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(*) DMFT = Dynamical Mean Field Theory
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From your solid state physics lecture ...:

In a perfect cristal, the atoms form a periodic lattice ...

... the electrons live in the periodic potential
created by the ions

Bloch’s theorem:

V(z) = V(
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Bloch’s band picture:
The example of SrvO3
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Where are the electrons?

_Erﬁ._ﬂi_m — _mh..r_q:r:_ni_m — _E.h.:ﬁi__w_

Everywhere in the solid !
=> Delocalisation (driven by kinetic energy)



Question: “H-solid”

Consider an hypothetical Hydrogen solid, with H
atoms occupying the sites of a 2d periodic lattice.
Describe the electronic eigenstates !

[Let’s consider 1s orbital only, forget about molecule
formation (ions are fixed!), magnetic solutions and assume
nearest neighbor hopping only ....]

Question: “H-solid”

Consider an hypothetical Hydrogen solid, with H
atoms occupying the sites of a 2d periodic lattice.
Describe the electronic eigenstates !

Additional information:
lattice constant a = 8 km



The electronic Coulomb Hamiltonian
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Electron-electron Coulomb interaction Electron-ion Coulomb interaction

The electronic Coulomb Hamiltonian
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1 Independent electron picture



The independent electron picture —
consequences:

H = h(i)

electrons i

 N-electron state = Slater determinant of Bloch
waves

* Momentum k of single electron a good
guantum number

e Spectrum = band structure
e Products of expectation values factorize !

Back to the H-"solid” with a=8km ...

The “independent particle picture” predicts a band metal with very small
but finite bandwidth of a half-filled band and electrons delocalised over hundreds
of kilometers ..... In reality:

 Atomsindependent

e Atomic occupations are good quantum
numbers => think in real space!

* |nsulator not because of interference effects
opening the band gap, but Coulomb blocking

* “Double occupancy” is suppressed! -- E.g.:
0 =(nping)) # (nrt){nRy)



Correlations?

* “Correlatio” (lat.) = interrelation

e Two entities are “correlated” if there exists a
mutual relationship ....

 Mathematically:

Correlations: (AB) # (A)(B)

Correlations: (AB) # (A)(B)

Example: A = n+, B = n, eigenvalues 0 or 1
Hamiltonian: H = €(ny +ny) + Unyny

1 -~ _
— — L —Be(ny+ny)—BUnsny
(nymy) = = M n4n e
n+=0,1, n;=0,1

7 (n1)(ny)

Correlations! (Hamiltonian not separable)

In general: correlations = effects beyond mean field theory



* Kinetic energy of an electron in the solid?

Some orders of magnitude

e Coulomb matrix element between localised

Wannier functions?

Why does band theory work???

Intenszity (arb. units)
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Several answers ....

e Screening reduces Coulomb interactions,
typically by an order of magnitude

e Landau theory!
[Band theory not as a single particle theory,
but as a description of low-energy excitations
in the solid => “Quasi-particles”]

" |t does not always work ......

Example :
CeSF — an f-electron pigment

(cf. Rhodia’s Neolor series)

DFT-LDA Kohn-Sham
Band structure

Ce: N:& no:mmcazo? paramagnetic

Energy(eV)

Tomczak, Pourosvkii, Vaugier, Georges, Biermann, PNAS (2013)



Example :
CeSF — an f-electron pigment

(cf. Rhodia’s Neolor series)

DFT-LDA Kohn-Sham
—" N Band structure

Ce: N:& configuration, paramagnetic

-

Tomczak, Pourosvkii, Vaugier, Georges, Biermann, PNAS (2013)

Example :
CeSF — an f-electron pigment

(cf. Rhodia’s Neolor series)

DFT+DMFT spectral function
total f-only

Ce: 4f* configuration, paramagnetic
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M 7 R M 7 R Calculated colour of CeSF:

Tomczak, Pourosvkii, Vaugier, Georges, Biermann, PNAS (2013) I



“Mott insulators”

* Examples: paramagnetic YTiO3, CeSF, Ce203 ....
are metallic in band theory, but insulating in
nature |

* Note: This is not a failure of DFT (or the specific
choice of the effective single particle potential)
but a failure of the single particle picture itself!

* Note: symmetry breaking helps the single particle
picture, e.g. magnetism suppresses double
occupation without the need for correlations!

A note on magnetism ...

* Example: ferro- or antiferromagnetic ordered
solid

* At eachsite R either

T,
-

— f

= (npy) or U=1(npy)

Then, trivially: 0 =(npnp)) -

* Seemingly, no need for correlations:

(npinpry) = (ngt)(nRry)



Side remark: “LDA+U”

 Static mean field theories that apply a spin-
dependent effective potential to the single-
particle band structure can open the gap in
the magnetic phases!

* Note however: mismatch in energy scales
(Neel temperature << gap !) indicates that
magnetic order is likely not the primary
reason for the gap

* Needed: true finite temperature description!

Modelling correlated electron behavior
“Lattice models”

"7

/ Hubbard mode
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=> Minimal description of interplay
between Coulomb interaction and
delocalisation energy
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The Mott transition
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Example: Ising model H=-) JiS:S;
(i/)
* Map lattice model onto a single spinin an
effective magnetic field

Horp=—Y hi'7's;
I

L

e Determine magnetic field (“mean field”) self-
consistentlv

ﬂ,mw ~ h+ Mcﬂ mj=h+4zJm
J

m = tanh (Bh+zBJm)

What’s a mean field theory?

Two ingredients:

e Auxiliary system (“reference system”), that
can be solved

 Self-consistency condition for the mean field
to restore symmetries of the original problem



Dynamical mean field theory (DMFT)

i e G W

<l \ ~0on .m,_w*nﬂn
both

For a review, see Georges, Kotliar, Krauth, Rozenberg, Rev.
Mod. Phys. 1996

DMFT

Calculate Gioc from an impurity problem (that is, a

single site coupled to a bath):

m Hamvg = Harom + Hparh + mqs__ﬁ_:_:%

atom

MJNQAGSM;H*.@S* Hiom = qx%:M n Tmo —u) AS% i xj

both

_
Hpath = 2ig €l 4,590

Heoupiing = 2ig Vi ﬁsmqno. +¢gdig)

Determine bath (the dynamical mean field) self-
consistently



Anderson impurity problem:

Hamg = Hatom + Hparh + mqo_.ﬁc_:_:m

atom m

MJNQAGSMJW*.@S# Hatom = @__13%3_.“_4_ + mm‘o —H a T\_.,m + xﬁ:

both

_
Hpath = 2ig €l a;59c

Heoupiing = 2ig Vi AQHQQQ +¢gdig)

Integration over bath degrees of freedom gives
hybridisation function

A(iay) HM 7 _

] 100y —

Equivalent formulation of Andersen
impurity problem:

Impurity action:

Seff=— \s&\ QJM. | Ht—1)eq(T) +@\ dtni(t)n|(7)
»

G (i) = iy + U — €0 — Alioy,)

atom @

<l \ —consistent
both



DMFT — one slide for experts

Impurity action:

MQ%HI\ srﬁ,\ dt’ Mn ?I,:nq +®\ dtny(T)n (1)

»

Go iwn) = iy +p — g0 — Aliy)

Calculate Green'’s function G and deduce self-energy:

Mﬁ.:_ﬁﬁg__v = QDIH (iwy) — QI_T.E:V
DMFT approximation: Lii > Limp » iz =0
G(k,im,) = !
Ji0y) = iy + 1 — €0 — £ — 2 (K, i) and self-consist ...

Standard MFT vs. DFT vs. DMFT

Standard Mean Field DFT DMFT
Theory — ex.: Ising Model

Physical Magnetisation Density Local Green'’s function

quantity

Auxiliary System Spin in effective field Electronsin Quantum impurity
effective potential problem (interacting!)

“Weiss field” Effective magneticfield Kohn-Sham Dynamical mean field

potential (effective hybridisation)



DMFT in a nutshell ...

* Non-perturbative.

e Captures weak and strong coupling limits on equal
footing; gives a picture of the Mott transition

* Incorporates “atomic physics” of localised degrees of
freedom into the itinerant band picture

* Describes correlation effects on different energy scales
(=> coexistence of quasi-particle excitations and
Hubbard bands in the correlated metallic state)

» Self-energy is taken to be purely local — for non-local
fluctuations cluster extensions required

* Finite temperatures well described

DMFT as the infinite dimensional solution

* Hubbard model in the limit of infinite
coordination number stays non-trivial model
(Metzner and Vollhardt, 1989)

* In that limit, perturbation theory simplifies, self-
energy purely local (Mueller-Hartmann, 1989)

* A constructive solution can be obtained from
mapping onto impurity problem (Georges, Kotliar,
1992)

e Further contributions by: Ohkawa, Brandt,
Mielsch, Keiter, ... For bibliography see Georges et
al., Rev. Mod. Phys. 1996



“Ab initio” modeling of materials ...?

Combine
ab initio techniques
with
many-body theory

Cf. Matthias Scheffler’s lecture
Density Functional Theory

Nobel Price in

Interacting electron gas

.

Mapping

\ 4

Non-interacting electrons

in effective potential

such that the ground state density is
the same for the two systems

P. Hohenberg, W. Kohn, 1964,
W. Kohn, L. Sham, 1965




Density Functional Theory

Nobel Price in

Interacting electron gas

. 5

Mapping

\ 4

Non-interacting electrons

in effective potential

such that the ground state density is
the same for the two systems

DFT used here as a means to generate the one-body
part of a many-body Hamiltonian

Multi-orbital Hubbard-

Hamiltonian
One-particle part of Hamiltonian from DFT-LDA

!

_ M ﬂ LDA double counting, +
H = Am&..ﬁurﬁm o »ﬁ»ﬂ.ﬁ...m,.:ﬂ. vﬁ..mﬁnqmm.«ﬁ_.nﬂ
{imao}
1 h. Hubbard interaction
+ 5 m U, MimoNim! —o for
1 Ti 7
T 9 M ” h@:ﬂ.ﬂ.,_ - r_._«.ﬁﬁ,.vﬁm...ﬁﬁ Nim'c

imz=m’eo (correl. orb.)

Hund’s rule coupling

* Solve within Dynamical Mean Field Theory (DMFT)
o =>“LDA+DMFT” (Ansimov et al., Lichtenstein et al., 1997/98)



Dynamical mean field theory within realistic
electronic structure calculations: “DFT+DMFT”
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Lower Hubbard band seen in
photoemission of SrvO3 |
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Bloch’s band picture:
The example of SrvVO3
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LDA band structure of
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Intensity (arb. units)
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“Hubbard band”
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E- Ep (V)

DFT+DMFT ... a story of success!

Applications to

3d transition metal oxides, sulphides
[CaVO3, LaTiO3, YTiO3, VO2, V203, BaVs3, ..]

Transition metals [Mn, Nj, ...]
f-electron elements and compounds (ce, ces, re203]

Iron Pnictides [LaFeAsO, FeSe, BaFe2As2, BaCo2As2]

Spin-orbit materials [sr21r04, sr2rh04]
Low-dimensional systems (organics)

Photoemission vs. theory: BaCo2As2
I X M I

35 _
&)
30 E
m. A. Van Roekeghem
25 § IOP-CAS & Ecole
£ Polytechnique
20 =
E
15 ¢
3
10 &
w
05 &
&
<
0.0
Xu et al., PRX (2013) &
51) A.van Roekeghem et
= al., PRL 2014
.m See also:
2

PES by Dhaka et al.



The Menu

* Correlationsin Condensed Matter -- Modeling
Correlated Electron Behavior

 What’s a mean field theory?

e Dynamical mean field theory (DMFT) and
“DFT+DMFT”

* Beyond “DFT+DMFT”: functional approaches,
GW+DMFT ...

* Conclusions/perspectives

Towards a first-principles scheme for
correlated materials: GW+DMFT
* Formulated in functional language:
Free energy of a solid as a functional I'[G,W] of
1) the Green’s function G and
2) the screened Coulomb interaction W.
[Almbladh et al., IntJ. Qu. Chem. 1999]
* [[G,W] = Hartree part + V[G,W]
¢« o VPTG W+ WG W,

nonloc

i . oW cw oW
where %.E,._:_E.. =V .,H.._E.. "

Biermann, Aryasetiawan, Georges, PRL 2003



GW+DMFT Egs.

Impurity model :

G(r),U(r)
ﬁu..w.ﬁﬁ = — AM__N ﬁﬁJ@. — Mw%ﬁ QI :Mﬁ
Wi imp — =U—-UxUU mﬁwﬁ U W .WMHW
T }
Update Combine :
G != Qﬂ + Dimp B = Digy + Spgntocal
U = Wid + Py P = Py + P

Self — consistency
A e P | re1—1
_mu_mn_n. — Mw.ﬁ.«m - Mmq_ .
+ outer loop: self-consistency

. 5\ 7—1 —1
W loc — M&:\ﬂ — __U_ over GW calculation: update
P_nonlocaland Znonlocal

“GW+DMFT” as a bridge between Coulomb
interaction in the continuum and Hubbard physics:

V=0 || Vo
V=015 Ve=0.15
V=0.3 Vv=0.3 |J
V'=0.44 V=0.45
3 5 [E

Hubbard U becomes an auxiliary quantity that is
self-consistently determined!



What GW+DMFT is supposed to do for
you ...

* Describe correlated states with arbitrary local
correlation strength

* Include exchange beyond DFT-LDA (!)

* Make the link between 1/|r-r’| and an auxiliary
qguantity U(w) (not a parameter any more!) — screening
from first principles!

e Charge ordering instabilities [cf. Ayral et al., PRL2012]
* Describe “uncorrelated states” beyond DFT

* Getrid off double counting (Caveat: in orbital-
separated scheme, need to take care of “Zpd”)

* Solve issue of self-consistency/starting point of GW
For applicationsto real solids, see eg. Hansmann et al, PRL 2013, Tomczak et al, EPL 2012,

PRB 2014.
For extended model stuides, see: Ayral et al., PRL 2012, PRB 2013, Li et al., PRB 2014.

Conclusions

e Electronic correlations

(npinpy) # (nrt)(nRy)
—> need to incorporate “atomic-like” physics

* General concepts of mean field theories: o—1+1— |

auxiliary system, self-consistency 7B |
. et o o [ I
= Examples: Ising, DFT, DMFT = el =
\‘/cl\.vlp.lhv |

* DMFT: mapping of the solid onto interacting
guantum impurity problem with effective
hybridisation function (dynamical mean field) &os\_ m

—> suitable for strong/weak coupling &
intermediate correlated metal regime

<l & ~onsistent
both

* Successfulto describe spectroscopic
properties of a wide range of materials




Perspectives

* Non-local extensions of DMFT (“Cluster-
DMFT”)

* Improved interfacing of DMFT and electronic
structure techniques (GW, basis sets ...)

* More quantities: transport, forces ...
* Bigger systems ...

Electron addition ...

-

... — theoretician’s point of view

Consider many-body ground state |2 ;) and add an
electron with quantum numbers m, o:

QH;LEMMV (1)



Electron addition ...

-

... — theoretician’s point of view

Consider many-body ground state |2 ;) and add an
electron with quantum numbers m, o:

QM@LEWMV
Let state evolve in time:

H N
et el 1wl

A

t time ¢, does the state still ressemble the initial state

N
oo Ueg) 7

Consider overlap

N Ht N
(Ulglemo e el [ Uig)

(@)

-p.2

(5)



|, N

t time ¢, does the state still ressemble the initial state

Cho|Tlg) 7 (6)

Consider overlap

mo _ @W\mv Aﬂv

In the case of a non-interacting system: ~ exp(i Energy t).
In an interacting system: electron decays ...

AQ%&QSQ et ¢

L |

—-p. 4

Green’s function — survival kit

jD

efinition of (zero-temperature) Green’s function:
G(k,1) = —(Tey(t)e],(0))

with
cr(t) = exp(—iHt)cpexp(iHt)

and the time-ordering operator 7.

(...) denotes the expectation value in the ground state.

NB. k from Fourier transform with respect to Bravais lattice.
Additional quantum numbers — G matrix in orbital space

L |



Green’s function — properties

B .
Alk,w) = —=Tr3G(k,w)

T
Non-interacting case:

1

Golkw) =53 p— €o(k) +in

General case: define self-energy ¥ such that

1
W~ —€eo(k) — X(k,w)

G(k,w) =

All interaction effects are hidden in the self-energy:

| S(k,w) = Gyt (k,w) — Gk, w)

Green’s functions — properties

jO

ne-particle excitations « poles of G(k,w)

1 —3%(k,w)
Alk,w) = — (w —eo(k)” + (-9T(w))”

Well-defined band-like states if X small.

-p.6



Fermi liquids

-

js a Fermi liquid (local (i.e. k-independent) self-energy and
= 0, for simplicity ...):
ImY(w) = —Tw?+0(w?)
ReX(w) = ReX(0)+ (1 —Z Hw+ O(w?)

72 -3 (w)

T (w— Zeog(k))® + (—Z38(w))?
For small Im X (i.e. well-defined quasi-particles): Lorentzian
of width ZIm %,

Poles at renormalized quasi-particle bands Zey(k),
Weight Z (instead of 1 in non-interacting case)

L |

-p.8

\»Qﬁ Ev = + \K.zwo:

What about finite temperatures?

. N

|dea: thermal weight exp(—8H)/Z ressembles exp(—iHt)
— Notion of “imaginary time”

efine thermal Green’s function!

-p. 10



What about finite temperatures?

-

Definition of Green’s function: J
Gk, 7) = —(Trex(r)e (0))
with
cx(7) = exp(—7H)cpexp(TH)

and the time-ordering operator 7’ in imaginary time.
(...) denotes the thermal expectation value at temperature
T, related to g by g = 1/kpT.

L |

-p. 11

In practice:

-

jOEm_s G(k, iwy,) by Fourier transform from G(k, 7).
(where w,, = (2n + 1)7/p are the “fermionic Matsubara
frequencies”)

Need to make “analytic continuation” of G(k, iw,,) to obtain
G(k,w) for real frequencies, and calculate spectra.

—-p.12



Temperature dependence ...

| N

... of electronic properties can be strong in correlated
materials!

Not only through Fermi factor (thermal occupation of
states), but also through the spectral function itself !!

Note: ¥ is temperature-dependent.
Example: In a Fermi liquid

ImY(w) = —T(w?+7T?)

at low energies and low temperatures
— Notion of coherence temperature (below which Fermi
liquid properties are observed)

L |

-p. 13

Finite temperatures

. N

aramagnetic phase diagram of half-filled Hubbard model
within DMFT:

N
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T/D

0.04 METAL INSULATOR

0,02

“
1 |

H ,
0 1 2 Vo3 b oy 5
Ucl Uc2

Uu/D

First order transition (ending in 2nd order critical points)
with coexistence region of metallic and insulating solutions!
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Real materials ... : V5,05
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High temperatures ?

aramagnetic phase diagram of half-filled model within

DMFT:
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RdT)

High temperatures
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Real materials ...

D Organic BEDT compound
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