.114 a.u.  (λ = 400 nm)

Choose N such that maximum frequency is 2ω0 or 4ω0 . T is fixed to 5 fs.



Ionization probability for the initial (circles) and the optimized (squares) pulse as  
function of the peak intensity of the initial pulse. 
Pulse length and fluence is kept fixed during the optimization. 

of initial pulse of initial pulse

• Formally the same OCT equations

• Problem: For  3 or more degrees of freedom, the full solution 
of the TDSE becomes computationally very hard 

Control of many-body systems



• Formally the same OCT equations

• Problem: For  3 or more degrees of freedom, the full solution 
of the TDSE becomes computationally very hard 

Control of many-body systems

Instead of solving the many-body TDSE, 
combine OCT with TDDFT
A. Castro, J. Werschnik, E.K.U. Gross, PRL 109, 153603 (2012) 

• Formally the same OCT equations

• Problem: For  3 or more degrees of freedom, the full solution 
of the TDSE becomes computationally very hard 

Control of many-body systems

Instead of solving the many-body TDSE, 
combine OCT with TDDFT
A. Castro, J. Werschnik, E.K.U. Gross, PRL 109, 153603 (2012) 

Important: Control target must be formulated in terms of
the density!



Enhancement of a single harmonic peak

Harmonic Spectrum:

( ) ( )
2

2
i t 3

t

d
H dte d r r, t

dt
ω   ω = 


ρ 

 
 


z

Maximize:

To maximize, e.g., the 7th harmonic of ω0 , choose coefficients as
α7= 4, α3 = α5 = α9 = α11 = -1

[ ]
( )

0 0
k

k ,k
k

F max H
ω∈ ω −β ω +β

= α ω

( ) ( )ref 0

2t T
t cos cos t

2 T

π − ε = ε ω 
 

[ ] ( )
( )

0 0j , j

j
ref 0

max H

H j
ω∈ ω −β ω +β ω

κ =
ω

Measure of enhancement: Compare with reference pulse:



Harmonic spectrum  of reference pulse for hydrogen atom

Results for Hydrogen

A. Castro, A. Rubio, E.K.U.Gross,
arXiv:1409.4070,
to appear in EPJ B (2015).



Results for Helium

(Using TDDFT with EXX functional)

A. Castro, A. Rubio, E.K.U.Gross,
arXiv:1409.4070, 
to appear in EPJ B (2015).
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