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Simplified workflow to compute observables

Molecular model(s)Molecule Number(s)

Generate or find 
a 3D structure 
or an ensemble 

• Rigid “simple” systems 
• Structure databases 

e.g. PDB 
• Structure search

How to rank  
multiple models? 

• Energy-based ranking 
depends on the quality 
of the energy function.

Compute Property

• How much of the 
“physics” does one need 
to cover?

All steps might eventually involve MD simulations



Carbohydrates and Nucleic Acids



Biomolecules: Peptides/Proteins

Why Molecular Dynamics?

Time-averaged properties of a system, e.g. 
distribution and population of different states

—> Statistical mechanics, free energies
—> Structure prediction, sampling

Time dependence and correlation of properties
—> e.g. vibrational spectra



How to get (classical) trajectories?

Molecular dynamics

1. Assign initial R (position) and p (momenta)

(R1, p1)

(R2, p2) (R3, p3)

How do we perform MD?

Like an experiment:

1. Sample preparation

2. Equilibration

3. Measurement


[Smit and Frenkel]

Initialization:

Position R and momenta p  
of N particles

Energy function call:

Getting energy V and  
forces F 

Propagate in time Δt: 
Integrating Newton’s equations  
of motion, perform one MD step
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How to get (classical) trajectories?

Molecular dynamics

1. Assign initial R (position) and p (momenta)

(R1, p1)

(R2, p2) (R3, p3)

2. Evolve (numerically) Newton’s equation of 
motion for a finite time increment

Potential

Force

(R3(t+dt), p3(t+dt))

(R2(t+dt), 
p2(t+dt))

(R1(t+dt), p1(t+dt))

3. Assign new position and momenta New MD frame/snapshot: 
Position R and momenta p  
of N particles

Repeat n times:

yields n × Δt 

simulation time

The time step
Time'scales'

9me'to'travel'its'own'size:'

move'in'one'step'='2'fs'

Transla9on'

Rota9on'

Vibra9ons'

Choice'of'9me'step'

'high'frequency'for's9ff'poten9als'

between 0.5 and 4 fs



Integrating the Equations of Motion
Integrating the equations of motion

• First shot: Taylor expansion of R
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Ĥ = E (2)

H(R,p) =
X

I

p2
I

2MI
+ V (R) (3)
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ṗ(t)

2m
�t2 +

...
R(t)

�t3

3!
+O(�t4) (11)

R(t��t) = R(t)� p(t)

m
�t+
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Error 

Verlet Algorithm

Taylor expansion, 2 points in time

Verlet algorithm, 3 points in time

Integrating the equations of motion

• First shot: Taylor expansion of R
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Verlet Algorithm

Force

Error

Simulated time is a multiple of time steps Δt  Time'scale'challenge'

'one'challenge'in'Molecular'Dynamics'methods'are'9mescales'



Ensembles, how realistic?

Micro-canonical (NVE) ensemble
Number of particle N, volume V, and  
energy E kept constant, rather ‘local’

Canonical (NVT) ensemble
Coupled to a heat bath to ensure constant T heat 

exchange

Isobaric, isothermic (NPT) ensemble
Coupled to a heat and pressure bath  
(thermostat and barostat)

volume 
change

Grand-canonical ensemble
Energy and particle exchange

What is temperature?Temperature definition

# of particles

Kinetic Energy (a.u.)

Pr
ob

ab
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ty
 (a
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.)

T < T < T

Maxwell-Boltzmann-Distribution
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kinetic
energy: p2/2M

Probability distribution of the kinetic energy:
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How and why to keep Temperature constant?

E is conserved

T is  
conserved

• Experiments happen at finite T

• Conformational transition become 

possible since E in the sample can rise

Instantaneous T(t) depends on Ekin depends on v(R)

Idea 1: Rescale all v in order to match T to desired value

… Berendsen thermostat


… no canonical ensemble, “v not Boltzmann distributed”

Idea 2: at every n-th step, adjust a particle’s v from a Boltzmann  
distributions at desired T (stochastic collisions with heat bath)


… Andersen thermostat

… canonical, but takes long to equilibrate

Nosé-Hoover Thermostat

p(t+�t/2) = p(t) + F (t)
�t

2

(34)

R(t+�t) = R(t) +
p(t+�t/2)

m
�t (35)

p(t+�t) = p(t+�t/2) + F (t+�t)
�t

2
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d3NR
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d3Np e

�H/kBTA(p,R) (37)
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�H/kBTA(p(0), R(0))B(p(t), R(t)) (38)
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Z T

0
dt0A(p(t0), R(t0)) (39)

hA(0)B(t)i = 1
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Z T

0
dt0A(t0)B(t+ t0) (40)

ṗ = F �
Z t

�1
K(t� ⌧)p(⌧) + ⇣(t) (41)

˙R = p/m (42)

HNH =

X

I

p2
I

2MI
+ V (R) +

p2⌘
2Q

+ 3NkBT⌘ (43)

˙pI = FI + ⌘̇pI (44)

3

 S. Nosé,  J. Chem. Phys. 81, 511 (1984) & W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

Extended Hamiltonian (or Lagrangian):

Nosé-Hoover thermostat

Extend the Original System by an Oscillator

S.Nosé, J.Chem.Phys. 81,511(1984) & W.G.Hoover, Phys.Rev.A 31,1695(1985).

• Q is the mass of the fictitious oscillator

• too low, to high frequency of harm. motion

• too high, slow equilibration


• Canonical ensemble sampled, augmented total 
energy is conserved 


• But: trajectories still feel the harmonic oscillation 

• Solution: Chain of oscillators



Flavors of MD w.r.t. the energy function

First-principles MD
Solving the Schrödinger eq., Born-Oppenheimer

or Car-Parrinello MD

Empirical potentials (a.k.a. force fields)
Classical mechanics, fitted to experimental data 
or higher level theory  
How valid outside of their parametrization?

Coarse-grained models
From bottom: Combine multiple atoms into one 
entity, parametrize from small simulations

From top: Break a large system into a granular 
structure that one can parametrize to reach 
experimental accuracy

electrons

1000 atoms

100 ps … 1ns

atoms

100,000s of atoms

μs … ms

blobs

[… depends …]

long

Flavors of MD w.r.t. the energy function

coarse'
graining'

system'size'

ab'ini9o'MD'

quantum'mechanics'

classical'MD'

Methods'for'molecular'modeling'

'atoms'resolved'
'forceIfield'descrip9on'

QM/MM'

hybrid'quantum/classical'

coarseIgrained'MD'
•  wide'range'of'resolu9ons'
•  detailed'theories'for'more'complex'

phenomena/higher'accuracy'
•  less'detailed'theories'for'larger'

systems'/'longer'9mescales'

Marcus Elstner (Thu, July 30)

Multiscale simulations of biological 
structures and processes

Christian Carbogno (Wed, July 29)

Thermal conductivities from first-
principles molecular dynamics



Fazit

Like an experiment:

1. Sample preparation

2. Equilibration

3. Measurement


[Smit and Frenkel]

Good starting point?

Right conditions?

Long enough?

Energy function valid?

Numerical settings OK?

Single run enough?



First of all, it’s a search problem
Ac-LysH+-Ala19

N

C

3 TDOF per monomer:

• 60 degrees grid for single bonds

• cis or trans for peptide bond

• 2 × 6 × 6 = 72

Results in 7220 trial structures in a 20mer co
ord

ina
te 

1
coordinate 2

en
er

gy
Picture from 

http://www1.lsbu.ac.uk

Molecular dynamics (MD) sampling

Numerically solving Newton’s equations of motion

Video by F. Schubert

Scheme from wikipedia

Pro: generates a meaningful ensemble of conformers

Contra: rather limited sampling of conformational space; 
for short trajectories, mainly around starting point



Simulated annealing

3. Exploring the Configurational Space

minima, the computational burden therefore quickly becomes unfeasible which connects
to the famous Levinthals paradox according to which a protein would never reach its
native state within the lifetime of universe in view of the tremendous number of different
local minima [7, 8]. Correspondingly, one possible way out is that the global topology
can serve as a guidance for the system to reach the global minimum. As already stated
in the previous chapter, single-funnel systems are benign topologies in this sense.

One key ingredient of any sampling algorithm is the way new structures are generated.
This so-called trial move corresponds to a jump of the system in the configurational
space. A simple method for that is to randomly displace the atomic positions. After
such a jump, a criterium is required which decides whether this new structure is preferred
and the search should continue from there or if it should rather be discarded. Such an
acceptance criterium is typically based upon the total energy, being a natural choice
since it is the quantity to optimize. Of course, there is no need to confine to a single
sequential run. Multiple search sequences can be performed and information can be
exchanged to thus combine structures from different positions on the PES instead of a
purely local search. The number of serial runs and the special scheme to cross them
are examples of the large number of technical parameters that make up for the huge
diversity of different optimization schemes of which the most archetypal ones will be
described in the following.

3.2.1. Simulated Annealing

A classical optimization algorithm applied to many fields is the simulated annealing
scheme that resorts to methods of statistical mechanics and is based upon the Metropolis-
algorithm [29, 30]. Starting from an arbitrary configuration with a total energy E, a new
structure is generated by randomly displacing the atoms, leading to a change of the total
energy ∆E. If the energy has decreased, i.e. ∆E < 0, the new structure is accepted and
used as starting point for the next step. In the opposite case, however, the structure is not
discarded unconditionally, but accepted with a probability of P (∆E) = exp(−∆E/kBT ).
According to Metropolis, this acceptance criterium thus generates a canonical ensemble
of atomic configurations at T . At zero temperature, only isomers that are lower in energy
would be accepted which would be an intuitive choice at first glance since the system is
thereby pushed towards the ground state. However, the system is then likely to get stuck
in the wrong minimum. A finite temperature allows instead for controlled uphill steps
thus enabling the system to get out of local minima. Starting from a high temperature,
the system is then successively cooled down according to an annealing schedule. Coupled
to the temperature are the random displacements of the individual atoms ∆Rα that obey
a Gaussian distribution in the classical simulated annealing scheme [31]:

p(∆Rα) ∝ exp
(

−(∆Rα)2/T
)

(3.9)

With decreasing temperature, the step width is therewith reduced thus freezing the
system in the ground state. The cooling rate needs to be inverse logarithmic in time to
assure convergence

33

Metropolis criterion

Randomization

Structure

Acceptance?
yes no

Stepwise reduction of T

- overcoming barriers at high T

- converging with lowering T

Number of iterations

Te
m

pe
ra

tu
re

En
er

gy

Replica-exchange MD

MD run swap swapMD run MD run

T1

T2

T3

T4

T5

time

te
m

pe
ra

tu
re

overcoming barriers at high T

collecting ‘samples’ at low T

Pro: (i) improved sampling, (ii) generates a meaningful 
ensemble of conformers, (iii) opens access to free energy 
properties, (iv) assumption free

Contra: still we are mainly sampling known territory



A realistic MD based search scheme

16 × 500 ns

FF REMD

16 × 20 ps

ab initio REMD

S3

FIG. S2. Ac-Lys-Ala19 + H+: Energy hierarchies (black hor-
izontal lines) of OPLSAA conformers and the correspond-
ing structures relaxed with PBE+vdWTS and light computa-
tional settings and tight computational settings, respectively.
All energies are given relative to the conformer with the lowest
energy according to PBE+vdWTS.

change only very little. However, the hierarchies for the
OPLSAA force field and the PBE+vdWTS (light set-
tings) change significantly, which has also been found for
other peptide systems before[9–11].

First-principles REMD

Ac-Lys-Ala19 + H+: We performed PBE+vdWTS

REMD runs for the 4 lowest energy (PBE+vdWTS)
structures. For this we used 16 replicas with temper-
atures ranging between 300 K and 623 K according to
a geometric distribution and employed the Nosé-Hoover
thermostat [12, 13] using a swapping attempt frequency
of 100 fs and a time step of 1 fs (total simulation time:
4x320 ps). After each ps of REMD time we relaxed the
snapshots of all 16 replicas with PBE+vdWTS. Fig. S3
shows the energies of all relaxed replicas for a particu-
lar example of an ab initio REMD run for Ac-Lys-Ala19
+ H+ where a local rearrangement occured. The lowest
energy conformation obtained is more than 20 kJ/mol
lower in energy than the starting conformation. The lat-
ter structure and the initial conformation are overall very
similar with only subtle di↵erences close to the termina-

C2

initial
geometry

REMD Time (ps)R
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E+
vd

W
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J/

m
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)

FIG. S3. Example of a particular ab initio replica exchange
run where lower energy hydrogen bond networks than the
“initial geometry” are found. After each ps, a snapshot of each
replica is fully relaxed with PBE+vdWTS. Red bars: Energy
of each replica snapshot after full PBE+vdWTS relaxation,
relative to the energy of the initial structure.

tions.
Ac-Ala19-Lys + H+: For Ac-Ala19-Lys + H+ we per-

formed a PBE+vdWTS REMD run for the lowest-energy
structure. We used again 16 replicas with temperatures
ranging between 300 K and 623 K according to a geo-
metric distribution. Di↵erent from the simulation for Ac-
Lys-Ala19 + H+, we here employed the Bussi-Donadio-
Parrinello thermostat [14] with a swapping attempt fre-
quency of 200 fs (total simulation time: 1x208 ps). Those
di↵erences in the settings do not have a specific reason,
but occurred because the simulations were performed at
di↵erent times. However, it was too expensive to recom-
pute the REMD run for Ac-Ala19-Lys + H+ just for con-
sistency, especially as we do not expect any impact on
the results. In fact, for Ac-Ala19-Lys + H+ no conformer
that was lower in energy than the initial structure was
found during the ab initio REMD run. Please keep in
mind that the global sampling has been performed in
the previous step based on force fields, and the ab initio
REMD runs are used for a local sampling.

Role of a better force field: AmoebaPro13

We relaxed the Ac-Lys-Ala19 + H+ conformers C1
to C6 with the AmoebaPro13[15] force field. For this,
we used version 6.2 of the TINKER program[16]. As
shown in Fig. S4, the prediction of AmoebaPro13 sig-

Ac-Ala19-LysH+

Ac-LysH+-Ala19N C
N C

C2

C3

C4
Ac-Ala19-LysH+ Ac-LysH+-Ala19

Helical or not?

Michele Ceriotti (Tue, July 28)

Representing and understanding 
patterns in materials and 
molecules



Gas-phase IR, action spectroscopy

Tom Rizzo (Tue, July 28)

Biomolecules in isolation — 
Challenges and benchmarks 
for theory 

Experiment vs. theory

Infrared spectra

I(!) / !2

Z 1

�1
h~µ(0) · ~µ(t)i e�i!tdt

Dipole-dipole time correlation function

25 ps Born-Oppenheimer MD, 

PBE+vdW

C2

C3

C4

C1

Ac-LysH+-Ala19



Experiment vs. theory
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C1

Infrared

spectra
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RP=0: perfect agreement 
RP=1: uncorrelated

Ac-LysH+-Ala19

Ion mobility-mass spectrometry

Can be converted to a 
collision cross section 
(CCS):

• transferable property 

of an ionic species

• depends on buffer 

gas

• independent of the 

machine



Peak considerations

Within one narrow peak: 
1. Single conformer 
2. Multiple conformers 

with the same CCS 
3. Converged time average  

of different structures  
(sufficiently low barriers)

Between two peaks,  
conformers should be  
separated by substantial 
barriers … 
kinetically trapped 

CCS

Three basic approaches

Shape of the ion

Interaction between  
ion and buffer gas

Scattering
A.A. Shvartsburg , M.F. J arrold / Chemical Physics Letters 261 (1996) 86-91 87 

tum transfer cross section over the relative velocity 
and the collision geometry [15]: 

1 f2~d fo-~ q~f2~ ~r •(1,1)  : 0 d ~p sin 
--avg 4 "rr2 "o "o dy~-  

X ( + ) 3 fod g e-~2 /2*Brg 5 

7~C 

X f0 d b 2 b ( l - c o s x ( 0 , q ~ , y , g , b ) ) .  

(2) 
In this expression 0, q~ and y define the collision 
geometry, x(O, ~o, 7, g, b) is the scattering angle, g 
is the relative velocity,/x is the reduced mass, and b 
is the impact parameter 1. For a collision between 
two hard spheres Eq. (2) reduces to "rrb2in, where 
bmi n is the hard-sphere contact distance. For a poly- 
atomic ion, the most rigorous approach to evaluate 
the collision integral is to propagate trajectories in a 
realistic potential to determine the scattering angle, 
while averaging over the variables in Eq. (2). Mesleh 
et al. [16] have recently employed this method to 
calculate mobilities for fullerenes using an effective 
potential consisting of a sum of two-body Lennard- 
Jones interactions and ion-induced dipole interac- 
tions. However, this approach is extremely computa- 
tionally intensive even for small clusters with rela- 
tively symmetric geometries, and requires informa- 
tion about the intermolecular potential which is often 
not readily available. In all of the other previous 
work, the collision integral has been approximated 
by 

4,rr 2 1 f 2 = f = - o  fo 2~ $,-](1, I) 2 ,IT brain, d0 0 dq~sin~ dy  ~ a v g  

(3) 
where bm~ n is the minimum impact parameter for a 
collision geometry defined by 0, q~, and 3' that 
avoids a hard-sphere contact with any atom in the 
cluster. This approach was first employed by Jarrold 

and Constant [17] to deduce information about the 
shapes of silicon clusters. They used simple shapes 
so that the integrals could be solved analytically. 
Von Helden et al. [7] generalized the model by 
replacing the cluster by a collection of hard spheres, 
one for each atom in the cluster, and performing the 
integrations numerically. This method has been 
widely adopted in the last few years [4-12,18-20]. 

While it is clear that Eq. (3) ignores the long-range 
interactions between the polyatomic ion and buffer 
gas atom, it is perhaps less obvious that it also 
ignores all the details of the scattering process and 
effectively replaces the collision integral by an orien- 
tationally averaged projection. In this contribution 
we examine the validity of this approximation. We 
will show that for any body with only convex sur- 
faces, the exact orientationally averaged hard-spheres 
collision integral is equal to the orientationally aver- 
aged projection. However, for bodies with concave 
surfaces this is not true. We have developed a rigor- 
ous hard-spheres scattering model to determine the 
magnitude of the deviation. For some geometries the 
collision integral determined from the exact hard- 
spheres scattering model differs from the orientation- 
ally averaged projection by over 20%. Since agree- 
ment between measured and calculated mobilities of 
better than 2% is generally used as a criterion for 
assigning geometries in these studies [7], this clearly 
could lead to the wrong structural assignments! 

For a collision between two hard spheres the 
collision integral, ,(2, is equal to the projection, P 
(g2 = f db 2b(1 - cos X) = 'rr b2in )" In the following 
we prove that this is true for all locally convex 
bodies. Consider a finite planar figure with an arbi- 
trary shape and area S. When this figure is posi- 
tioned in space such that the angle between the 
normal to its plane and the vector x is equal to some 
a, oJ= 2Scos3a and p = Scos a, where ~o is the 
momentum transfer cross section and p is the pro- 
jection along a specific direction. Integrating over all 
angles 

Note that the definition of the collision integral employed 
here differs from that given by Hirschfelder et al. [15]. Following 
Mason and McDaniel [14], a factor of ( k B T / 2 ~ I z )  j/2 present in 
the definition of Hirschfelder et al. is incorporated into Eq. (1) 
rather than in the equation for the collision integral. 

'rr f ~ / 2  c o s 3 a  sin a da S 
J2 = 2S-~ f~/2 ada 2 '  (4) 

"rr f~/2cosasinada S 
P = S T f~/2 ada = ~ ,  (5) 
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thus 12 = P. Since any finite geometric surface can 
be considered as a set of infinitesimally small, flat 
differential elements, one can express its cross sec- 
tion (projection) as a sum of the cross sections 
(projections) of these elements, if and only if these 
elements do not interact. There are two mechanisms 
for interactions: mutual shadowing of elements from 
direct collisions and multiple collisions where an 
atom is reflected from one element to another. To 
exclude both these effects, the requirement that the 
surface be locally convex at each point is necessary 
and sufficient. Whenever a surface satisfies this re- 
quirement, /2 = P. 

While, strictly speaking, the above derivation does 
not prove that bodies with concave surfaces could 
not have 12 = P, it strongly suggests that this equal- 
ity does not hold for such bodies in general. To 
verify this, we have developed a computer code to 
find the true hard-sphere collision integral for an 
arbitrary body. This is accomplished by solving 

'go f0 12aC~g ') = dO d~o sin dy 
4 71"2 "0 

~ c  x£ db2b(1-cosx(O, , ,b)) (6/ 
numerically. The scattering angle, X, is determined 
by following the trajectory through any and all of its 
collisions with the cluster until it leaves the cluster 
for good. This accounts for multiple collisions where 
a trajectory is reflected from one part of the cluster 
onto another part. Since all polyatomic ions consist 
of discrete atoms, parts of their surfaces are techni- 
cally concave. Consequently, the exact hard-sphere 
collision integrals of all polyatomic ions deviate 
from their projections. However, one would expect 
larger deviations to occur for structures that are also 
concave on a gross scale, such as rings and cups. To 
determine the magnitude of these deviations we have 
performed calculations for a range of carbon cluster 
geometries. Carbon clusters have been the object of 
intense investigation over the last decade, including 
extensive ion mobility studies of carbon cluster 
cations and anions. A wide variety of isomers have 
been observed: linear chains, planar monocyclic, bi- 
cyclic and polycyclic rings, graphite sheets, 
fullerenes, fullerene dimers, and fullerene clusters. 
The existence of cups [21] and three-dimensional 
rings [19,20] has also been suggested. 

In order to calculate the exact hard-sphere colli- 
sion integral and the projection it is necessary to 
define a value for the hard-sphere contact distance. 
This was done by fitting the measured 298 K mobil- 
ity of fullerene C6+0, treating the hard-sphere contact 
distance as an adjustable parameter. Fullerene C~- 0 
was selected because its geometry is experimentally 
known [22]. The hoard-sphere contact distances ob- 
tained were 2.81 A using the exact hard-spheres 
scattering model and 2.86 ,~ using the projection 
approximation. If  the same hard-sphere contact dis- 
tance is used with both models, then the collision 
integral obtained from the exact hard-spheres scatter- 
ing model is larger than that estimated, from the 
projection approximation, in all the cases we have 
examined. Calculations using these parameters have 
been performed for a range of carbon cluster geome- 
tries. The geometries used are as follows. Linear 
chains and rotationally symmetric monocyclic rings 
were constructed using an interatomic distance [23] 
of 1.30 ,~. Bicyclic rings generated by a [2 + 2] 
cycloaddition and large (n > 90, n is the number of 
atoms) tricyclic rings were optimized in plane using 
the strain minimization procedure of Shelimov et al. 
[10]. Geometries for small tricyclic rings (planar or 
nearly planar) were obtained from von Helden et al. 
[7] and Strout et al. [19]. Graphite sheets are 
MNDO-optimized geometries [24] up to n = 70 and 
unoptimized hexagonal assemblies for larger sizes. 
The fullerene geometries employed were experimen- 
tal [22] for n = 60 and MNDO for n = 20 and 34 
(Shelimov [24]), 70 (Raghavachari [25]), 120 (Murry 
et al. [26]) and 180 (Bakowies et al. [27]). For 
n = 240 and n = 540 fullerenes, calculations were 
performed using the geometries obtained by both 
Bakowies et al. [27] using MNDO and by Scuseria 
[28] with ab initio Hartree-Fock. 

Fig. 1 shows a plot of the quantity 12REL = ,O(2.81 
• ~) /P(2 .86 ,~) -- 1 (relative deviation of the collision 
integral calculated using the exact hard-sphere scat- 
tering model from the orientationally averaged pro- 
jection) against (cluster size) j/3 for a variety of 
different carbon cluster geometries. The relative de- 
viations range from - 3 %  to over +5%. Note that 
significant deviations are observed for linear chains, 
graphite sheets and fullerenes even though these 
geometries do not have grossly concave surfaces. 
The deviations result from 'surface roughness' such 

PA

EHSS

TM

Formulas from: Shvartsburg & Jarrold Chem. Phys. Lett. 1996, 261, 86.
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(PEG-nonamer )Na  + (Gly)4H + 

(.--:~ ~ .... \, / ~ f  Ti ~ '~ '~  \ 

a) \ b) 
Figure 2. Space-filling models of (a) sodiated PEG nonamer, 
(b) protonated tetraglycine (labeled are one amid-N, -O, and -H 
with their MM point charges). (The nuclear positions of the 
atoms are fixed at the locations determined from molecular 
mechanics calculations. The size of each atomic radius, however, 
is set as the appropriate collision radius determined by the fits 
described in this work. For example, the space-filling radius for 
H is really the H-He collision radius determined from fitting the 
temperature dependence of the PEG systems. These space-filling 
models then directly reflect the collisional properties of the 
molecule for He as a collision partner.) C, white; C, dark gray; N, 
light gray; O, dotted. 

each a tom similar to molecular  mechanics approaches.  
In this latter approach  point  charges on aliphatic hy- 
drogens  are usually very  close to zero (q = 0.02e in 
our  case [10, 20]). Therefore the a -4 term is expected 
to be small for each of these three possibilities. 

Another  difference with C~0 is that  the three-dimen- 
sional structures of cationized PEG polymers  in the gas 
phase are not  experimentally known.  We assume that 
PEG has the shape that we obtained f rom molecular  
mechanics  studies (that yielded cross sections in excel- 
lent agreement  with experiment  [10]). 

By using those structures, the best values of rc] and 
~L] for a (12, 6, 4) potential, obtained by  a fit including 
data of nine different PEG polymers ,  are listed in Table 
3, assuming  q = e/N. The results in Table 4 indicate 
that the different charge distributions yield basically 
the same interaction potential and the same cross sec- 
tions for 75 K < T < 600 K. Compar isons  between ex- 
perimental  and calculated cross sections are shown in 
Figure 3 for the example of sodiated PEG. Clearly the 
data are quantitatively reproduced  by the model  calcu- 
lations, including increases in o- at temperatures  both 
below and above 300 K. The increase at low tempera-  
tures is due  to the attractive interaction between the 
ion and He  and is the focus of this article. The increase 

Table 3. Fitted values for rL] and ELl in a (12, 6, 4) potential 
for the H-He interaction in a number molecular ions 

rL j  8LJ 
(A) (kca l /mol )  

(PEG)X + a 2.38 0 .34 
(Crn)Na +b 2.30 0.26 

(Gly) 4 H + 2.60 0.36 

(Gly) 4 Na + 2.32 0.36 

a Fit includes PEG nonamer, 13-mer, and 17-mer for each of the 
cations X += Li +, Na +, and Cs +. 

b Sodiated 18-crown-6 ether. 

Table 4. Calculated cross section rr for the sodiated PEG o 
nonamer by using a (12, 6, 4) potential (with rL! = 2.38 A and 
EL! = 0.37 kcal/mol for the H-He interaction) and different 
charge distribution models 

T(K) q = 0 q = 1 6 / N  a q = 0 b q = po in t cha rge  c 

75 175 174 174 177 
300 130 129 130 129 
600 128 126 126 126 

aN = 67 (number of atoms); e is the charge of a proton. 
bExcept q(Na +) = le.  
Cq is point charge used in molecular mechanics force fields [20]. 

above room temperature  is a dynamic  effect, which 
has been discussed in a previous  paper  [10b] and is 
quanti tat ively explained by  using molecular  dynamics  
simulations. 

Other Molecules 

We can n o w  apply  the same model  to other molecules 
by using the H - H e  potential parameters  for any H 
a toms in the molecule and the C - H e  parameters  for 
any  non-H atoms. For a series of 18-crown-6 ether 
studies [11] the model  reproduces  the experimental  
data rather well within a few percent over  the entire 
temperature  range f rom 80 to 600 K (see Figure 4a for 
the example of the cesiated crown), a l though it is 
apparent  the theoretical cross sections are slightly 
larger than experiment  for all values of T. 

In the case of peptides the question of the charge 
distribution is more  important .  Molecular mechanics  
(MM) models  predict  that  atomic charges considerably 
different f rom zero can be found on the surface of the 
molecule. For example for smaller glycine polymers  
the amide hydrogens  with a significant positive point  
charge (q = 0.25e in the AMBER residue database [20]) 
tend to be exposed (Figure 2b). However ,  a compari-  
son of a model  including such MM point  charges with 
a model  including an evenly distributed charge (q = 

26O 
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Figure 3. Experimental (circles) and calculated (lines) cross sec- 
tions of three PEG polymers as a function of temperature, used to 
optimize the H-He Lennard-Jones parameters in a (12,6,4) 
potential. 

Random selection of a plane

Projection of nuclear positions

Drawing of the collision radii

Random selection of points in area A 
enclosing the projection CCSProj1 = (hits/tries) x Area

Wyttenbach, von Helden et al. J. Am. Soc. Mass Spectrom. 1997, 8, 275.

Exact hard-sphere scattering (EHSS)

PA neglects scattering and multiple collisions of a gas atom with the ion

Still PA is correct for fully convex ions 

EHSS explicitly considers scattering

Shvartsburg & Jarrold Chem. Phys. Lett. 1996, 261, 86.
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as the dips in the middle of hexagons. For these three 
geometries, the deviations become more positive with 
increasing cluster size. This is because, for all con- 
tiguous bodies, the average surface curvature de- 
creases with increasing size provided that the shape 
is constant, and this curvature mitigates the effects of 
surface roughness by reducing the number of multi- 
ple collisions. Similarly, the fact that ,ORE L is al- 
ways smaller for fullerenes than for the graphite 
sheet isomers is due to the higher average curvature 
of fullerene surfaces. For all the ring isomers OREL 
shows a maximum. Space-filling models of small 
rings indicate that they do not really have holes, 
hence the number of multiple collisions is small. As 
the ring size increases, collisions in which the buffer 
gas atom bounces from one side of the ring to the 
other become important and ~REL increases. As the 
ring becomes even larger, the probability of multiple 
collisions decreases and the deviations decrease. Note 
that the maximum ~"~REL increases on moving from 
monocyclic to tricyclic rings, while the position of 
maximum shifts to larger cluster size. 
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Fig. 2. Plot o f  the quantity .O(2.81 ,~ ) /P (2 .86  , ~ ) -  1 against the 
number o f  atoms for  cups derived from C6o (squares), C24 o (S) 
(circles), and C54 o (triangles) fullerenes, as described in the text. 
The fullerene geometries are from York  et al. [36] for  C24o and 
from Scuseria [28] for Cs4 o. The lines are the f i f th-order regres- 
sions through the points. 
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Fig. 1. Comparison of the collision integrals calculated using the 
exact hard-spheres scattering model with those estimated using the 
projection approximation. The figure shows a plot of the quantity 
,O(2,81 .~)/P(2.86 ,~,)- 1 against the (number of atoms in the 
cluster) I/3 for a variety of different geometries (see text). 

We now address a geometry with grossly concave 
surfaces: cups. Smalley [21] has suggested that cups, 
or open fullerenes, are transient intermediates in the 
gas-phase assembly of fullerene cages. Experimental 
studies have shown that fullerenes can be synthe- 
sized by the coalescence and subsequent annealing 
of carbon rings [29-31]. Furthermore, there are no 
features present in the ion mobility measurements in 
the region allocated for cups by the projection ap- 
proximation [7]. The merits of the competing models 
for fullerene assembly have been the subject of a 
lively debate, as reflected in a recent review by 
Goroff [32]. Thus the accurate evaluation of the 
collision integrals for cups is of considerable impor- 
tance. We have calculated collision integrals for a 
number of cups using the projection approximation 
and the exact hard-spheres scattering model. The 
cups were constructed by cutting a fullerene by a 
plane and resecting the part on one of the sides. For 
spherical fullerenes, this procedure allows one to 
control two parameters: the curvature of the cup and 
its angular extent. Fig. 2 shows a plot of the quantity 
,ORE L against the number of atoms in the cups, for 
cups obtained from C60, C2+ 0, and C54 o fullerenes. 
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as the dips in the middle of hexagons. For these three 
geometries, the deviations become more positive with 
increasing cluster size. This is because, for all con- 
tiguous bodies, the average surface curvature de- 
creases with increasing size provided that the shape 
is constant, and this curvature mitigates the effects of 
surface roughness by reducing the number of multi- 
ple collisions. Similarly, the fact that ,ORE L is al- 
ways smaller for fullerenes than for the graphite 
sheet isomers is due to the higher average curvature 
of fullerene surfaces. For all the ring isomers OREL 
shows a maximum. Space-filling models of small 
rings indicate that they do not really have holes, 
hence the number of multiple collisions is small. As 
the ring size increases, collisions in which the buffer 
gas atom bounces from one side of the ring to the 
other become important and ~REL increases. As the 
ring becomes even larger, the probability of multiple 
collisions decreases and the deviations decrease. Note 
that the maximum ~"~REL increases on moving from 
monocyclic to tricyclic rings, while the position of 
maximum shifts to larger cluster size. 
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Fig. 1. Comparison of the collision integrals calculated using the 
exact hard-spheres scattering model with those estimated using the 
projection approximation. The figure shows a plot of the quantity 
,O(2,81 .~)/P(2.86 ,~,)- 1 against the (number of atoms in the 
cluster) I/3 for a variety of different geometries (see text). 

We now address a geometry with grossly concave 
surfaces: cups. Smalley [21] has suggested that cups, 
or open fullerenes, are transient intermediates in the 
gas-phase assembly of fullerene cages. Experimental 
studies have shown that fullerenes can be synthe- 
sized by the coalescence and subsequent annealing 
of carbon rings [29-31]. Furthermore, there are no 
features present in the ion mobility measurements in 
the region allocated for cups by the projection ap- 
proximation [7]. The merits of the competing models 
for fullerene assembly have been the subject of a 
lively debate, as reflected in a recent review by 
Goroff [32]. Thus the accurate evaluation of the 
collision integrals for cups is of considerable impor- 
tance. We have calculated collision integrals for a 
number of cups using the projection approximation 
and the exact hard-spheres scattering model. The 
cups were constructed by cutting a fullerene by a 
plane and resecting the part on one of the sides. For 
spherical fullerenes, this procedure allows one to 
control two parameters: the curvature of the cup and 
its angular extent. Fig. 2 shows a plot of the quantity 
,ORE L against the number of atoms in the cups, for 
cups obtained from C60, C2+ 0, and C54 o fullerenes. 



Trajectory method (TM)

EHSS plus long-range interactions

Their results are in reasonable agreement with those shown in
Figure 1. As a test of the accuracy of our mobility measure-
ments, mobilities were measured for C60+ generated from laser-
desorbed fullerene films using a new high-resolution ion
mobility apparatus that we have recently constructed.13 The
room temperature, 298 K, mobility for C60+ measured using
this new apparatus agreed with that measured with the injected
ion drift tube apparatus to within 1%.
The solid line through the experimental results in Figure 1

was obtained by fitting the measured mobilities with the
trajectory simulations, treating the Lennard-Jones parameters
Û and ✏ as adjustable. The fit to the experimental data is clearly
very good and is much better than the corresponding hard sphere
result.12 The optimum values determined from the fit were Û
) 3.068 Å and ✏ ) 1.34 meV. The values for Û and ✏ deduced
above can be compared with values obtained from the Lennard-
Jones parameters for carbon and helium using6 ÛHe-C ) ÛHe-He
+ ÛC-C and ✏He-C ) (✏He-He✏C-C)1/2. With the Lennard-Jones
parameters for helium6 and Lennard-Jones parameters deduced
for carbon from the interlayer interactions in graphite,14 the
values obtained were ÛHe-C ) 2.98 Å and ✏He-C ) 1.46 meV.
These values are in good agreement with those obtained by
fitting the mobility data for C60+. A value for the contact
distance for the hard sphere projection approximation was
deduced by fitting the room temperature, 298 K, mobility of
C60+. The value obtained was 2.86 Å. This value is slightly
larger than employed previously because the MNDO coordi-
nates15 used have been scaled by 0.9884 to match the diameter
of C60 deduced from X-ray and electron diffraction studies.10
Figure 2 shows examples of trajectories calculated for He-

C60+ scattering. Trajectories are shown for a range of impact
parameters for a collision energy given by kBT with T ) 298
K. The effect of the long-range interactions between C60+ and
He, a significant deflection of the trajectories, is apparent at
large impact parameters even at room temperature. At lower
temperatures, where the attractive interactions become more
important, orbiting collisions with multiple impacts occur.
Figure 3 shows a plot of the orientationally averaged effective
potential for He-C60+ obtained using eq 3 with Û ) 3.068 Å
and ✏ ) 1.34 meV. The average He-C60+ potential has a
minimum of 10.3 meV at 3.03 Å from the surface of the
fullerene. Thus, the average He-C60+ potential is around 8
times deeper than that for a single He-C two-body interaction.
Comparison to the average potential determined without the ion-
induced dipole contribution shows that the ion-induced dipole
interaction is responsible for only around 10% of the He-C60+

potential at the minimum. The He-C60+ potential is around 8

times deeper than a single He-C two-body interaction because
the helium interacts, to some extent, with all the carbon atoms
in C60+. Orientationally averaged effective potentials are also
shown in Figure 3 for C20+ (calculated using C20 MNDO
coordinates16) and C240+ (calculated using coordinates for the
S isomer of York et al.17). We selected these fullerenes because
they are nearly spherical, and so it is easy to calculate an
orientationally averaged effective potential as a function of the
distance from the fullerene surface. As can be seen from the
figure, the potential minimum becomes deeper with increasing
fullerene size. The contribution of the ion-induced dipole
interaction to the effective potential decreases with increasing
cluster size. Thus, the ion-induced dipole interactions minimize
the variations in the effective potentials with fullerene size.
Von Helden et al. have recently reported simulations of the

temperature dependence of the mobility of C60+ in He.12 The
approach they employ is quite different from that adopted here,
where we sum the He-C interactions to obtain an effective He-
fullerene potential and then run trajectories using this potential.
Instead, von Helden et al. assume that the He interacts with
only a single carbon atom in the cluster and use collision
integrals tabulated as a function of temperature for atom-atom
collisions with a 12-6-4 potential to define a contact distance
as a function of temperature. This approach ignores the fact
that the effective potential receives contributions from many
C-He interactions and that the helium, particularly at low
temperatures, interacts with many carbon atoms during a
collision.
As a further check of the reliability of the potential deduced

here, we have compared it with several He-graphite potentials.
Although the chemical bonding in fullerenes and graphite is
not identical, He-graphite seems to be the best available system
for comparison. Figure 4 shows the orientationally averaged
effective He-C60 potential (determined using eq 3 with Û )
3.068 Å and ✏ ) 1.34 meV but without the ion-dipole
interaction) and several different laterally averaged He-graphite
potentials obtained from fitting experimental data. The He-
C60 potential is shallower than the graphite-helium potentials
because the surface of the fullerene is curved and because with
graphite the helium can interact with more carbon atoms. To
facilitate comparison with the He-graphite potentials, we have
calculated a laterally averaged effective He-graphite potential
using the Lennard-Jones parameters deduced from the mobility
measurements. The result is shown as the solid line labeled LJ
graphite slab in Figure 4. This potential can be compared with
He-graphite potentials deduced from helium-scattering experi-
ments, which are shown as the dashed lines. The dashed line
labeled JLB is the He-graphite potential of Joly, Lhuillier, and
Brami18 and that labeled RSJ is due to Ruiz, Scoles, and

Figure 2. Plot of some He-C60+ trajectories calculated using the
optimized He-C60+ Lennard-Jones plus ion-induced dipole potential
(see text). The trajectories were run with a collision energy of kBT with
T ) 298 K.

Figure 3. Plot of the optimized orientationally averaged He-C60+

Lennard-Jones plus ion-induced dipole potential described in the text.
Orientationally averaged potentials are also shown for He-C20+ and
He-C240+ (S).
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In a number of recent studies, information about the structure of large polyatomic ions has been deduced
from gas phase ion mobility measurements by comparing mobilities measured in helium to those estimated
for assumed geometries using a hard sphere projection approximation. To examine the validity of this approach,
we have compared mobilities calculated using the hard sphere projection approximation for a range of fullerenes
(C20-C240) to those determined from trajectory calculations with a more realistic He-fullerene potential.
The He-fullerene potential we have employed, a sum of two-body 6-12 interactions plus a sum of ion-
induced dipole interactions, was calibrated using the measured mobility of C60+ in helium over an 80-380
K temperature range. For the systems studied, the long-range interactions between the ion and buffer gas
have a small, less than 10%, effect on the calculated mobility at room temperature. However, the effects are
not insignificant, and in many cases it will be necessary to consider the long-range interactions if the correct
structural assignments are to be made from measured ion mobilities.

Introduction

The mobility of a gas phase ion is a measure of how rapidly
it moves through a buffer gas under the influence of an electric
field. The mobility depends on the average collision cross
section, which in turn depends on the geometry.1 Recently, ion
mobility measurements have been used to deduce structural
information about large polyatomic ions.2 In these studies the
measured mobility is compared to mobilities estimated for
assumed geometries using a hard sphere projection approxima-
tion.3 In this paper we describe studies designed to examine
the validity of this approach. Specifically, we examine how
the long-range potential between the polyatomic ion and buffer
gas affects the room temperature mobility. To accomplish this,
we have compared mobilities determined from trajectory
calculations with a realistic potential to mobilities estimated
using the hard sphere projection approximation. We also
consider the influence of ion structure, in particular atomic-
level surface roughness, on the mobilities. Fullerenes were
employed as models to examine these issues because geometries
are available from theory for a wide range of shapes and sizes
and because we could calibrate the potential using the experi-
mentally known structure for C60. Book et al.4 have previously
reported a study of the effects of vibrational motion on mobilities
calculated using the hard sphere projection approximation. They
found vibrational effects to be negligible at room temperature
for rigid geometries such as fullerenes.

Mobility Calculations

The mobility, K, of a gas phase ion is defined by K ) VD/E
where VD is the drift velocity and E is the electric field. The
zero-field mobility can be calculated from5,6

In this expression, m is the mass of the ion, mB is the mass of

a buffer gas atom, N is the buffer gas number density, ze is the
ion’s charge, and øavg

(1,1) is the orientationally averaged collision
integral. T is the effective temperature given by TBG + mBVD2/
3kB,7 where VD is the drift velocity, TBG is the buffer gas
temperature, and the second term accounts for the small
perturbation (typically less than 1 K) caused by the presence of
the drift field. The collision integral6,8 is related to the scattering
angle, the angle between the trajectory before and after a
collision between the ion and a buffer gas atom. The collision
integral is calculated by averaging over the impact parameter
and relative velocity, and the average collision integral,
øavg
(1,1), is obtained by averaging the collision integral over all

possible collision geometries:

In this expression ı, �, and Á are three angles that define the
collision geometry between the polyatomic ion and the buffer
gas atom, ¯(ı,�,Á,g,b) is the scattering angle, g is the relative
velocity, and b is the impact parameter. Except for simple,
spherically symmetric potentials, the scattering angle must be
calculated by numerical integration of the equations of motion.
The potential employed in the work described here is

The first term in this expression is a sum of two-body 6-12
interactions, and the second term is the ion-induced dipole
interaction. We have assumed that the charge is distributed
equally over the ion, which seems appropriate for the fullerenes
considered here. In eq 3, ✏ and Û are the Lennard-Jones
parameters (✏ is the well depth and Û is the distance where the
potential becomes positive), R is the polarizability of the buffer
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In a number of recent studies, information about the structure of large polyatomic ions has been deduced
from gas phase ion mobility measurements by comparing mobilities measured in helium to those estimated
for assumed geometries using a hard sphere projection approximation. To examine the validity of this approach,
we have compared mobilities calculated using the hard sphere projection approximation for a range of fullerenes
(C20-C240) to those determined from trajectory calculations with a more realistic He-fullerene potential.
The He-fullerene potential we have employed, a sum of two-body 6-12 interactions plus a sum of ion-
induced dipole interactions, was calibrated using the measured mobility of C60+ in helium over an 80-380
K temperature range. For the systems studied, the long-range interactions between the ion and buffer gas
have a small, less than 10%, effect on the calculated mobility at room temperature. However, the effects are
not insignificant, and in many cases it will be necessary to consider the long-range interactions if the correct
structural assignments are to be made from measured ion mobilities.

Introduction

The mobility of a gas phase ion is a measure of how rapidly
it moves through a buffer gas under the influence of an electric
field. The mobility depends on the average collision cross
section, which in turn depends on the geometry.1 Recently, ion
mobility measurements have been used to deduce structural
information about large polyatomic ions.2 In these studies the
measured mobility is compared to mobilities estimated for
assumed geometries using a hard sphere projection approxima-
tion.3 In this paper we describe studies designed to examine
the validity of this approach. Specifically, we examine how
the long-range potential between the polyatomic ion and buffer
gas affects the room temperature mobility. To accomplish this,
we have compared mobilities determined from trajectory
calculations with a realistic potential to mobilities estimated
using the hard sphere projection approximation. We also
consider the influence of ion structure, in particular atomic-
level surface roughness, on the mobilities. Fullerenes were
employed as models to examine these issues because geometries
are available from theory for a wide range of shapes and sizes
and because we could calibrate the potential using the experi-
mentally known structure for C60. Book et al.4 have previously
reported a study of the effects of vibrational motion on mobilities
calculated using the hard sphere projection approximation. They
found vibrational effects to be negligible at room temperature
for rigid geometries such as fullerenes.

Mobility Calculations

The mobility, K, of a gas phase ion is defined by K ) VD/E
where VD is the drift velocity and E is the electric field. The
zero-field mobility can be calculated from5,6

In this expression, m is the mass of the ion, mB is the mass of

a buffer gas atom, N is the buffer gas number density, ze is the
ion’s charge, and øavg

(1,1) is the orientationally averaged collision
integral. T is the effective temperature given by TBG + mBVD2/
3kB,7 where VD is the drift velocity, TBG is the buffer gas
temperature, and the second term accounts for the small
perturbation (typically less than 1 K) caused by the presence of
the drift field. The collision integral6,8 is related to the scattering
angle, the angle between the trajectory before and after a
collision between the ion and a buffer gas atom. The collision
integral is calculated by averaging over the impact parameter
and relative velocity, and the average collision integral,
øavg
(1,1), is obtained by averaging the collision integral over all

possible collision geometries:

In this expression ı, �, and Á are three angles that define the
collision geometry between the polyatomic ion and the buffer
gas atom, ¯(ı,�,Á,g,b) is the scattering angle, g is the relative
velocity, and b is the impact parameter. Except for simple,
spherically symmetric potentials, the scattering angle must be
calculated by numerical integration of the equations of motion.
The potential employed in the work described here is

The first term in this expression is a sum of two-body 6-12
interactions, and the second term is the ion-induced dipole
interaction. We have assumed that the charge is distributed
equally over the ion, which seems appropriate for the fullerenes
considered here. In eq 3, ✏ and Û are the Lennard-Jones
parameters (✏ is the well depth and Û is the distance where the
potential becomes positive), R is the polarizability of the buffer

† Present address: SRI International, Menlo Park, CA 94025.
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Their results are in reasonable agreement with those shown in
Figure 1. As a test of the accuracy of our mobility measure-
ments, mobilities were measured for C60+ generated from laser-
desorbed fullerene films using a new high-resolution ion
mobility apparatus that we have recently constructed.13 The
room temperature, 298 K, mobility for C60+ measured using
this new apparatus agreed with that measured with the injected
ion drift tube apparatus to within 1%.
The solid line through the experimental results in Figure 1

was obtained by fitting the measured mobilities with the
trajectory simulations, treating the Lennard-Jones parameters
Û and ✏ as adjustable. The fit to the experimental data is clearly
very good and is much better than the corresponding hard sphere
result.12 The optimum values determined from the fit were Û
) 3.068 Å and ✏ ) 1.34 meV. The values for Û and ✏ deduced
above can be compared with values obtained from the Lennard-
Jones parameters for carbon and helium using6 ÛHe-C ) ÛHe-He
+ ÛC-C and ✏He-C ) (✏He-He✏C-C)1/2. With the Lennard-Jones
parameters for helium6 and Lennard-Jones parameters deduced
for carbon from the interlayer interactions in graphite,14 the
values obtained were ÛHe-C ) 2.98 Å and ✏He-C ) 1.46 meV.
These values are in good agreement with those obtained by
fitting the mobility data for C60+. A value for the contact
distance for the hard sphere projection approximation was
deduced by fitting the room temperature, 298 K, mobility of
C60+. The value obtained was 2.86 Å. This value is slightly
larger than employed previously because the MNDO coordi-
nates15 used have been scaled by 0.9884 to match the diameter
of C60 deduced from X-ray and electron diffraction studies.10
Figure 2 shows examples of trajectories calculated for He-

C60+ scattering. Trajectories are shown for a range of impact
parameters for a collision energy given by kBT with T ) 298
K. The effect of the long-range interactions between C60+ and
He, a significant deflection of the trajectories, is apparent at
large impact parameters even at room temperature. At lower
temperatures, where the attractive interactions become more
important, orbiting collisions with multiple impacts occur.
Figure 3 shows a plot of the orientationally averaged effective
potential for He-C60+ obtained using eq 3 with Û ) 3.068 Å
and ✏ ) 1.34 meV. The average He-C60+ potential has a
minimum of 10.3 meV at 3.03 Å from the surface of the
fullerene. Thus, the average He-C60+ potential is around 8
times deeper than that for a single He-C two-body interaction.
Comparison to the average potential determined without the ion-
induced dipole contribution shows that the ion-induced dipole
interaction is responsible for only around 10% of the He-C60+

potential at the minimum. The He-C60+ potential is around 8

times deeper than a single He-C two-body interaction because
the helium interacts, to some extent, with all the carbon atoms
in C60+. Orientationally averaged effective potentials are also
shown in Figure 3 for C20+ (calculated using C20 MNDO
coordinates16) and C240+ (calculated using coordinates for the
S isomer of York et al.17). We selected these fullerenes because
they are nearly spherical, and so it is easy to calculate an
orientationally averaged effective potential as a function of the
distance from the fullerene surface. As can be seen from the
figure, the potential minimum becomes deeper with increasing
fullerene size. The contribution of the ion-induced dipole
interaction to the effective potential decreases with increasing
cluster size. Thus, the ion-induced dipole interactions minimize
the variations in the effective potentials with fullerene size.
Von Helden et al. have recently reported simulations of the

temperature dependence of the mobility of C60+ in He.12 The
approach they employ is quite different from that adopted here,
where we sum the He-C interactions to obtain an effective He-
fullerene potential and then run trajectories using this potential.
Instead, von Helden et al. assume that the He interacts with
only a single carbon atom in the cluster and use collision
integrals tabulated as a function of temperature for atom-atom
collisions with a 12-6-4 potential to define a contact distance
as a function of temperature. This approach ignores the fact
that the effective potential receives contributions from many
C-He interactions and that the helium, particularly at low
temperatures, interacts with many carbon atoms during a
collision.
As a further check of the reliability of the potential deduced

here, we have compared it with several He-graphite potentials.
Although the chemical bonding in fullerenes and graphite is
not identical, He-graphite seems to be the best available system
for comparison. Figure 4 shows the orientationally averaged
effective He-C60 potential (determined using eq 3 with Û )
3.068 Å and ✏ ) 1.34 meV but without the ion-dipole
interaction) and several different laterally averaged He-graphite
potentials obtained from fitting experimental data. The He-
C60 potential is shallower than the graphite-helium potentials
because the surface of the fullerene is curved and because with
graphite the helium can interact with more carbon atoms. To
facilitate comparison with the He-graphite potentials, we have
calculated a laterally averaged effective He-graphite potential
using the Lennard-Jones parameters deduced from the mobility
measurements. The result is shown as the solid line labeled LJ
graphite slab in Figure 4. This potential can be compared with
He-graphite potentials deduced from helium-scattering experi-
ments, which are shown as the dashed lines. The dashed line
labeled JLB is the He-graphite potential of Joly, Lhuillier, and
Brami18 and that labeled RSJ is due to Ruiz, Scoles, and

Figure 2. Plot of some He-C60+ trajectories calculated using the
optimized He-C60+ Lennard-Jones plus ion-induced dipole potential
(see text). The trajectories were run with a collision energy of kBT with
T ) 298 K.

Figure 3. Plot of the optimized orientationally averaged He-C60+

Lennard-Jones plus ion-induced dipole potential described in the text.
Orientationally averaged potentials are also shown for He-C20+ and
He-C240+ (S).
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Table 2. CCS values computed with PA or PSA and TM for di↵erent
conformers/protomers of three molecules compared to the respective experiment-
derived CCS.

Structure CCSPA/PSA in Å2 CCSTM in Å2 CCSExp in Å2

Ac-Ala6-Lys(H+) from ref. [99]

↵ helix 180 181
180

compact 172 171

Ac-�2hAla6-Lys(H+) from ref. [99]

H12 203 204

190
H16 191 193

H20 182 182

compact 183 182

Benzocaine from ref. [47]

O-prot./trans 131.1 132.7
135

O-prot./gauche 131.6 132.5

N-prot./trans 133.3 144.0
155

N-prot./gauche 129.5 144.0

The choice of method, for example between PA, PSA, EHSS, and TM, can be

critical for the predictive value of the CCS calculation. Some examples are collected

in table 2. Depending in the nature of the ionic cluster/complex or molecular ion

under investigation, the alternative methods can agree, like in the case of two peptides

from reference [99], where PA amd TM give virtually the same results. But there also

examples where the methods give qualitatively di↵erent results. Di↵erent protonation

states (protomers) of benzocaine exist that result in either the distribution of the positive

charge over the molecule or in its localization at a protonated amino function [47]. In the

experiment, both forms can be separated in ion-mobility experiments with a polarizable

bu↵er gas (N2). In simulations, the CCSs computed with the PA are indistinguishable,

while TM predicts distinct values for the protomers and allows for the interpretation of

the experiment.

The interpretation of an experimental arrival-time distribution or of the derived

CCS distribution is not unambiguous. The theoretical CCS of a single conformer

represents a projection of the conformational degrees of freedom onto a single coordinate,

as a consequence similar CCSs may still result from di↵erent structures. The

experimental CCS however, even a single sharp peak, represents not only a projection

of spatial coordinates, but also of the dynamics of the molecular or cluster ion over the

drift time. Consequently, measuring a single sharp peak can mean that either (i) there

is only a single conformational family present in the ion cloud, (ii) there are multiple

(more than one) conformational families present in the ion cloud that have the same

CCS, or even (iii) the time average over multiple conformers for a single molecule is

converged during the drift time and the measured CCS basically represents a converged
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Summary and performance

PA EHSS TM

Scattering

Shape

Multiple collisions

Long-range interactions

Computational cost PA EHSS TM≈ ≪

and Ruotolo, 2011), IMPACT is equivalently accurate for struc-
tural biology applications as the TJM.

IMPACT Calculates Collision Cross Sections with
Unprecedented Speed
To achieve high computational performance, we implemented
two strategies. First, we separated the calculation of rotation
matrices fromtheir application to theatomiccoordinates (Supple-
mental Information) (Williams et al., 2009). In addition, we
implemented a strategy that pre-arranges atoms into cuboidal
subsections, each of which can in turn be further subdivided,
yielding a multilevel ‘‘octree’’ (Figure 2A; Figure S2) (Meagher,
1982), which is a type of data structure for accelerating geometric
modelling. For an incoming probe, IMPACT first assesses
whether or not it has collided with the bounding box of the outer
level of the octree. If so, the smaller boxes contained inside the
outer box are interrogated for collision with the probe, and so
on, until the deepest level where the atoms are stored is reached.
Theprobewill, inmostcases,onlyhit aminorityofboxes, enabling
a faster calculation as many atoms can be omitted from the
search for collisions. The process of subdivision adds overhead
to the calculation, however for assemblies [100 kDa (Table
S2) such as the ribosome (protein and nucleic acid, 2.4MDa), sat-
ellite tobacco necrosis virus (STNV; capsid, genome, salt, and
water; 1.8 MDa), the vault (3.5 MDa), and the adenovirus capsid
(89 MDa), we obtained an additional acceleration up to 20-fold
(Figure 2B; Supplemental Information). Importantly, the introduc-
tion of octrees does not result in a loss of accuracy, returning the

sameCCS values as without. We find that there is a strong corre-
lation between the number of atoms and the optimal number
of subdivisions (maximum octree depth) (Figure S2D), which is
exploited by IMPACT at runtime for maximum performance.
To test the impact of these strategies we performed a bench-

mark between IMPACT and other available CCS calculators
(Supplemental Information), using the 170 kDa asymmetric unit
from the Norwalk virus capsid protein (PDB code 1IHM) to
compare with other studies (Bleiholder et al., 2011; Paizs,
2014). We find that to approach a precision of 1%, the TJM re-
quires 17 hr, and the EHSS 28 min. The time taken for the PA
varies between different implementations, with the fastest exist-
ing form converging in 0.43 s. By comparison, IMPACT requires
only 70 ms to reach completion. The speed improvement of
IMPACT is therefore substantial, ranging approximately between
one and six orders of magnitude compared with alternative CCS
calculators (Figure 2C). Notably, disk access constitutes approx-
imately 20% of IMPACT’s wall time for these calculations, indi-
cating that when data are supplied from a coordinate file, rather
than being available and properly formatted in random-access
memory, the performance of IMPACT is close to the unavoidable
limitations posed by the hardware.

The Structural Proteome Displays Significant Variation
in Collision Cross Section
The accuracy, precision, and speed of IMPACT allow us to inter-
rogate large structural datasets. We therefore set out to deter-
mine the CCS for all the biological assemblies in the PDBe
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Figure 2. IMPACT Provides a Dramatic Increase in the Speed of CCS Calculations
(A) Schematic showing in 2D/3D how quadtrees/octrees are constructed for a target through recursive subdivision. A quadtree representation of a structure with

three atoms (yellow dots) is shown at depths 0!3, and the two first levels of an octree for the lac-repressor (PDB code 1EFA). The bounding boxes enclosing the

subdivisions at each level let us omit large parts of the target from the search for collisions with the probe, saving time in the process (see also Figures S2A–S2C).

(B) Computational wall time plotted against maximum octree depth D for a series of large macromolecular complexes (Table S2). Octrees provide the biggest

boost to speed for large targets, being almost a factor of 20 for the vault. IMPACT automatically determines the optimum octree depth in a calculation

(Figure S2D).

(C) Performance benchmarks, where the CCS of the asymmetric unit from a crystal structure of the Norwalk virus capsid (PDB code 1IHM) was calculated to 1%

precision, reveal that IMPACT outperforms other PA implementations and is approximately 106 times faster than TJM without significant loss in accuracy (see

Figure 1B).
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Performance benchmarks: 
asymmetric unit of the Norwalk virus 

capsid (PDB code 1IHM) calculated to 
1% precision. 

Timings range from below 1s to ~18h
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CCS packages

MOBCAL, Jarrold group (the only one that you can simply download) 
http://www.indiana.edu/~nano/software.html  
(PA, EHSS, TM)  

Sigma, Bowers group (available upon request) 
http://bowers.chem.ucsb.edu/theory_analysis/cross-sections/sigma.shtml  
(PA, EHSS)  

IMPACT, Benesch lab (to be available soon) 
http://benesch.chem.ox.ac.uk/resources.html  
(PA, promises to be very fast) 

CCSCalc from Waters (never tried, not found) 

There are several advanced methods published but with limited availability  
of code
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Fig. 5 Comparison of energy hierarchies using the PBE+MBD⇤,
PBE+vdWTS, PBE0+vdWTS, and the PBE0+MBD⇤ functionals. All
energies (y-axis) are given relative to the lowest-energy structure.
Ac-Ala19-Lys + H+: Energy hierarchies for the 16 lowest-energy
(a-helical) structures obtained from our structure search using the
PBE+vdWTS functional. The ideal a-helix depicted on the left side
of Fig. 2 is highlighted in red. The x-axis gives the RMSD (heavy
atoms) of each conformer with respect to this structure to partially
resemble the plots in Fig. 2. Ac-Lys-Ala19 + H+: Energy
hierarchies for structure types C1 to C6. The RMSD values are
given with respect to C1.

former sensitive (see Fig. 4, right side). In order to convolute
the spectrum in a higher wavenumber region with a similar
width as the spectra between 1000 and 1736cm�1, we used
a Gaussian function with a width of 0.5%·1000cm�1, i.e.,
5cm�1. The predicted IR intensity for C1, C3, and C4 is rather
spread out in this range, while it is more concentrated around
3400 cm�1 for the most helical C2 conformer and the helical
model. This is similar to what Martens et al.19 experimentally
observed for compact versus helical sodiated polyalanines.

4.2 Advanced exchange-correlation treatment

As discussed above, the structure predictions of the
PBE+vdWTS functional (including free-energy corrections)
for Ac-Lys-Ala19 + H+ are not in line with the experimental
findings. In a next step, we thus moved on to more advanced
exchange-correlation functionals. As mentioned above, for

Fig. 6 Comparison of total energy differences (PES) and free
energy differences at 300K for the Ac-Lys-Ala19 + H+ conformers
using the PBE+vdWTS functional (left) and the PBE0+MBD⇤

functional (right). C1 is taken as the reference. Free energies were
calculated using the harmonic oscillator-rigid rotor approximation at
300K based on the PBE+vdWTS vibrational frequencies.

this we concentrated on the PBE functional coupled with a
many-body dispersion correction (PBE+MBD⇤) and the PBE0
functional coupled to the pairwise and the many-body disper-
sion correction (PBE0+vdWTS, PBE0+MBD⇤), respectively.
As explained in the Methodology Section, we here point out
again that compared to the PBE functional and the pairwise
correction, the hybrid PBE0 functional and the MBD⇤ disper-
sion correction are both higher levels of theory from a funda-
mental point of view. Thus, the PBE0+MBD⇤ functional is
expected to give the most reliable results.

For Ac-Ala19-Lys + H+, we recalculated the energy hierar-
chy of the 16 lowest-energy conformers that we identified in
our structure search using the PBE+vdWTS functional as de-
scribed in Section 3.3. All structures are a-helical with only
small deviations close to the termini (cf. Fig. 2). While the en-
ergy hierarchies obtained with the different functionals differ
in the details (see Fig. 5), all functionals agree on the lowest-
energy structure. With all tested functionals the ideal a-helix,
where the lysine side chain is bent to form hydrogen bonds
with the carbonyl oxygens close to the C-terminus as depicted
on the left side of Fig. 2, is predicted to be lowest in energy.

For Ac-Lys-Ala19 + H+, we relaxed all 1026 PBE+vdWTS

conformers obtained from the 300K REMD trajectory as dis-
cussed in Section 3.2 also with the PBE+MBD⇤ functional.
We did not find any structure types other than C1 to C6 within
the lowest 19kJ/mol. For a further assessment, we thus con-
centrated on C1 to C6 and also the helical structure with
the proton close to the C-terminus. In order to compare lo-
cal minima of the respective PES, we relaxed those seven
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Rung 2 on 
Perdew’s ladder

Rung 4 on 
Perdew’s ladder

Almost no dispersion (van der 
Waals) below 5th rung of 
Perdew’s ladder!

Solution:

Augment DFA by a correction:


- pairwise TS scheme

- many-body scheme 

(MBD*)
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