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Not your grandfather’s 
electronics…

• Nanoelectronics 
• Spintronics 
• Organics/Molecular 
• MEMS NEMS …
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Figure 2 | SHA in an F/N/F spin valve. Temperature profiles over the stack in the P and AP configuration in the presence of a heat current (Q). a, In the P
configuration the SHAs at both F/N interfaces have opposite signs, leading to a negligibly small SHA. b, For the AP configuration the SHAs at the F/N
interfaces have the same sign, creating a large SHA and a corresponding temperature drop between the F/N interfaces and the bulk of the F layers. c, A
temperature drop between the P and AP configuration builds up owing to the spin heat valve effect.

spacer layer in a spin valve is comparable to ⌦
Q

the SHA should
be detectable by the second ferromagnetic layer. In Fig. 2, the
spin-dependent temperatures T" and T# are plotted for the parallel
(P) and antiparallel (AP) alignment of the magnetic layers in such a
current-perpendicular-to-plane spin valve. For the P configuration
the SHAs at both F/N interfaces have opposite sign and sum up
to be negligibly small. On the other hand, in the AP configuration
both interfaces contribute constructively to generate a large SHA
leading to a significant temperature drop1T (equation (1)) at both
F/N interfaces. If ⌦

Q

= ⌦s the Wiedemann–Franz relation holds,
that is, the relative thermal conductance ratio (P �AP)/p equals
the giant magnetoresistance ratio (�P ��AP)/�p of the nanopillar.
However, in the presence of inter-spin and spin-conserving inelastic
scattering ⌦

Q

< ⌦s and we may expect the Wiedemann–Franz
relation to break down, because heat exchange short-circuits the
spin channels, thereby decreasing P�AP but not �P��AP.

To observe the SHA, we use a nanopillar spin valve
(Ni80Fe20/Cu/Ni80Fe20 stack with dimensions 150⇥ 80 nm2 and a
thickness of each layer of 15 nm) as shown in Fig. 3. We measure
the temperature of the bottom contact using a Pt-Constantan
(Ni45Cu55) thermocouple (contacts 3 and 4) while sending a charge
current through the Pt-heater (contact 1 to 2). Both the thermocou-
ple and the heater are electrically isolated from the bottom contact
by an Al2O3 barrier (⇠8 nm thick). All samples were initially char-
acterized by electrical measurements of the four-probe electrical
resistance of the nanopillar using contacts 6 and 8 while sending
a charge current from contact 5 to contact 7. Using a standard
lock-in technique9,12,28 with low excitation frequency (Methods), we
separate the second harmonic voltage componentV 2f / I

2 from the
first harmonic voltage response V 1f / I (Methods). Measurements
are carried out at room temperature as well as 77 K.

To prove the existence of an SHA, wemeasure the thermovoltage
V

2f by the Pt–Ni45Cu55 thermocouple as a function of an in-
plane magnetic field, shown in Fig. 4a at room temperature.
The second harmonic resistance R

2f = V

2f/I 2 is characterized
by four abrupt changes corresponding to the switching from
P to AP configurations and vice versa. On the right y axis
the difference between the thermocouple (TTC) and reference
temperature (T0 = 300K) is plotted. The spin heat valve signal
R

2f
s = R

2f
P � R

2f
AP of �0.04VA�2 corresponds to a temperature

difference of �6mK. At 77K (Fig. 4b), the spin heat valve signal
is �0.06VA�2, corresponding to a temperature change of �17mK
between P and AP configurations. The background resistance,
R

2f
b = (R2f

P +R

2f
AP)/2, is lower at 77 K (21.15VA�2) than at room

temperature (29.13VA�2) owing to the reduced resistance of the
heater. Similar values are found for two other samples from the
same batch (Supplementary Section SB).

In Fig. 4c we show the four-probe electrical resistance of the
nanopillar at room temperature as a function of the external
magnetic field measured using contacts 6 and 8 while a charge
current flows from contact 5 to contact 7. A spin valve signal of
�80m� is observed on a background resistance of 2.27�. By using
the three-dimensional finite element model (3D-FEM) to fit the

spin valve signals, we obtain a spin polarization P� of 0.52, typical
of the bulk spin polarization for Permalloy12,28,29. As a consistency
check, the spin-dependent Seebeck9,28 and Peltier effects12 are also
measured in the same device (see Supplementary Section SC).

Fitting the measured spin heat valve signal of�0.04VA�2 to the
spin heat diffusion model under the assumption of equal polariza-
tions P and P� (Supplementary Sections SA and SE) leads to a spin
heat relaxation length ⌦

Q,Py of 1 nm in Permalloy, which is one-fifth
of its spin relaxation length of 5 nm (ref. 30). Taking the same
scaling for the copper layer we obtain a ⌦

Q,Cu of 70 nm as one-fifth of
⌦s,Cu = 350 nm (ref. 27). In another set of samples, we measured the
SHA for varying thickness of the Cu layer (t

N

= 5, 15 and 60 nm).
This allows us to obtain ⌦Q,Cu of 45 nm in close agreement with the
value obtained above (Supplementary Section SI). The fact that we
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Figure 3 |Device geometry. a, Schematics of the measured device showing
an F/N/F pillar spin valve sandwiched between Au top and Pt bottom
contacts. A charge current I through the Pt-heater (contact 1 and 2)
increases the temperature of the bottom contact, which is simultaneously
measured by a Pt-Constantan (Ni45Cu55) thermocouple. Both the heater
and thermocouple are electrically isolated from the bottom contact by an
Al2O3 barrier (green; 8 nm thick) to avoid any charge-related spurious
signals. b, Coloured 3D scanning electron microscope image of the
measured device. The nanopillar sits half way between the Pt–Ni45Cu55

thermocouple (contacts 3 and 4) and the Pt-Joule heater (contacts 1 and 2).
Crosslinked polymethyl methacrylate (blue) electrically isolates the bottom
contact (grey contacts 5 and 6) from the top contact (contacts 7 and 8).
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Figure 3 |Device geometry. a, Schematics of the measured device showing
an F/N/F pillar spin valve sandwiched between Au top and Pt bottom
contacts. A charge current I through the Pt-heater (contact 1 and 2)
increases the temperature of the bottom contact, which is simultaneously
measured by a Pt-Constantan (Ni45Cu55) thermocouple. Both the heater
and thermocouple are electrically isolated from the bottom contact by an
Al2O3 barrier (green; 8 nm thick) to avoid any charge-related spurious
signals. b, Coloured 3D scanning electron microscope image of the
measured device. The nanopillar sits half way between the Pt–Ni45Cu55

thermocouple (contacts 3 and 4) and the Pt-Joule heater (contacts 1 and 2).
Crosslinked polymethyl methacrylate (blue) electrically isolates the bottom
contact (grey contacts 5 and 6) from the top contact (contacts 7 and 8).
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Materials and their issues
• Metals, SC, insulators 

• New materials: 

• graphene, CNT, TMD  

• conducting polymers  

• nanowires 

• topological matter 

• Interfaces, heterostructures 

• Anisotropy, texturing
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Si
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Universal utility
• Standard characterisation tool 

• Sample quality, purity 

• Signatures of physical effects 

• Phase transitions  

• Luttinger, Kondo 

• Anderson…
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Ambition for this lesson
• Overview of electronic transport 

• Classical theory and qualitative regimes 

• What can we calculate from first principles? 

• Details for diffusive transport 

• Some thermal effects
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Electron transport
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(Semi) Classical theory
• Apply E field to free electron gas  

• Displace Fermi sphere: 

!

!

• Viscous force of (so far) unknown source 

• Scattering / relaxation time / mean free path
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How good is Drude?
• Works in many cases: 

• Metals w/ large DOS and Fermi Surface 

• Doped semiconductors w/ small pockets 

• But it is not predictive! 

• We will come back to an improved version
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Transport coefficients
• Steady state current  

• Conductivity σ = e2 ! n / m 

• mobility μ = σ / e n = e ! / m 

• Thermal conductivity "el  

• Idea: distribution of electrons  

fk = f0(εk) + δfk  

10
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Magnetic effects
• "Normal" Hall effect 

• AHE, SHE, ISHE, QHE 

• Rashba, Topological Insulators  

• de Haas van Alphen

11
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Phys. Rev. Lett. 100, 187005 (2008) 
YBCO cuprate Fermi Surface

    Nature Comms 3,1058 (2012) 
SHE ISHE

    Nature Materials 10, 521 (2011) 
BiTeI giant Rashba splitting



Thermal effects
• Seebeck / Peltier 

• Spin dependent Seebeck 

• Nernst (B+T  →  I⟘) 

• ANE + Spin Seebeck 

12
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Figure 3. (a, b) Schematic illustrations of the LSSE (a) and proximity ANE (b) in a paramagnetic metal/ferrimagnetic insulator junction
system. (c) LSSE and proximity ANE in the in-plane magnetized (IM) and perpendicularly magnetized (PM) configurations. The LSSE
voltage disappears in the PM configuration due to the ISHE symmetry, while the proximity ANE voltage can appear in both the
configurations. (d, e) Schematic illustrations of the IM (d) and PM (e) configurations. To generate ∇T in the metal-film/insulator-slab
sample, it was sandwiched between two heat baths in both configurations.

contaminated by the proximity ANE in the Pt layer, since the
electric field induced by the ANE is generated according to the
relation

EANE ∝ ∇T × M, (2)

meaning that EANE is generated along the y direction when
∇T ||z and M||x, a configuration similar to that of the LSSE
(compare figures 3(a) and (b) and note again that no ANE
exists in the YIG layer since YIG is an insulator). Therefore,
the exclusive establishment of the LSSE and the separation
of the LSSE from the proximity ANE are important tasks in
investigating SSE physics.

The separation of the LSSE from the proximity ANE in
the Pt/YIG system is realized by comparing transverse ther-
moelectric voltage in an in-plane magnetized (IM) configura-
tion (the LSSE setup) and a perpendicularly magnetized (PM)
configuration [45, 51]. In the IM (PM) configuration, an exter-
nal magnetic field H is applied parallel (perpendicular) to the
Pt/YIG interface and a temperature gradient is applied perpen-
dicular (parallel) to the interface (see figures 3(d) and (e)). In
the PM configuration, the ANE signal can appear since the tem-
perature gradient (||x), magnetization (||z), and inter-electrode
direction (||y) are at right angles to one another (see equa-
tion (2)), while the LSSE signal should disappear due to the
symmetry of the ISHE (see equation (1) and note that Js||z
and σ||z in the PM configuration). Therefore, the quantitative
comparison of the voltage between these configurations en-
ables the estimation of the ANE contamination in the Pt/YIG
system (see figure 3(c)). Here we note that, in the PM configu-
ration, even a possible tiny temperature gradient perpendicular
to the Pt-film plane does not affect the voltage signal, since the
Nernst voltage is not generated due to the collinear orientation

of the perpendicular temperature gradient and the magnetiza-
tion (or the magnetic field).

2.2.1. Comparison of voltage between IM and PM configura-
tions. In this subsection, to investigate the LSSE and ANE
in metal/insulator junction systems comprehensively, we com-
pare the transverse thermoelectric voltage between the IM and
PM configurations not only in the Pt/YIG system but also in the
Pt/Gd3Ga5O12 (GGG), Au/YIG, Au/GGG, and Ni81Fe19/GGG
systems [51]. The sample consists of a Pt, Au, or Ni81Fe19 thin
film fabricated on the (1 1 1) surface of a single-crystalline YIG
or GGG slab. Here, since GGG is a paramagnetic insulator, the
Pt/GGG and Au/GGG (Ni81Fe19/GGG) samples exhibit only
normal (normal and anomalous) Nernst effects and no ISHE
voltage induced by the LSSE. The lengths of the YIG and GGG
slabs along the x, y, and z directions are Lx = 2 mm, Ly =
6 mm, and Lz = 1 mm, respectively. The thickness of the Pt,
Au, and Ni81Fe19 films isLz

Pt/Au/NiFe = 10 nm except when col-
lecting thickness-dependent data. Both in the IM and PM con-
figurations, the sample was sandwiched between two heat baths
of which the temperatures are stabilized to 300 K and 300 K +
!T (see figures 3(d) and (e)). To apply a uniform temperature
gradient to the sample in the PM configuration, both the metal
film (Pt, Au, or Ni81Fe19) and insulator slab (YIG or GGG)
are thermally well connected to the heat bath. In the IM (PM)
configuration, we measured the voltage V between the ends of
the Pt, Au, or Ni81Fe19 film along the y direction with applying
∇T along the z (x) direction and H along the x (z) direction.

Before showing the experimental results for the Pt/YIG
samples, we confirm the temperature-gradient distributions
in the IM and PM configurations and demonstrate that the
Ni81Fe19 and Pt films exhibit isotropic Nernst effects in these
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Figure 1. (a)–(d) Schematic illustrations of the conventional Seebeck effect (a), anomalous Nernst effect (ANE) (b), longitudinal spin
Seebeck effect (LSSE) (c), and inverse spin-Hall effect (ISHE) (d). ESE, EANE, and EISHE denote the electric fields generated by the Seebeck
effect, ANE, and ISHE, respectively. ∇T , H, M, and Js denote the temperature gradient, magnetic field (with magnitude H ), magnetization
vector, and spatial direction of the thermally generated spin current, respectively. (e) Magnetic materials and temperature regions where the
LSSE was observed.

tronics has been conducted all over the world. In this field, a
spin counterpart of the Seebeck effect—the spin Seebeck ef-
fect (SSE)—was discovered in 2008 [5]. The SSE refers to the
generation of ‘spin voltage’ as a result of a temperature gra-
dient in ferromagnetic or ferrimagentic materials. Here, spin
voltage is a potential for electrons’ spins to drive a nonequi-
librium spin current [6–8]; when a conductor is attached to a
ferromagnet with finite spin voltage, it induces spin injection
into the conductor. Since the SSE appears not only in ferro-
magnetic metals [5, 9] and semiconductors [10, 11] but also in
ferrimagnetic insulators [12, 13], it enables the construction of
‘insulator-based thermoelectric generators’ [14] in combina-
tion with the inverse spin-Hall effect (ISHE) [15–18], which
was impossible if only conventional thermoelectric technology
was used.

The observation of the SSE has been reported in two dif-
ferent device structures [19]: one is a transverse configuration,
in which a spin current perpendicular to a temperature gradi-
ent is measured. The first observation of the SSE in Ni81Fe19

films was reported in the transverse configuration [5] and, sub-
sequently, this configuration has been used to measure the SSE
in semiconductors [10, 11] and insulators [12]. However, when
conductive ferromagnets are used, the transverse SSE measure-
ments are disturbed by thermal conductivity mismatch [9, 20]
between a film and a substrate that induces parasitic anoma-
lous Nernst effects (ANEs) [21, 22], requiring careful thermal
design of the sample and measurement system. In conductive
ferromagnets in the transverse configuration, planar Nernst ef-
fects (PNEs) [23] also arise. In the past several years, a lot
of thermoelectric measurements have been performed in the

transverse configuration [20, 24–27], and the quantitative sep-
aration of the transverse SSE from the parasitic ANE and PNE
has recently been reported [28]. The other setup is a longitu-
dinal configuration, in which a spin current flowing parallel
to a temperature gradient is measured (see figure 1(c)). The
longitudinal configuration is the simplest and most versatile
structure for measuring the SSE, which was first demonstrated
using Pt/Y3Fe5O12 (YIG) junction systems in 2010 [13]. The
longitudinal configuration is basically applicable only to mag-
netic insulators, since this configuration is similar to that of the
ANE in ferromagnetic conductors (compare figures 1(b) and
(c) and note that, by combining model calculations with exper-
imental results, the longitudinal configuration can be applied
also to ferromagnetic conductors [29]). Owing to its simple
structure, the longitudinal configuration becomes the main-
stream of the SSE research, and the longitudinal SSE (LSSE)
has been observed in various magnetic materials in a wide tem-
perature range from 4.2 K to room temperature (see figure 1(e))
[14, 19, 29–32].

In this paper, we review experiments on the LSSE from
both fundamental and application viewpoints. This paper
is organized as follows. In section 2, we show system-
atic measurements and analyses of the LSSE in paramagnetic
metal/ferrimagnetic insulator junction systems. This section
mainly focuses on the exclusive establishment of the LSSE and
the separation of the LSSE from parasitic thermoelectric arte-
facts, i.e. ANEs induced by magnetic proximity effects [33].
In section 3, we discuss the potential application of LSSE-
based thermoelectric generation, which is conceptually differ-
ent from that based on the conventional Seebeck effect. Here,
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is organized as follows. In section 2, we show system-
atic measurements and analyses of the LSSE in paramagnetic
metal/ferrimagnetic insulator junction systems. This section
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Figure 2. The magnitude of the Nernst coefficient in a number of
metals.

Note that the expression proposed by Oganesyan and
Ussishkin for a compensated two-band metal (that is equation
A3 in [39]):

Bν = 2π2

3
kB

e
KB T τ

h̄
1

(kFℓB)2
(13)

is identical to equation (10). The strict equivalency between the
two expressions becomes explicit if one replaces the magnetic
length, ℓB and the scattering time, τ by their corresponding
values (that is ℓ2

B = h̄
eB and τ = ℓem∗

kF
).

The only difference between the two expressions is
the visibility of the physical parameters which enhance the
Nernst response. According to equation (12), the necessary
ingredients for an enhanced Nernst signal is a large electronic
mobility and a small Fermi energy. Equation (13) yields the
same message by tracing the source of the Nernst signal to a
long scattering time and a small wavevector. In the following,
we are going to use equation (12), because of the simplicity
of distinguishing three scales: first a universal scale (π2

3
kB
e =

283.7 µV K−1), second the inverse of the Fermi energy in
kelvins, and finally the mobility in T−1 (or in m2 V−1 s−1). As
we shall see below, the order of magnitude of the available
Nernst data is in reasonable agreement with the expectations
of the semi-classical theory.

3.3. Nernst, Seebeck, and Hall coefficients

When the temperature is much lower than the Fermi
temperature, the Seebeck coefficient of a metallic system, S, is
expected to become T -linear with a slope linked to the Fermi
temperature through the following simple expression:

S = π2

2
kB

e
T
TF

. (14)

This expression is strictly valid only in the case of a free
electron gas. It is very similar to the one linking the electronic

Figure 3. The magnitude of the Nernst coefficient divided by
temperature.

specific heat, γ , of a free electron gas to its Fermi temperature:

γ = π2

2
kB

TF
n. (15)

Here n is the (molar) carrier density.
Interestingly, the link between γ and S/T survives

even in the presence of strong electronic interaction. An
examination of the available thermopower and specific heat
data in various families of correlated metals suggests that,
at low enough temperatures, the dimensionless ratio of the
Seebeck coefficient to the specific heat remains of the order
of unity [44].

If in equation (12), one replaces the Fermi energy with the
Seebeck coefficient (using equation (14)) and the mobility with
the Hall angle one finds

νB = 2
3 S tan θH. (16)

Therefore, equation (12) is another formulation of a
fundamental link between the Nernst and Seebeck coefficients
through the Hall angle. However, this equivalency between
the two equations only holds in the case of one-band systems.
In a multi-band system, the measured Hall angle can be
significantly lower than the mobility. In bismuth, for example,
in the presence of a magnetic field, σxx ≫ σxy , but N ≫ S.
Therefore, equation (16) fails. However, as we shall see below,
equation (12) holds.

4. Short review of experimental data

In this section we put under scrutiny the available Nernst
data. The study should focus on cases associated with a
Nernst effect generated by normal electrons (as opposed to
the signal linked to superconductivity). The temperature
dependence of the absolute value of the Nernst coefficient of
the systems considered in this review is presented in figure 2.
Theoretically, the Nernst coefficient should become T -linear at
low enough temperature. It is the order of magnitude of this T -
linear coefficient, which should be confronted to equation (10)
(or (11)). With this in mind, figure 3 presents the Nernst

4
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Regimes for transport
• All transport eventually stops: interactions, boundaries… 

• (De)localization of electrons: mfp = λ 

• Which mean free path? 

• Which system size? 

• Localized: λ < few nm 

• Diffusive:  10 nm < λ < 1 μm 

• Coherent: system size < λ  (0.1 - 100 μm) 

• Beyond steady state: see Hardy (Mon) and Ivano (Wed)
13



Orders of magnitude
• Definitions of lifetime:  

momentum: k → k’ 
energy:        E → E’ 
spin:             s → s’ 
others… 

• Effective speed (vF, vth) 
• We observe averaged 

quantities…

14



Non-diffusive transport
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Coherent transport
• Coherence → interference  

• Ballistic, boundary effects 

• Aharonov-Bohm, Anderson, 
weak localization… 

• Classical waves/billiards work 

• Usually through 1D channel: 

Conductance is central object 

Kapitza + contact resistance
16

 Experimental images of electron flow. Image of 

electron flow from one side of a QPC at T = 1.7 K, 
biased on the G = 2e^2/h conductance step.

Dark regions correspond to areas 
where the tip had little effect on QPC 
conductance, and hence are areas 
of low electron flow. The colour 
varies and the height in the scan 
increases with increasing electron 
flow. Narrow branching channels of 
electron flow are visible, and fringes 
spaced by lambdaF/2, half the Fermi 
wavelength, are seen to persist 
across the entire scan. b, Images of 
electron flow from both sides of a 
different QPC, again biased on the 
G = 2e2/h conductance step. The 
gated region in the centre was not 
scanned. Strong channelling and 
branching are again clearly visible. 
The white arrow points out one 
example of the formation of a cusp 
downstream from a dip in the 
potential.

Nature 410, 183 (2001) 
STM ~ current density in GaAs 2DEG



Linear response
• Dielectric response χ or polarisability P 

• Conductance 

• Infinite size and 0 frequency limit 

• Easy in principle 

• Any electronic structure: 

• (TD)DFT, GW, + more 
   (Hardy&Claudia on Monday)
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pi =
2!

N
i, i = 0,1,2, . . . ,N − 1 !12"

and the conductance vertex factor is

s!p" =
1

#2N
$
n=0

N/2

eipn =
1
#2

eip!N/2+1" − 1
eip − 1

. !13"

At half filling, the Fermi momentum kF= p!N/4" and the Fermi
speed are vF=de!p" /dp= t. Making use of the Fermi speed of
the sodium wires considered in Sec. IV, vF=0.33 a.u., we
identify the TB parameter as t=vF /dNa%0.07.

The evaluation of expression !8" for both models is very
fast and can be done for much longer wires than in the case
of first-principles calculations. In the top panel of Fig. 3, we
show the conductance functions for jellium wires of lengths
L=NdNa with N=4, 8, 16, and 100 at temperatures much
lower than the Fermi energy. The curves converge smoothly
to the zero-temperature infinite-length limit that is known
analytically25 and readily give the static limit of one quantum
of conductance G2P!0,""=2e2 /h=1 /! a.u. Furthermore,
the functional form shows finite size effects !the downturn
of the conductance" according to the expected criterion
&Eq. !7"'

#min =
0.44

N
= 0.11,0.05,0.03,0.004 !14"

for N=4,8 ,16,100, respectively. The extrapolation for
N=8 or N=16 gives good estimates of the conductance
through the limit in Eq. !6". Note that one should not ex-
trapolate the values of G!#min" as the extrapolation of a
lower bound will only give a lower bound for the true static
conductance !unless the system size is exhaustively con-
verged". Instead, at a given system size, G!i#" can be lin-
early extrapolated to G!0" from the region above the down-
turn. At temperatures comparable with the Fermi energy
!bottom graph in Fig. 3" the extrapolated value is somewhat
below the zero temperature limit but the functional form of
the conductance is essentially identical.

On the other hand, the tight-binding model, shown in
Fig. 4, offers less reliable extrapolations !at low tempera-
tures, upper panel". This is caused by the nonmonotonic be-
havior of the conductance function at small frequencies,
which in turn arises because of the bandwidth of the model
!here the bandwidth is 2t=0.14 a.u.". Thus, if we use the
#min criterion and trust the conductance function just above,
G!0" will be overestimated and will converge quite slowly
with system size. In contrast to the jellium case, we do not
have the analytical result for an infinite size chain and arbi-
trary imaginary frequency; instead as the N=" curve we use
the overconverged results for N=1000 and N=5000, which
are numerically identical in the interval of frequencies shown

FIG. 3. !Color online" Convergence of the conductance of a jellium wire
with respect to system size. The lengths correspond to sodium wires 4, 8, 16,
and 100 atoms long. Upper graph: T$EF !%=1000". Lower graph: T(EF
!%=30". The curves at low temperature approach the analytical infinite-size
result !for T=0, continuous line". The curves should be extrapolated to zero
frequency, disregarding values for #&#min !indicated by a dot on each
curve".

FIG. 4. !Color online" Convergence of the conductance function of a tight-
binding model with respect to system size !4, 8, 16, and 100 atoms". vF is
fixed to that of the sodium wire. Upper graph: T$2t !%=1000". Lower
graph: T(2t !%=30", where 2t is the bandwidth. The curves give the cor-
rect zero temperature conductance for L→", but the extrapolation to #=0
is complicated by the nonmonotonic behavior at small frequencies.
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results. We take advantage of this fact and use the periodic
boundary conditions and a plane-wave basis for the ab initio
calculations below.

It is presumed in the following that the junction whose
conductance we are searching for is centered at 0 in the
middle of the cell !which thus extends from −L /2 to +L /2".

The calculation of the electronic response function at the
level of local or semilocal TDDFT, which then leads to the
conduction function #Eq. !1"$, proceeds in three steps. First
we perform a calculation of the occupied !en!0" as well as
the unoccupied !en"0" eigenenergies en and eigenstates
#n!r" of the system.

Second, we use the eigenvalues and eigenstates to com-
pose the positive imaginary-time Matsubara Green’s function

G!r,r!;$" = %
n

#n!r"#n
!!r!"

e−en$

e%en + 1
, !2"

where % is the inverse temperature. As G is antiperiodic in
imaginary time !fermionic" there is no need to specify ex-
plicitly its behavior for negative imaginary time.

The electronic response to the total electric field is char-
acterized by the polarizability

P!r,r!;$" = − G!r,r!;$"G!r!,r;− $"

= G!r,r!;$"G!r!,r;% − $" , !3"

which, after Fourier transformation, $→&, and integration
over the cross-sectional area of the junction A gives the in-
tegrated polarizability relevant for charge transport

P!x,x!;i&" =
1
A2& & dS"dS"! P!r,r!;i&" . !4"

Methods going beyond the present level of approxima-
tions, i.e., using nonlocal exchange-correlation kernels27,28 or
Green-function-based many-body methods,29 would differ in
the above Eqs. !2" and !3". The expression for the irreducible
polarizability, Eq. !3", would contain further vertex
diagrams29 and, in the case of many-body methods, the
Green’s function cannot be expressed in terms of one-
electron wave functions as in Eq. !2". However, the discus-
sion that follows would apply also to these computationally
more demanding approaches.

Finally, the third step consists of integrating the polariz-
ability to obtain the conductance function. For an infinitely
long system, the conductance is obtained from the
expression26

G2P!&,'" = &&
−'

0 &
0

'

P!x,x!;i&"dxdx!, !5"

where this integral converges for any finite & since
P!x ,x! ; i&"→0 for x ,x!→'. The integration region corre-
sponds to choosing the elements of polarizability which con-
nect points on opposite sides of the junction. This is intuitive,
as we are interested in how a perturbation on one side can
influence charges on the other side, through the junction.

For a finite system of length L we obtain the correspond-
ing function

G2P!&,L" = &&
D

P!x,x!;i&"dxdx!, !6"

where D is a domain of positive x! and negative x which
must guarantee the correct limiting procedure. Using a peri-
odic supercell, for x!−x→ (L, we approach a periodic im-
age of the system we want to study. Further, if the system is
not translationally invariant we will approach a region of the
!x ,x!" plane !the lower right hand corner of Fig. 1", where
the polarizability behaves very differently from that near
!0,0" !typically one with a more metallic behavior and larger
polarizability than the junction". Hence, a correct integration
needs to truncate the quadrant defined by −L /2!x!0 and
0!x!!L /2. For a finite system there is no unique choice of
D, but there is a natural one, which is 0!x!!L /2 and
−'x!'!x!0, or equivalently 0!x!−x!L /2, defining a
triangle between 0 and the points !0,L /2" and !−L /2,0"
!Fig. 1".

The finite size of the system determines the minimal
frequency which can be reliably described in the conduc-
tance, or equivalently the longest time propagation. For
longer times or lower frequencies the electrons will reach the
limits of the system, and the conductance decays. The mini-
mum frequency may be estimated as

&min = 2)vF/L , !7"

where vF is the Fermi speed. Thus, an electron at the Fermi
level takes time 1 /&min to traverse the whole system. This
frequency will be essential in determining how to extrapolate
the conductance function to zero frequency: Eq. !7" is a
rough !in the sense that it comes from a crude approximation
for the finite size effects" lower bound for the validity of the
conductance function. &min always corresponds to a sharp
downturn in G!i&". In order to calculate the static conduc-
tance, one has to extrapolate the conductance curve from an
interval in frequency above &min down to 0. We will usually
extrapolate linearly after finding that the apparent functional
form of G!i&" changes substantially in the different cases
below and is quite different from the analytical jellium
result.25 In the following, we will place a dot on conductance

FIG. 1. !Color online" Left: example of a color plot of the polarizability
P!x ,x!" for a junction. P is nonzero only near the diagonal x=x! and lower
in the central tunneling region !see below". Right: the region of spatial
integration for the polarizability as in Eq. !6". For periodic systems the
polarizability will have spurious images, which must be excluded from the
integration region. Taking the thermodynamic limit will increase the size L
of the system and the triangular domain converges uniformly to the quarter
plane 0!x!' and −'!x!!0. The inset is a cartoon of an atomic wire
with a central site and two positions x and x!.
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shown in Fig. 8 for the minimal electrode thickness of two
layers !in each electrode". Electrodes 3 and 4 layers thick
were also tested. Because of periodicity and in order to main-
tain a continuous fcc structure at the cell boundary, the point
of contact of the wire to the right electrode alternates be-
tween the different possible fcc stacking sites !for two and
four layer electrodes" and an on-top position !for three layer
electrodes". We find a little effect of contact position on the
conductance of the junction !see below" in this continuously
metallic, well contacted case.

A. Technical details

The pseudopotential we use is of the Hartwigsen–
Goedecker–Hutter !HGH" flavor40 with only the 6s electrons
in the valence. Our choice of pseudopotential is justified by
its softness, by the chemical homogeneity of the system, and
our intention to go beyond LDA and include many-body cor-
rections. We have performed tests on fcc gold in the GW
approximation !which is beyond the scope of the present
article", including the 5d electrons. The problems recognized
by Marini et al.41 for Cu appear for Au as well: the exchange
self-energy is quite badly represented for the 5d electron
states due to the absence of the 5s and 5p. The latter are far
in energy but have an important spatial overlap with the 5d.
Consequently, the exchange self-energy lacks important con-
tributions if one uses only the valence electrons. The GW d
bands are very poor !whereas their position in LDA is very
close to experimental values"; some bands are pushed down
and others up to the Fermi level, which would change the
conductance severely. The use of a purely 6s potential is less
realistic but reduces these exchange effects !which are now
between the 6s and the core 5d states". A more complete
solution is that adopted by Shishkin and Kresse42 in the PAW
formalism.43 As PAW allows explicit reconstruction of the
core states, the exchange with the valence can be calculated
explicitly. Finally, the d electrons do not complexify the in-
dependent particle conductance calculation formally, but do
make the calculations much heavier !with additional ten
electrons per atom". As the states at the Fermi level are
purely s-electronlike, the conductance will not be affected
strongly. However, as our method is an integral of the
dielectric response of the system, the absence of the d
electrons will have an indirect effect through changes in the
polarizability.

B. Results

From a calculation of a uniform wire !with k-points
along the wire axis", we estimate the Fermi speed in the wire
to be 0.42 a.u. !1.9!106 m /s", corresponding to a
wavelength of 7.22 bohr. A simple metal approximation
for the bulk gives an estimated Fermi speed of 0.64 a.u.
!1.4!106 m /s" from the Au Seitz radius. A DFT calculation
of fcc bulk naturally gives a more complex band structure—
the modulus of the Fermi speed varies by some 20% in re-
ciprocal space. The HGH pseudopotential gives an average
value of 1.02 a.u. !2.2!106 m /s". A more complete pseudo-
potential with d electrons reduces this value to 0.67 a.u.
!1.5!106 m /s". The value we are interested in is the speed
of propagation of an electronic signal through the whole sys-
tem, i.e., through the 3D bulk !with the pseudopotential we
are using" and the wire, which will be between the pure bulk
and pure wire values. With the bulk and wire vF, we can
estimate the minimal frequencies that can be represented for
different unit cell sizes. With cells of lengths 27, 36, and 45
bohr, we obtain "min=0.163, 0.132, and 0.113 hartree.

In Fig. 9 !lowest three curves" we represent the conduc-
tance as a function of imaginary frequency for a series of
gold junctions !like that schematized in Fig. 8" with 2, 3, and
4 layers of fcc gold in the bulk leads. As before for linear
wires, initially only the # point wave functions are used and
G!"" takes similar values to the case without leads, which
would suggest a similar system length of #8 layers in each
lead to converge the conductance. The extrapolated value
close to the quantum of conductance is in agreement with the
results of the more extended models of the monatomic gold
contacts.44

With bulk leads it is essential to look at k-point conver-
gence: to represent the bulk states correctly, we increase the
sampling of k-points in the direction perpendicular to the
junction axis. Again, as noted above, one must also take care
to keep the nanojunctions themselves well isolated in the

FIG. 8. !Color online" Unit cell of a short gold wire contacted with bulk
gold electrodes, which are two layers thick. Both atoms sit at natural fcc
hollow positions on the !111" surfaces. 0 0.5 1
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FIG. 9. !Color online" Conductance functions of gold junctions containing a
two atom wire and bulk fcc leads. For 2, 3, and 4 layers of gold in the leads
and only the # k-point !solid black, dotted, and dashed" and for two layers of
gold and a 4!4 sampling of the BZ perpendicular to the wire axis !solid
orange curve". The horizontal line is the quantum of conductance. The peak
in the conductance moves to lower energies as the system length is in-
creased. In the case with denser BZ sampling the conductance function is
much better represented even if the minimum frequency has not changed.
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Green’s functions
• Green’s function:   HG = δ(x-x’)δ(t-t’)     G ~ H-1 

• NB: also for other types of transport 

• Equilibrium or non equilibrium (ΔV ≠ 0)  

• 1D conductance 

• Usually in real space description
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Green’s functions
• Embedding "potential" for central region 

• Atomic orbitals + DFT Hamiltonians: 
GOLLUM, SMEAGOL, TRANSIESTA…
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by solving the infinite system of equations:

− =  . (8)

This equation can be simplified by replacing the semi-infinite lead Greens functions  i by their
surface Greenʼs functions GS, 0

i , whose dimensions are N ×N. The remaining system of
equations takes the form:

ð9Þ

where the coupling Hamiltonians are now:

ð10Þ

and the surface Greenʼs functions of the isolated leads GS
i
, 0 can be obtained as described in

section 2.1.3 below. The equation for the full Greenʼs function can be written in a more
compact form as:
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The scattering matrix can be computed using the Greenʼs functions’ matrix elements GS
ij

connecting the different leads, which can be obtained by inverting only the upper matrix box in
equation (9):

= +− −( )( )G G K K . (12)S S, 0
1 coup EM coup † 1

In contrast, access to the local electronic and current densities at the EM region is obtained
from:

= − + − − ( )( )K G K . (13)S
EM EM coup †

,0
1 coup

1

The above expressions for the Hamiltonians are very general. Any appropriate tight-
binding Hamiltonian could be introduced by hand to allow computation of the transport
properties of a parametrized model. Alternatively, any DFT code using localized basis sets can
provide them. In this case, the DFT program produces the Hamiltonians and Fermi energy of
the EM region EM,  EM, and EF

EM, and of each lead ±H i
0, 1, ±S i

0, 1, and EF
i in separate runs.
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Hopping
• Localized electronic states 

• Fit model systems / Hamiltonians 

• Thermal or quantum transfer of charge 

• Organic molecular conductors 

• Charge transfer complexes 

• Small-medium sized polarons
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picture at high temperature even leads to a situationwhere, in
general, the underlying transport mechanism is unknown.
Consequently, this fundamental problem can only be solved
by a comprehensive theory for all energies that is valid for all
temperatures of interest and which includes band transport
and hopping on equal footing.

The second problem arises from our lack of knowledge
of accurate values for the essential material parameters.
These material parameters enter into a theoretical transport
description and are required for studies that go beyond
phenomenological approaches. The electronic bandwidths
for instance are very difficult to measure in photoemission
spectroscopy and, hence, only few data exist for pentacene

[40, 41, 47, 48], rubrene [39] and sexiphenyl [38] measured
for single-crystals or crystalline films. Moreover the
anisotropy, effective masses and the strength of the
electron–phonon coupling are basically unknown. The
importance of obtaining the correct material parameters,
therefore, adds a computational aspect to the challenge of
transport simulations. Therefore, besides serving as a review
of systematic transport approaches, the present article also
contains a method for their calculation and a collection of
such values from first principles simulations.

The article is organized as follows.After the introduction
into the model for electron–phonon interaction in Section 2
we proceed by presenting different approaches towards a full
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Figure 2 (online colour at: www.pss-
b.com) (a) Measured temperature
dependence and anisotropy of carrier
mobilities for holes and electrons in
naphthalene in crystallographic direc-
tions a, b and c!. Adapted from Ref.
[29]. (b) Naphthalene crystal structure
in a top view (upper part) and side view
(lower part) to the herringbone plane.

Figure 1 (onlinecolourat:www.pss-b.com)(a)Anisotropyofholemobilities inrubrenesinglecrystalsasmeasuredbydifferentgroups(see
Ref. [1] fordetails). (b)Rubrenemoleculeandherringbonestackingof rubrenemolecules in thecrystal structure, adopted fromRef. [2].Two
important crystal axes are indicated.
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Ab initio polaron mobility
• Tight binding limit parametrized with DFT 

• No phonon dispersion  

• EPC ~ shift in bands 

• All polaron strengths 

• Missing full bands… 

• + some quantum effects
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naphthalene hole transport

statistical factor nkð1"nkÞ/kBT cancels the 1/T prefactor. In
contrast, in the small-polaron theory (i.e. by lettingeeMN ! 0)
the correct low-T limit is not accessible. Of similar
importance is the fact that polaron states k1 and k2 can have
different energies which leads to the inclusion of possible
inelastic scattering processes in the general theory including
single and multiple phonon absorption and emission events.

Beside this theoretical discussion, what is the difference
between both theories in their application to a real crystal?
Coming back to the prototypical naphthalene, we contrast in
Fig. 5 the results for hole mobilities in naphthalene from Eq.
(18) to the experiment and to the small-polaron theory. The
full-bandwidth theory (left panel) shows important features
of experimental carrier mobilities (middle panel) such as the
correct low-T behaviour with plateau-like mobilities. At a
temperature which may be identified with a phonon energy
of a strong coupling mode the experimental curves turn
downwards and drop rapidly by two orders of magnitude
when approaching room temperature. The mobility decrease
follows a power-law dependence T"g with g $ 3. This
transition to high-T mobilities and the power-law tempera-
ture dependence with g $ 3 is simulated by the full-
bandwidth theory. In addition to the temperature dependence
the experimental mobility anisotropy is reproduced best by
the full-bandwidth theory. Among the crystallographic
directions one finds two high-mobility directions (both lying
in the herringbone plane and are representative for the high
mobilities within this plane) while the out-of-plane mobility
is reduced by a factor of 4. In contrast to these results of the
full-bandwidth theory the characteristic anisotropy was not
fully found in the narrow-band theory (right panel in Fig. 10)
where only one high-mobility direction was identified. This
is explained by the improved description of the coherent
mobility contribution in Eq. (19), which, at low tempera-
tures, is related to the curvature of the bands at the valence
band maximum for holes 90,. The incorrect low-temperature

1/T singularity, which is observed in the narrow-band theory
and its removal in the full-bandwidth theory has been
discussed above.

As a last point one should pay attention to the separation
between coherent (dashed line) and incoherent (dotted line)
contributions to the total carrier mobility in Fig. 10. From
both curves one concludes that band transport dominates at
low T and that at room temperature the carriers move
predominantly by incoherent phonon-assisted hopping.
Figure 10 shows that the temperature interval for a transition
between both transportmechanisms is very small but, maybe
unexpectedly, that the temperature dependence of the total
mobility does not change at this transition point. This is an
interesting finding in the light of the original discussion by
Warta and Karl in their experimental paper who stated that it
would not be easy to understand why a change in the
transport mechanism should not be associated with an
observable change in the temperature dependence [91].
Figure 10 shows that, thanks to the inclusion of both transport
mechanisms on equal footing, this can indeed be the case and
described by theory. It is not sufficient to include polaron
effects in a relaxation-time-approximation treatment of the
Boltzmann equation. On the contrary, both mechanisms are
necessary to cover the whole temperature region. Although
incoherent hopping is the prevailing mechanism at room
temperature, the temperature dependence is decreasing as for
coherent transport. The activation aspect often identified
with incoherent hopping is not obvious from the temperature
dependence since the mobilities are decreasing. However, it
is important to realize that, nonetheless, phonons are
required for this contribution which couple strongly to the
charge carriers as discussed above.

6 Summary and outlook In the present paper we
have discussed the relationship of different transport
approaches as schematically illustrated in Fig. 11. While
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arise from short [O???H] and [H???H] distances when interstack
hydrogen bonds are formed. These interstack interactions are between
neighbouring arms and allow the stacks to pack tightly into a supra-
molecular network.

Because the electron transfer occurs along the stacking axis, we char-
acterized ionicity12,14, r, which is a measure of the extent of charge
transfer, to investigate how its magnitude affects ferroelectric behaviour.
Polarized vibrational spectroscopy12,15 (Fourier transform infrared) was
used to determine r for each complex (Supplementary Information).
The ungerade modes were used to calculate12 r because they are not
influenced by electron–molecular vibrational interactions. At room
temperature, r values for LASO complexes 1?2, 1?3 and 1?4 (crystals
shown in Fig. 3a–c) were determined by following the linear shift of the
C5O stretch (1,728–1,716 cm21) polarized parallel to the donor–
acceptor stack. Complexes 1?2 and 1?3 were found to be ionic with
r 5 0.68 and 0.89, respectively, while 1?4 lies close to the neutral–ionic
border12,13 (r 5 0.5) with r 5 0.43. The polar nature of the crystals
enables, therefore, the LASO network to be ferroelectric. Along with
significant electron transfer, a violation of the mutual exclusion rule
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Figure 1 | Crystal structures of LASO complexes.
a, Structural formulae of electron donor and
acceptor molecules used in this research.
Compound 1 is a pyromellitic diimide-based
electron acceptor (blue). Compounds 2 and 3 are
aromatic electron donors (red). Compound 4 is an
electron-rich TTF derivative (green). The sites that
participate in non-covalent bonding interactions
are depicted in purple, and hydrogen bonds are
depicted as purple dashed lines.
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molecule(s) within a network (white, distance (d) equals the van der Waals
distance; blue, d exceeds the van der Waals distance; red, d is less than the van der
Waals distance). Right, the Hirshfeld surface shown was calculated for n 5 13
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Figure 3 | Growth and charge-transfer anisotropy of LASO complexes.
a–c, Images showing the growth of LASO networks 1?2 (a), 1?3 (b) and
1?4 (c) after 48 h. The long axis corresponds to the charge-transfer axis and the
systems are single crystalline. d–i, Optical microscopy of very thin (,10 mm)
co-crystals with linearly polarized white light. In d–f, light is polarized
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In g–h, the same structures are shown with the light polarized parallel to the
charge-transfer axis, demonstrating the strong absorbance along a single axis
on account of the photoexcitation of the donor–acceptor dimer.
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current and degradation are possible, thus limiting the performance of
devices.

Larger hysteresis loops were obtained (Fig. 6) in complex 1?3 at
300 K because this network is able to withstand higher voltages. It
is interesting to note that this hydrogen-bonded network has the
highest ionicity (r < 0.89) of all three materials presented here.
The only charge-transfer ferroelectrics that demonstrate polarization
bistability9,10 are TTF?QCl4, TTF?QBrCl3 and TTF?QBr4; for all three
crystals, TC occurs at cryogenic temperatures. As pointed out in ref. 22,
high ionicities inhibit current flow in charge-transfer crystals because
of Coulombic interactions. Negative and positive ions in a lattice can
behave as ionic impurities that actively scatter moving electrons.
Complexes that have large ionicities may therefore mitigate leakage
current to some degree, for example, 1?3 and TTF?QBr4. In this
context, developing networks of charge-transfer complexes with large
ionicities maybe a useful design rule to achieve ferroelectricity at room
temperature and above.

Ferroelectric complexes 1?2 and 1?4, when characterized by SQUID
magnetometry, revealed magnetic hysteresis loops (Supplementary
Information). Extensive elemental analysis described in Supplemen-
tary Information showed that any magnetic impurities present are
below the present detection limits of inductively coupled plasma atomic
emission spectroscopy. Other measurements described in Supplemen-
tary Information (magnetic force microscopy) were carried out in an
attempt to verify the ferromagnetic behaviour. The small magnitude of
the magnetization (Supplementary Fig. 14) in the hysteresis loop pre-
cludes us, however, from labelling these systems as ferromagnetic.
Nonetheless, the unprecedented room-temperature ferroelectricity in
these supramolecular networks and the observation of magnetization
make the LASO design relevant to future explorations of multiferroic
behaviour in metal-free systems at ambient temperatures.

In summary, we have developed a molecular design that allows
donor and acceptor molecules to self-assemble into charge-transfer
ferroelectric networks at ambient temperatures. The new structures
challenge the long-standing notion that donor–acceptor mixed-stack
materials cannot exhibit a ferroelectric TC above room temperature.
The demonstration of ferroelectric properties in an organic network
affords us opportunities to produce these systems in new forms—
such as electrically addressable hydrogels, ferroelectric catalysts and
charge-transfer-based sensitizers for photovoltaics. The combination
of donor–acceptor interactions with hydrogen-bonded networks
offers a promising supramolecular platform to design novel organic
electronic structures.

METHODS SUMMARY
Synthesis. Compound 1 was obtained (Supplementary Information) in one step by
imidization23 of the anhydride. The compound was purified by recrystallization from
tetrahydrofuran and hexanes. Compounds 2 and 3 are commercially available, but
were recrystallized from tetrahydrofuran and hexanes before use. The TTF-based
donor 4 was synthesized using published procedures24. Standard purification was
adequate to produce functional and robust ferroelectrics.
Network crystallization. The crystals were grown under darkness from a layered
solvent system of 1-chlorobutane over 1,2-dichloroethane/diethyl ether (2/1 v/v
%) at ambient temperatures. A dry 1:1 donor–acceptor mixture, with an acceptor
(1) concentration of 2 mg ml21 for 1?2, 1 mg ml21 for 1?3 and 0.5 mg ml21 for
1?4, produced crystals that grew to several centimetres in size in ,72 h after the
first crystals had become visible (within 10 min). Anhydrous conditions are crucial
for the growth of high-quality single crystalline networks. If traces of water are
present in the solvent or the starting materials, growth is heavily branched
(Supplementary Information) or sometimes even non-existent. Compound purity
and concentration are also very important growth parameters. Impurities were
found to induce epitaxial branching or even inhibit crystal growth, while concen-
tration affects growth times and structure lengths.
Electronic measurements. The ferroelectric structures are mechanically robust
and can be handled with vacuum tweezers. Gold wire electrodes (12.5mm) were
attached on either end using gold paint (Ted Pella Gold Paste). The resulting devices
were tested for ferroelectricity in a physical properties measurement system
(Quantum Design PPMS 6000) under an inert atmosphere. The temperature-
dependent dielectric constants of LASO complexes were measured at 10 V with a
1, 5 or 10 kHz frequency. These measurements were performed using an Agilent
E4980A LCR meter. Polarization hystereses were measured using a ferroelectric
tester at 0.1 or 1 Hz frequency (Radiant Technologies Precision LC with Trek
amplifier).
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Charge transfer dynamics
• Hubbard chain+dimerization 

• DFT for molecule pairs 

• Polarizable model screening 

• P and ρ are tiny in HBCT! 

• Infirm experiments on new 
hydrogen bonded 
molecules!
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Are Hydrogen-Bonded Charge Transfer Crystals Room Temperature Ferroelectrics?
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We present a theoretical investigation of the anomalous ferroelectricity of mixed-stack charge transfer
molecular crystals, based on the Peierls-Hubbard model, and first-principles calculations for its para-
metrization. This approach is first validated by reproducing the temperature-induced transition and the
electronic polarization of TTF-CA, and then applied to a novel series of hydrogen-bonded crystals, for
which room temperature ferroelectricity has recently been claimed. Our analysis shows that the hydrogen-
bonded systems present a very low degree of charge transfer and hence support a very small polarization. A
critical reexamination of experimental data supports our findings, shedding doubts on the ferroelectricity of
these systems. More generally, our modeling allows the rationalization of general features of the
ferroelectric transition in charge transfer crystals and suggests design principles for materials optimization.

DOI: 10.1103/PhysRevLett.113.237602 PACS numbers: 77.80.-e, 71.10.Fd, 71.20.Rv, 71.30.+h

Mixed-stack charge transfer (CT) crystals (e.g., TTF-
CA, TTF-BA) are a spectacular example of multifunction-
ality in organic materials. Being one of the few examples of
quantum ferroelectricity among organics [1–4], CT crystals
offer novel opportunities to achieve magnetoelectric control
of the polarization [5], and for the realization of ultrafast
nonlinear optical oscillators [6]. Moreover, the occurrence
of photoinduced phase transitions [7] triggered by multi-
excitonic phenomena [8,9] make these systems interesting
for optical switching, memory, and energy generation
applications.
This intriguingly rich physics emerges from a quite

simple structure, in which electron-donor (D) and -acceptor
(A) molecules pack in an alternating one-dimensional (1D)
pattern DþρA−ρDþρA−ρ characterized by a fractional
charge transfer ρ [see Fig. 1(a)]. Both neutral (N,
ρ≲ 0.5) and ionic (I, ρ≳ 0.5) CT crystals are known,
and a few of them can undergo the so-called N-I transition,
from a N phase to a low-temperature (T) and high-pressure
I phase [10–12]. In I systems a generalized Peierls
instability may lead to a dimerization of the lattice and
ferroelectric phases characterized by an exceptionally
strong electronic polarization, pointing antiparallel to
molecular displacement dipoles [3].
The archetypical organic CT ferroelectrics are the com-

plexes of the tetratiafulvalene-halo- p-benzoquinone
(TTF-QBrxCl4−x) family, presenting transition tempera-
tures Tc ¼ 81, 67, and 53 K for x ¼ 0 (TTF-CA),
x ¼ 1, and x ¼ 4 (TTF-BA), respectively [1]. Room-
temperature ferroelectricity has recently been reported in
a novel series of CT crystals characterized by the presence
of a supramolecular network of hydrogen bonds [H-bonded
charge transfer (HBCT), see Fig. 1] [13]. This seems to
pave the way for their application in realistic all-organic
devices. Remarkably, CT and H bonds, two phenomena

which both possibly lead to ferroelectricity in molecular
systems [1,14,15], coexist in HBCT.
In this Letter, by means of a novel theoretical approach

based on a model Hamiltonian fed with first-principles
inputs, we discuss on equal footing TTF-CA and HBCT, to
determine the origin of the unprecedented properties of the
latter and provide general insights on the anomalous
ferroelectricity of mixed-stack CT crystals.
Electronic and structural instabilities of CT crystals are

described by the 1D modified Hubbard Hamiltonian with
electron-phonon coupling [16,17], which, in conjunction
with the modern theory of polarization in dielectrics [18],

FIG. 1 (color online). (a) Sketch of a dimerized mixed stack
with alternating CT integrals and molecular displacements (ex-
aggerated for clarity). (b) Chemical structures of D (red) and A
(blue) molecules considered in this work. HBCT are complexes
formed by the same acceptor, A1, and the three different donors,
D1,D2, andD3. (c) Perspective view of molecular packing in the
A1-D4 crystal.
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M and εc are here evaluated with a point-charge model, in
which dielectric screening is accounted for with a micro-
scopic model for molecular polarization, based on DFT
inputs [29–31].
The computed values ofM, shown in Fig. 2(d), are large

and negative as foreseeable for ionic lattices. The
Madelung energy decreases in magnitude with T in
TTF-CA, confirming the expected gain in electrostatic
energy upon lattice contraction. Smaller jMj values are
found for HBCT: the difference with respect to TTF-CA is
ascribable to the looser molecular packing in the presence
of side chains.
The polarization of the environment is also responsible

for a renormalization of the crystal ionization gap with
respect to its gas-phase value; i.e., Γ → Γþ ΓP [29]. ΓP
[squares in Fig. 2(c)] has been evaluated to be about
−0.2 eV [29].
With the set of parameters at hand, we can now perform

MPH calculations specific for TTF-CA and HBCT. As in
previous works [17,21], Hamiltonian (2) is diagonalized
exactly for chains with N ¼ 16 sites and periodic boundary
conditions. 3D electrostatic interactions are treated at the
mean-field level. The Peierls phonon coordinate δ is set to
the values determined from experimental structures [see
Fig. 2(b)], while the Holstein coordinate is relaxed [32]. In
the following, we will show results obtained with the
CAM-B3LYP estimates of t, δ, and Γ. The other functionals
provide similar results [29].
Calculated and experimental ionicity across the N-I

transition of TTF-CA are shown in Fig. 3(a). Our

calculations describe the first-order transition of TTF-CA
without adjustable parameters, locating the critical point in
the correct T range. Although the ionicity jump at the
transition is overestimated, this result confirms the common
picture of this transition: TTF-CA lies close to the N-I
boundary, where a small increase in the Madelung energy
drives the system from the N to the I phase.
The polarization along the stack (crystal axis a in TTF-

CA) can be decomposed in an electronic contribution Pel
and an ionic one Pion. According to the modern theory of
polarization, Pel is computed as a Berry phase [18,20]:

Pel ¼
ed
πΩ

Im lnhΨj exp
!
i
2πM̂
N

"
jΨi; ð3Þ

where Ψ is the many-body ground state, M̂ is the dipole
moment operator of the open-boundary chain, d is the
intermolecular distance (at δ ¼ 0), Ω is the volume per DA
pair, and e is the elementary charge. The ionic contribution,
due to frozen charges %ρ at molecular sites displaced by u
[see Fig. 1(a)], is Pion ¼ eρu=Ω.
The electronic polarization computed for TTF-CA,

shown in Fig. 3(b), is of the order of magnitude of
experimental values (6.3 μC cm−2 at 51 K [3]), and
correctly points antiparallel to the almost negligible ionic
contribution, as also reported by Giovannetti et al. [33]. Pel
is evaluated at both the calculated and experimental
ionicity, showing a very good agreement with experiments
in the second case. This allow us to conclude that, apart
from inaccuracies in the estimation of ρ, the MPH model
provides a quantitative description of the electronic polari-
zation of CT crystals. The better result obtained for Pel with
respect to the previous ab initio attempts [33,34] suggests
that an explicit, though approximate, treatment of the
strong correlations seems to be more important than other
details of the electronic structure.
MPH calculations for HBCT predict all of the three

crystals to be largely neutral (ρ < 0.1) and characterized by
very small polarizations [see Figs 3(c) and 3(d)]. This is in
marked contrast with the results of Ref. [13], where HBCT
crystals were attributed ρ values spanning a range of
0.4–0.9 and polarization comparable to or higher than
TTF-CA. The discrepancy between experiment and theory
is addressed in the following.
Experimental estimates of ρ in CT crystals rely on the

approximately linear dependence of the frequency of
asymmetric C ¼ O stretchings on the molecular charge,
as it is well established for CA complexes [35]. A similar
procedure has been used for HBCT in Ref. [13], where a
tiny hardening of the C ¼ O mode of A1, Δ~ν ¼ ~ν− − ~ν0 ¼
14 cm−1, has been ascribed to the complete molecular
ionization. This is at odds with what is observed in CA,
where, in agreement with chemical intuition, the relevant
bond strongly weakens in ionized molecules (Δ~ν ¼
−160 cm−1) [35]. Normal mode calculations on neutral

FIG. 3 (color online). Ground-state ionicity and polarization of
TTF-CA and HBCT calculated with the MPH model and CAM-
B3LYP parameters in Fig. 2 (data points). Higher T resolution for
TTF-CA (lines) is obtained with diagonalizations for interpolated
values of the parameters. The calculations describe (a) the
T-induced N-I transition of TTF-CA and (b) the direction and
magnitude of the polarization. Unlike in Ref. [13], all HBCT
crystals are found to be largely N (c) and with negligible P (d)
(see text).
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Diffusive transport
• Goldilocks regime (most common): 

Frequent scattering, but not too strong 

• Ohmic conductance I ~ V 

• Semi-classical BTE 

• or Green-Kubo 

    (cf Christian Wed)
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Scattering mechanisms
• Phonons 

• Impurities / defects 

• Magnons, electrons 

• Dislocations / grains / surfaces… 

• Easy to add scattering terms (Matthiessen)
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Ioffe Regel

• Large T or strong impurity limits 

• How often can you scatter? 

• Fundamentally:  λ > a 
Ioffe Regel Prog. Semicond. 4, 237 (1960) 
DFT: Gunnarsson RMP 75 1085 (2003) 

• Ex: Earth’s core σ larger than 
expected
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The impurity resistivity of silicon, consistent with the saturation
model, can be well-fit by the relation (Fig. 4):

qSiðVÞ ¼ F1 $ F2 %
V
V0

! "F3

¼ 3:77$ 1:48% V
V0

! "%3:10

$ 10%8ðXm=at:%Þ ð14Þ

Considering potentially anisotropic deformation of the sample,
minimum and maximum resistivities of hcp iron–silicon alloy
are obtained from Eqs. (6) and (8), respectively. This gives
F1,Si,max = 6.29 $ 10%8 O m/at.%, F2,Si,max = 1.59, F3,Si,max = %3.32, and
F1,Si,min = 2.21 $ 10%8 X m/at.%, F2,Si,min = 1.45, F3,Si,min = %3.35 for
Eq. (14).

Earlier static measurements of iron-silicon alloys have been
performed only up to 10 GPa (Bridgman, 1957), while shock-wave
data are available to 140 GPa (Matassov, 1977). Based on this
shock data and Matthiessen’s rule, Stacey and Anderson (2001)
derived the impurity resistivity of silicon in iron to be
2.7 $ 10%8 X m/at.%, which is pressure independent. This value is,
however, twice as low as 6.5 $ 10%8 X m/at.% from Bridgman’s
static data, possibly due to both pressure and saturation effects.

Because our present experiments did not reach saturation, we
compared the predictions of our model with previous shock com-
pression data on Fe–Si alloys in which the saturation effect is sig-
nificant (Matassov, 1977). The results show that the saturation
model is in good agreement with the experimental data (Fig. 5).

In general, the resistivity of transition metals exhibits a very
minor change upon melting (Cusack and Enderby, 1960; Faber,
1972; Van Zytveld, 1980), which is confirmed by previous large-
volume press experiments on iron up to 7 GPa (Secco and Schloes-
sin, 1989). In the case of transition metals, the mean-free path near
the melting point is very close to its inter-atomic distance, and
therefore the resistivity change is suppressed by the saturation ef-
fect (Mott, 1972). Additionally, the validity of the Wiedemann–
Franz law has been confirmed for liquid iron at 1 bar (Nishi

et al., 2003). This is consistent with a dominance of heat transport
by electrons, as opposed to lattice phonons, in both the liquid and
solid state. Thus we consider the resistivity of hcp iron to be a good
proxy for the conductivity of liquid iron at core conditions.

Here we estimate the electrical resistivity of the Earth’s core
from Eqs. (9)–(12), and (14). Assuming silicon as a sole alloying
element, the Si content in the outer core is estimated to be 22.5 at.%
to account for the 10% core density deficit (Sata et al., 2010). The
total resistivity of Fe78Si22 is qtot = 1.02(+0.04/%0.11) $ 10%6 for
CMB (135 GPa, 3750 K) and 8.20(+0.54/%1.31) $ 10%7 X m for
inner core boundary (ICB) (330 GPa, 4971 K) conditions (Table 1).
Application of the Wiedemann–Franz law to such resistivity
values at high pressure and high temperature gives a thermal
conductivity of 90.1(+9.9/%3.5) and 148(+28/%9) W/m/K, respec-
tively. We find that ksat is typically about twice as large as kideal,
which emphasizes the importance of saturation, and most
importantly also limits the influence of any errors in our treatment
of kideal.

4.3. Resistivity and thermal conductivity of other possible iron-alloys
in the core

The exact light element composition of the core is presently un-
known. We therefore approximate the impurity resistivity of other
possible light elements by following the Norbury–Linde rule. While
this rule is not confirmed at conditions of Earth’s core, it is the sim-
plest way to obtain a first estimate for the conductivity of other
alloying components. Norbury (1921) found that the impurity
resistivity of some dilute metallic solid solutions is enhanced with
increasing horizontal distance between the positions of impurity
element and host metal in the periodic table. This implies that
(1) impurity elements in the same group exhibit comparable impu-
rity resistivity and (2) group IV elements have larger impurity
resistivity than group VI elements for iron-based alloys. On the ba-
sis of this relationship, the impurity resistivity of silicon is the
same as that of carbon, because both C and Si are group IV
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Considering potentially anisotropic deformation of the sample,
minimum and maximum resistivities of hcp iron–silicon alloy
are obtained from Eqs. (6) and (8), respectively. This gives
F1,Si,max = 6.29 $ 10%8 O m/at.%, F2,Si,max = 1.59, F3,Si,max = %3.32, and
F1,Si,min = 2.21 $ 10%8 X m/at.%, F2,Si,min = 1.45, F3,Si,min = %3.35 for
Eq. (14).

Earlier static measurements of iron-silicon alloys have been
performed only up to 10 GPa (Bridgman, 1957), while shock-wave
data are available to 140 GPa (Matassov, 1977). Based on this
shock data and Matthiessen’s rule, Stacey and Anderson (2001)
derived the impurity resistivity of silicon in iron to be
2.7 $ 10%8 X m/at.%, which is pressure independent. This value is,
however, twice as low as 6.5 $ 10%8 X m/at.% from Bridgman’s
static data, possibly due to both pressure and saturation effects.

Because our present experiments did not reach saturation, we
compared the predictions of our model with previous shock com-
pression data on Fe–Si alloys in which the saturation effect is sig-
nificant (Matassov, 1977). The results show that the saturation
model is in good agreement with the experimental data (Fig. 5).

In general, the resistivity of transition metals exhibits a very
minor change upon melting (Cusack and Enderby, 1960; Faber,
1972; Van Zytveld, 1980), which is confirmed by previous large-
volume press experiments on iron up to 7 GPa (Secco and Schloes-
sin, 1989). In the case of transition metals, the mean-free path near
the melting point is very close to its inter-atomic distance, and
therefore the resistivity change is suppressed by the saturation ef-
fect (Mott, 1972). Additionally, the validity of the Wiedemann–
Franz law has been confirmed for liquid iron at 1 bar (Nishi

et al., 2003). This is consistent with a dominance of heat transport
by electrons, as opposed to lattice phonons, in both the liquid and
solid state. Thus we consider the resistivity of hcp iron to be a good
proxy for the conductivity of liquid iron at core conditions.

Here we estimate the electrical resistivity of the Earth’s core
from Eqs. (9)–(12), and (14). Assuming silicon as a sole alloying
element, the Si content in the outer core is estimated to be 22.5 at.%
to account for the 10% core density deficit (Sata et al., 2010). The
total resistivity of Fe78Si22 is qtot = 1.02(+0.04/%0.11) $ 10%6 for
CMB (135 GPa, 3750 K) and 8.20(+0.54/%1.31) $ 10%7 X m for
inner core boundary (ICB) (330 GPa, 4971 K) conditions (Table 1).
Application of the Wiedemann–Franz law to such resistivity
values at high pressure and high temperature gives a thermal
conductivity of 90.1(+9.9/%3.5) and 148(+28/%9) W/m/K, respec-
tively. We find that ksat is typically about twice as large as kideal,
which emphasizes the importance of saturation, and most
importantly also limits the influence of any errors in our treatment
of kideal.

4.3. Resistivity and thermal conductivity of other possible iron-alloys
in the core

The exact light element composition of the core is presently un-
known. We therefore approximate the impurity resistivity of other
possible light elements by following the Norbury–Linde rule. While
this rule is not confirmed at conditions of Earth’s core, it is the sim-
plest way to obtain a first estimate for the conductivity of other
alloying components. Norbury (1921) found that the impurity
resistivity of some dilute metallic solid solutions is enhanced with
increasing horizontal distance between the positions of impurity
element and host metal in the periodic table. This implies that
(1) impurity elements in the same group exhibit comparable impu-
rity resistivity and (2) group IV elements have larger impurity
resistivity than group VI elements for iron-based alloys. On the ba-
sis of this relationship, the impurity resistivity of silicon is the
same as that of carbon, because both C and Si are group IV
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Considering potentially anisotropic deformation of the sample,
minimum and maximum resistivities of hcp iron–silicon alloy
are obtained from Eqs. (6) and (8), respectively. This gives
F1,Si,max = 6.29 $ 10%8 O m/at.%, F2,Si,max = 1.59, F3,Si,max = %3.32, and
F1,Si,min = 2.21 $ 10%8 X m/at.%, F2,Si,min = 1.45, F3,Si,min = %3.35 for
Eq. (14).

Earlier static measurements of iron-silicon alloys have been
performed only up to 10 GPa (Bridgman, 1957), while shock-wave
data are available to 140 GPa (Matassov, 1977). Based on this
shock data and Matthiessen’s rule, Stacey and Anderson (2001)
derived the impurity resistivity of silicon in iron to be
2.7 $ 10%8 X m/at.%, which is pressure independent. This value is,
however, twice as low as 6.5 $ 10%8 X m/at.% from Bridgman’s
static data, possibly due to both pressure and saturation effects.

Because our present experiments did not reach saturation, we
compared the predictions of our model with previous shock com-
pression data on Fe–Si alloys in which the saturation effect is sig-
nificant (Matassov, 1977). The results show that the saturation
model is in good agreement with the experimental data (Fig. 5).

In general, the resistivity of transition metals exhibits a very
minor change upon melting (Cusack and Enderby, 1960; Faber,
1972; Van Zytveld, 1980), which is confirmed by previous large-
volume press experiments on iron up to 7 GPa (Secco and Schloes-
sin, 1989). In the case of transition metals, the mean-free path near
the melting point is very close to its inter-atomic distance, and
therefore the resistivity change is suppressed by the saturation ef-
fect (Mott, 1972). Additionally, the validity of the Wiedemann–
Franz law has been confirmed for liquid iron at 1 bar (Nishi

et al., 2003). This is consistent with a dominance of heat transport
by electrons, as opposed to lattice phonons, in both the liquid and
solid state. Thus we consider the resistivity of hcp iron to be a good
proxy for the conductivity of liquid iron at core conditions.

Here we estimate the electrical resistivity of the Earth’s core
from Eqs. (9)–(12), and (14). Assuming silicon as a sole alloying
element, the Si content in the outer core is estimated to be 22.5 at.%
to account for the 10% core density deficit (Sata et al., 2010). The
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inner core boundary (ICB) (330 GPa, 4971 K) conditions (Table 1).
Application of the Wiedemann–Franz law to such resistivity
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conductivity of 90.1(+9.9/%3.5) and 148(+28/%9) W/m/K, respec-
tively. We find that ksat is typically about twice as large as kideal,
which emphasizes the importance of saturation, and most
importantly also limits the influence of any errors in our treatment
of kideal.

4.3. Resistivity and thermal conductivity of other possible iron-alloys
in the core

The exact light element composition of the core is presently un-
known. We therefore approximate the impurity resistivity of other
possible light elements by following the Norbury–Linde rule. While
this rule is not confirmed at conditions of Earth’s core, it is the sim-
plest way to obtain a first estimate for the conductivity of other
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rity resistivity and (2) group IV elements have larger impurity
resistivity than group VI elements for iron-based alloys. On the ba-
sis of this relationship, the impurity resistivity of silicon is the
same as that of carbon, because both C and Si are group IV
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hcp Fe

The impurity resistivity of silicon, consistent with the saturation
model, can be well-fit by the relation (Fig. 4):

qSiðVÞ ¼ F1 $ F2 %
V
V0

! "F3

¼ 3:77$ 1:48% V
V0

! "%3:10

$ 10%8ðXm=at:%Þ ð14Þ

Considering potentially anisotropic deformation of the sample,
minimum and maximum resistivities of hcp iron–silicon alloy
are obtained from Eqs. (6) and (8), respectively. This gives
F1,Si,max = 6.29 $ 10%8 O m/at.%, F2,Si,max = 1.59, F3,Si,max = %3.32, and
F1,Si,min = 2.21 $ 10%8 X m/at.%, F2,Si,min = 1.45, F3,Si,min = %3.35 for
Eq. (14).

Earlier static measurements of iron-silicon alloys have been
performed only up to 10 GPa (Bridgman, 1957), while shock-wave
data are available to 140 GPa (Matassov, 1977). Based on this
shock data and Matthiessen’s rule, Stacey and Anderson (2001)
derived the impurity resistivity of silicon in iron to be
2.7 $ 10%8 X m/at.%, which is pressure independent. This value is,
however, twice as low as 6.5 $ 10%8 X m/at.% from Bridgman’s
static data, possibly due to both pressure and saturation effects.

Because our present experiments did not reach saturation, we
compared the predictions of our model with previous shock com-
pression data on Fe–Si alloys in which the saturation effect is sig-
nificant (Matassov, 1977). The results show that the saturation
model is in good agreement with the experimental data (Fig. 5).
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the melting point is very close to its inter-atomic distance, and
therefore the resistivity change is suppressed by the saturation ef-
fect (Mott, 1972). Additionally, the validity of the Wiedemann–
Franz law has been confirmed for liquid iron at 1 bar (Nishi

et al., 2003). This is consistent with a dominance of heat transport
by electrons, as opposed to lattice phonons, in both the liquid and
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tively. We find that ksat is typically about twice as large as kideal,
which emphasizes the importance of saturation, and most
importantly also limits the influence of any errors in our treatment
of kideal.
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increasing horizontal distance between the positions of impurity
element and host metal in the periodic table. This implies that
(1) impurity elements in the same group exhibit comparable impu-
rity resistivity and (2) group IV elements have larger impurity
resistivity than group VI elements for iron-based alloys. On the ba-
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Boltzmann equations
• Stat mech equations 

• Mixed k and R space 

• Add quantum statistics 

• Diffusive scattering 

• Extract current 

• Transport coefficients
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General Arguments
• Depends on: 

• Band picture 

• Group velocity  

• Works far beyond formal 
range of applicability 

• Too weak disorder: σ → ∞ 

• Too strong disorder: vg → 0
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BTE solutions
• Relaxation time approx 

• Basis set Ansatz 

• Full discretization of f 

• + Monte Carlo sampling of

30

�f =
X

i

ci⇥i

�fk 8k 2 1BZ

✓
@f

k

@t

◆

coll

= ��f
k

⌧
k

✓
@f

k

@t

◆

coll

= ��f
k

⌧
k



Relaxation time approximation
• (constant) Relaxation Time Approximation 

• Average and isotropic tau 

• Similar to superconducting dirty limit 

• Bands + velocities → spectral conductivity: 

!

• Still need estimate for ! !!!
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Transport coefficients
• Closed form solution BTE 

• DFT+ in bands+transport 

• T, μ  dependency is ok 

• S does not need lifetime
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FIG. 7. (Color online) From top to bottom: The transport dis-
tribution function with respect to the energy where positive values
correspond to an n type of doping and a p type for negative values.
The electronic conductivity, ν, and Seebeck coefficient are plot with
respect to the carrier concentration (positive values correspond to
electrons and negative for holes). All the plots show in-plane (left)
and out-of-plane (right) values.

chemical potentials (electron or hole dopings) can cancel out
each other [see Figs. 7(c) and 7(d)].

In the Seebeck coefficient graph for hole doping we can
see that, for both (xx) and (zz) components, the maximum
value is reached at relatively small doping. This maximum
decays regularly with pressure, and the carrier density at
which this maximum occurs shifts to higher concentrations.
The graphs of ν and σ show that both increase with pressure,
but the increase in ν is smoother than the increase in σ .
Therefore, the multiplication of Eq. (2) gives a decrease in
the Seebeck coefficient with an increase in P . For the case
of n-type Bi2Te3 at low doping (up to n = 2.5 × 1019 cm−3),
the overall behavior is the same as for hole doping. Above
this doping value we distinguish two cases. For the in-plane
Seebeck, the increase in the value of ν with pressure is
compensated by the increase in the electrical conductivity,
and the variation in Sxx with pressure is negligible. In the
case of the out-of-plane Seebeck, the electrical conductivity
increases with pressure but not enough to balance the increase
in ν, which gives a small improvement of Szz with pressure.
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FIG. 8. (Color online) Pressure dependence of the in-plane (solid
line) and out-of-plane (dashed line) Seebeck coefficients at 300 K.
Green dotted and black solid lines are experimental data extracted
from Refs. [30,31].

Figure 7 shows the overall behavior of the thermoelectric
properties of Bi2Te3 and their relation to carrier concentration
and pressure. So far the analysis is insufficient to explain
the improvement of the Seebeck coefficient with pressure
found experimentally [29,30] .The main reason is that the
experimental carrier concentrations are too low compared
with the scale used in Fig. 7. In the paper of Khvostantsev
et al. [30] the samples had carrier concentrations of p =
1.2 × 1019 cm−3 for the p type and n = 1.1 × 1019 cm−3 for
the n type of doping at room temperature up to 9 GPa. In
a recent experimental paper [31], the carrier concentration
is not mentioned, but the Seebeck coefficient suggests a
similar order of magnitude. Figure 8 shows our results and the
extracted experimental data at 300 K [30,31]. The experimental
carrier concentration reported in Ref. [30] was used and
shows good agreement between our calculations and the
experiment (see Fig. 6). We compare our values of S with
those in Ref. [31] at zero pressure, and we fix the doping
level at p = 1.8 × 1018 cm−3 to match the experimental
data, assuming that the experiment was performed at room
temperature. Our results agree very well with the experiments,
especially with those with high carrier concentrations. For
those values with small doping levels, larger discrepancies
are expected due to the vicinity to the Fermi level and our
small band gap. The agreement with experiment even at small
values of carrier concentration is nevertheless reasonable.
However, although we reproduce the trends very well, we
do not observe any improvement in S close to 1 GPa, contrary
to Ref. [30]. This disagreement could arise from the fact
that we are neglecting van der Waals interactions which
could be relevant for details of the electronic structure, and
therefore, the transport properties. Thermal expansion is also
neglected, but we assume that its effects would be small as
both our calculations and the mentioned experiments were
carried out close to room temperature and the cell and internal
parameters agree well. The shoulder at 2 GPa could eventually

245204-5

Bi2Te3



Hall effect

• In general n ≠ 1/RH 

• Only for parabolic bands 

• Issue in experiment too!!!
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FIG. 5. (Color Online) Carrier densities as computed from
the density of states, and the relative error with respect to
the 1/eRH formula, at 300 K, where RH is computed from
Boltzmann theory. The horizontal line in the bottom plot
indicates nh = 1022 cm−3.

higher carrier densities implies an overestimation of the
hole density in Ref. 4, where the combination of a metal-
lic NM band structure and large apparent carrier density
(1022cm−3) leads to calculated S in agreement with ex-
periment. In our AFM-G semiconducting case, we will
show below agreement for the Seebeck coefficient with
lower effective carrier densities.

C. Thermoelectric properties

The thermoelectric and transport properties are com-
puted from the B1WC electronic band structure within
the Boltzmann transport theory. We plot S, σ/τ and the
Power Factor S2σ as a function of the chemical potential,
at 300 K (figure 6), and with respect to temperature for
fixed charge carrier concentrations (figure 7).

From these plots, we can see that a light n-type dop-
ing enhances the thermopower. However, the large peak
around 0.5 eV below the Fermi level shows that p-type
doping will maximize S2σ (12 µWK−2cm−1) with a con-
centration of charge carriers of about 8.4 × 1020cm−3.
This corresponds to a strong doping. For n-type doping,
the maximum power factor (5 µWK−2cm−1) at 300 K
is obtained for doping of 1.5× 1020 cm−3. One may ex-
pect the n-type to be the easier option to reach the high
power factor, but a similar value can be reached for a
p-type doping of 2.3 × 1020 cm−3. The peak of power
factor in the hole carrier region is due to an increase of
the Seebeck coefficient, related to the presence of new
states below the topmost valence band.

Figure 7 shows the temperature dependence of the See-
beck coefficient (top). The black, red and green curves
are obtained by fixing the hole density respectively to

FIG. 6. Seebeck coefficient, electrical conductivity over τ and
power factor (with τ = 5.5× 10−14 s) of AFM-G FeSb3 with
respect to the chemical potential, at 300 K. The electronic
density of states computed with the B1WC functional is also
displayed for direct comparison.

4.0 × 1019 cm−3, 1.0 × 1021 cm−3 and 4.0 × 1021 cm−3

to get the same order of magnitude as the carrier density
extracted from figure 4. The Seebeck coefficient has a
monotonic growth. Experimental results from Ref. 4 and
our room temperature measurement are also displayed in
figure 7 for comparison. Our calculated values underesti-
mate the Seebeck coefficient in comparison to these data,
but the qualitative behavior is consistent. Daniel et al4

reported a high value of hole density, above 1022 cm−3

for the corresponding sample.
The Seebeck coefficient, as measured with the Seebeck

microprobe on an area of 4x3 mm2 of the thin film sam-
ple, is displayed in figure 8. The distribution in Seebeck
coefficient is relatively uniform and narrow with a half
width of 1.5 µVK−1, and a mean value of 38.6 µVK−1,
which is consistent with the predicted value at 300 K
for nh = 4.0 × 1019 cm−3 given the expected underes-
timation with the Seebeck local probe technique. This
suggests that the effective carrier concentration near the
surface is lower than in the bulk, but may also come from
the shortcomings of DFT, or the relaxation time approx-
imation.
In order to have a quantitative appreciation of the elec-

trical resistivity ρ, it is necessary to calculate the relax-
ation time τ for different temperatures and carrier densi-
ties. A common way to estimate τ is to perform the ra-
tio between computed σ/τ and the experimental value,
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Variational approximation
• Variational basis   

• Matrix equation for scattering 

!

!

• Thermodynamics → ci which maximize entropy 

• Need first principles Q as well as bands
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First principles scattering
• Deformed potential scatters electrons 

• Matrix element + Fermi’s Golden Rule: 

• Elastic vs Inelastic: neglect ω before EF 

• + Fermi smearing
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Figure 4.14: pDOS and spin dependent spectral functions for Pt. Black line:
phonon DOS (3.17). Full line: generalized transport spectral func-
tions (3.57). Dash-dotted lines: Eliashberg spectral functions (3.16c).
Vertical dashed green and purple lines correspond to peaks for the
two transport spectral functions.
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Figure 4.15: Resistivity of Platinum vs. Temperature. Black dashed line with
open symbols: experimental data [177].

3. Coherent potential approximation (CPA) [206],

Electrical resistivities
• DFPT matrix elements 

• Phonons only… 

• Simple metals, d, spin orbit 

• Heavily doped SC
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Ab initio calculation of spin-dependent electron-phonon coupling in iron and cobalt 12

Figure 6. Electrical resistivity for spin polarized Fe, compared to experimental data
from Refs [39, 43, 44, 41]. The experimental values fall between the extremal majority
and minority spin values. The presence of spin flip centers (impurities or spin-orbit
scattering) e↵ectively averages the two resistances for the spin up and down channels.

applied field (taking care to separate Hall contributions to the current), in particular

in a dynamical regime, could corroborate the very strong di↵erences observed here in

particular for Co. Phonon characterization with spin-polarized neutrons could also give

explicit insight into spin-specific electron phonon coupling in ferromagnetic materials.

Two important and related avenues for development are 1) the use of non-collinear

spin formalisms and spin-orbit coupling, and 2) the inclusion of the interaction between

phonons and magnons[49, 50]. Work is ongoing in both directions.

The spin-dependent electron-phonon coupling has been calculated ab initio in BCC

iron and HCP cobalt, and compared to a range of available experimental data. The

calculated phonon band structures are very accurate. Experimental electrical and

thermal conductivities agree very well in Fe and are somewhat overestimated in Co,

where the strong minority spin-phonon coupling is reduced by electron velocity e↵ects.

The inclusion of the correct magnetic state is crucial, both for the phonons and for

the coupling, and opens the way for the first-principles determination of many new

quantities in spintronics, high temperature magnetism, and complex magnetic systems.

Help with the OPIUM package from E. Walter and discussions with B. Xu are

OsSi

Os

Fe

Pt

MJV JPCM 2013 
B. Xu + MJV PRB 87 134302 (2013) 

Di Gennaro unpublished

Co

3.7 Transport Spectral Functions 87

Seebeck coe�cient temperature dependence for Gaussian integration (Red)
and for tetrahedron integration (Blue). For Gaussian integration a smearing
factor of ?? was used.
The resistivity of Copper is shown in Fig. 3.4. Three curves are displayed:
⇢1(T ) (black) and ⇢2(T ) (red) compared to experimental results (blue with
closed squares) from Ref.[89]. The di↵erence in the two curves is the spec-
tral function used in the integration. When the fully energy dependent
↵(s, s0, J, J 0, ✏, ✏0)2F (!) is used (3.90b) inelastic scattering is considered (red
curve) while for the black curve the elastic ↵2

elas(s, JJ
0)F (!) is employed.

The red curve actually contains a correction to the black one. I will refer
to these results as (elastic or inelastic) LOVA (Lowest Order Variational
Approximation).
In figures with theoretical results, if not stated other wise, the subscripts 0,1
and 2 indicates the Eliashberg coe�cients, elastic LOVA and inelastic LOVA
approximation respectively.
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Figure 3.4: Resistivity of Copper vs. Temperature. Left: High temperatures, right:
low temperatures. Black dashed line with open squares: experimental
results from Ref.[89]. Red lines: Tetrahedron integration, blue lines:
Gaussian integration (electronic smearing of 0.01 Ha). Dot-dashed lines:
elastic approximation (LOVA1), full lines: inelastic approximation
(LOVA2). More details for the calculations are given in the main text.

Cu



Seebeck coefficients

• RTA simple / High throughputable 

• cRTA is sometimes very wrong…  

• NB: S = 0 in elastic approximation  

• LOVA excellent for simple metals

37

OsSi

Na

K



Anomalous Li Seebeck
• Electron carriers:  S < 0 

• Not in Li! (or Au, Cu, Ag…) 

• Propositions in the 60s: 

• spectral mfp, exotic EPC 

• "unfree" electron gas

38

Robinson, Phys. Rev. 161, 533 (1967) 
Robinson and Dow, PR 171, 815 (1968) 
Jones Proc. Phys. Soc. A 68 1191 (1955)

B. Xu + MJV PRL 112 196603 (2014)



Band Structure effect?
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Extracted from AFLOW.lib 

S > 0 S > 0 S > 0

S > 0

S < 0 S < 0

2.3 Density Functional Theory 44

Figure 2.2: Copper Fermi surface (red) inside the first BZP (white lines).
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Figure 2.3: EBS (left) and electronic DOS (right) for Copper. The EBS is cal-
culated over a grid of 243 irreducible k points in the BZP. The value
of energy bands at any point is then interpolated between the values
explicitly calculated.

2.3.2 Spin Density Functional Theory

So far, I have totally neglected the information relative to the magnetic
order of materials. Spin polarized materials present a variety of phenomeno-
logical e↵ects, some simply due to the split of the EBS and of the DOS
at the GS level. While DFT is exact to calculate the GS energy of most
systems, the spin polarization is not present in the Kohn-Sham formalism.
Spin-collinear systems can be treated with Spin Density Functional Theory
(SDFT), in which two wavefunctions are calculated for di↵erent spin. The



In a way…
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B. Xu + MJV PRL 112 196603 (2014)

• EPC is not important 

• Bare band RTA not enough 

• Scattering(E) ~ v2(E) / N(E) 

• Both Robinson and Jones are 
(in)correct
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As a qualitative estimation, if Drude’s formula σ ¼
ne2τ=m$ is adopted for the conductivity and, again, the
relaxation time τ is taken to be inversely proportional to the
DOS, the energy dependencies from the charge carrier
density and τ are approximately balanced out, so that σ
has the same energy dependence as 1=m$. For Li, as
implied by the DOS in Fig. 3(a), the band becomes
flattened around the Fermi energy; this corresponds to
an increasing effective mass. Consequently, σ decreases
with energy and yields the positive sign of S.

We now turn to the possibility of doping-induced sign
changes in S. If Na is electron doped we predict, using
the relaxation time approach and the qualitative relation
between τ and DOS, that the sign of S changes from
negative to positive with a concentration ∼1 × 1022 cm−3

(0.358 e−=unit cell), cf. Fig. 4. This change of sign is
confirmed in the VA, for slightly higher doping levels but
with a much stronger amplitude: at 300 K, S ¼ 0.55 μV=K
from RTA while S ¼ 5.53 μV=K using VA.
Clearly the proportionality between the scattering rate

and DOS is qualitative, and works for simple systems.
The τðϵÞ model fails in particular for Fermi surfaces not
entirely within the first Brillouin zone. As an example,
if extra electrons are added to Li, e.g., in MgxLi1−x alloy
[30], the RTA with the model τðϵÞ yields a change of sign
of S from positive to negative at an extra electron concen-
tration of about 8 × 1021 cm−3 (Mg0.154Li0.846). However,
the VA-calculated S does not change sign, at least
up to an added carrier concentration of 4 × 1022 cm−3

(Mg0.771Li0.229, which is beyond the wide range of bcc
structure for the binary alloy). When the Fermi surface
reaches the BZ boundary, the distortions allow additional
electron-phonon scattering, which will change the scatter-
ing rate. Similar failures of the RTAwith either constant or
DOS-related τ are found in Cu, Ag, and Au, where the
model τðϵÞ still gives negative S. The positive S in these
group-11 metals is more complex than in Li, combining
a distorted Fermi surface with nontrivial electron-phonon
interactions, as was proposed by Robinson [15,16]. Fully
first-principles calculations are underway to elucidate the
precise mechanism.
In summary, we have calculated the first fully ab initio

Seebeck coefficient, using a variational solution to the
Boltzmann transport equation. Our calculated Seebeck
coefficients of Li and Na are in good agreement with
experimental data, whereas the commonly used constant
relaxation time approximation fails qualitatively for Li.

FIG. 3 (color online). (a) Density of states, (b) square of the
velocity (energy spectrum), (c) square of the velocity (energy
spectrum) divided by the corresponding density of states of Li
(solid black line) and Na (dashed red line). The vertical dotted
line denotes the Fermi energy. The insets show a zoom around ϵF.
The orange shaded region covers ϵF % 8kBT with T ¼ 300 K.
The blue shaded region (darker) shows ϵF % ωm, where ωm is the
maximum energy for phonons.

FIG. 4 (color online). Calculated Seebeck coefficient of
electron-doped Na using RTA and 1=τðϵÞ ∝ NðϵÞ, as a function
of temperature at several doping concentrations.
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implied by the DOS in Fig. 3(a), the band becomes
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Other positive S 
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Belhadji, Di Gennaro, Xu, Verstraete unpublished

• Sign+magnitude ok 

• details more complicated 

• d electron Fermi Surfaces delicate

Cu Au
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(a) Inelastic LOVA.
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Figure 4.16: Platinum Seebeck coe�cient vs. temperature. Black dashed lines
with open symbols: experimental data from [97]. Full lines with
closed circles: Seebeck for tetrahedron (red) and Gaussian (blue)
integration.

The VCA approximation

In VCA, a binary disordered alloy AxABxB is replaced by an uniform
medium composed by an fictitious element with atomic number Z̄ = xAZA +
xBZB. This technique o↵ers a simple and computationally light approach,
since the Bloch symmetry is restored. On the other hand, all short range
interactions are neglected. The impurities scattering are totally removed, so
we expect the resistivity will be underestimated even more than within the
LOVA approximation.

Supercell approximation

A standard ab-initio calculation for a large, non primitive, unit cell with
fixed composition is done for di↵erent configurations. The results then have
to average over all the configurations. This approach is computationally
expensive and with limited applicability.

The CPA-KKR approximation

The CPA method approximates a random alloy with an e↵ective ordered
medium that is determined self-consistently from the condition of stationary
scattering. The space is decomposed in isolated scattering atomic sites
embedded into a free electron environment. Within the single sites then, one
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Figure 4.16: Platinum Seebeck coe�cient vs. temperature. Black dashed lines
with open symbols: experimental data from [97]. Full lines with
closed circles: Seebeck for tetrahedron (red) and Gaussian (blue)
integration.

The VCA approximation

In VCA, a binary disordered alloy AxABxB is replaced by an uniform
medium composed by an fictitious element with atomic number Z̄ = xAZA +
xBZB. This technique o↵ers a simple and computationally light approach,
since the Bloch symmetry is restored. On the other hand, all short range
interactions are neglected. The impurities scattering are totally removed, so
we expect the resistivity will be underestimated even more than within the
LOVA approximation.

Supercell approximation

A standard ab-initio calculation for a large, non primitive, unit cell with
fixed composition is done for di↵erent configurations. The results then have
to average over all the configurations. This approach is computationally
expensive and with limited applicability.

The CPA-KKR approximation

The CPA method approximates a random alloy with an e↵ective ordered
medium that is determined self-consistently from the condition of stationary
scattering. The space is decomposed in isolated scattering atomic sites
embedded into a free electron environment. Within the single sites then, one

Pt



Useful to engineer S?

42

• In some cases: Na electron doped (e.g. with Ca) 

• Realistic TE materials are case by case 

• Tailor dopant for carrier density and for lifetimes
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As a qualitative estimation, if Drude’s formula σ ¼
ne2τ=m$ is adopted for the conductivity and, again, the
relaxation time τ is taken to be inversely proportional to the
DOS, the energy dependencies from the charge carrier
density and τ are approximately balanced out, so that σ
has the same energy dependence as 1=m$. For Li, as
implied by the DOS in Fig. 3(a), the band becomes
flattened around the Fermi energy; this corresponds to
an increasing effective mass. Consequently, σ decreases
with energy and yields the positive sign of S.

We now turn to the possibility of doping-induced sign
changes in S. If Na is electron doped we predict, using
the relaxation time approach and the qualitative relation
between τ and DOS, that the sign of S changes from
negative to positive with a concentration ∼1 × 1022 cm−3

(0.358 e−=unit cell), cf. Fig. 4. This change of sign is
confirmed in the VA, for slightly higher doping levels but
with a much stronger amplitude: at 300 K, S ¼ 0.55 μV=K
from RTA while S ¼ 5.53 μV=K using VA.
Clearly the proportionality between the scattering rate

and DOS is qualitative, and works for simple systems.
The τðϵÞ model fails in particular for Fermi surfaces not
entirely within the first Brillouin zone. As an example,
if extra electrons are added to Li, e.g., in MgxLi1−x alloy
[30], the RTA with the model τðϵÞ yields a change of sign
of S from positive to negative at an extra electron concen-
tration of about 8 × 1021 cm−3 (Mg0.154Li0.846). However,
the VA-calculated S does not change sign, at least
up to an added carrier concentration of 4 × 1022 cm−3

(Mg0.771Li0.229, which is beyond the wide range of bcc
structure for the binary alloy). When the Fermi surface
reaches the BZ boundary, the distortions allow additional
electron-phonon scattering, which will change the scatter-
ing rate. Similar failures of the RTAwith either constant or
DOS-related τ are found in Cu, Ag, and Au, where the
model τðϵÞ still gives negative S. The positive S in these
group-11 metals is more complex than in Li, combining
a distorted Fermi surface with nontrivial electron-phonon
interactions, as was proposed by Robinson [15,16]. Fully
first-principles calculations are underway to elucidate the
precise mechanism.
In summary, we have calculated the first fully ab initio

Seebeck coefficient, using a variational solution to the
Boltzmann transport equation. Our calculated Seebeck
coefficients of Li and Na are in good agreement with
experimental data, whereas the commonly used constant
relaxation time approximation fails qualitatively for Li.

FIG. 3 (color online). (a) Density of states, (b) square of the
velocity (energy spectrum), (c) square of the velocity (energy
spectrum) divided by the corresponding density of states of Li
(solid black line) and Na (dashed red line). The vertical dotted
line denotes the Fermi energy. The insets show a zoom around ϵF.
The orange shaded region covers ϵF % 8kBT with T ¼ 300 K.
The blue shaded region (darker) shows ϵF % ωm, where ωm is the
maximum energy for phonons.

FIG. 4 (color online). Calculated Seebeck coefficient of
electron-doped Na using RTA and 1=τðϵÞ ∝ NðϵÞ, as a function
of temperature at several doping concentrations.
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Summary
• The need for first principles transport 

• Overview of transport regimes: λ and ! 

• Ballistic and hopping transport 

• Diffusive BTE solutions: RTA and variational 

• Ab initio conductivity and Seebeck
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