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Why do theory?

Experiment-theory interface in rovibrational spectroscopy
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1. Born-Oppenheimer approximation 
• separates electronic and nuclear motion 

2. Use a “model” Hamiltonian for the nuclear motions  
• Simplest:  rigid rotor, harmonic oscillator 
• Can add vib-rotation interaction, centrifugal distortion, 

anharmonicity, . . . 

3. Fit the model to the spectrum 
• The fitting parameters provide information on the molecule

➡
The most accurate molecular geometries come 
from rotational or vib-rotation spectroscopy



Experiment-theory interface for large biological molecules
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1. Calculate the PES and find the lowest energy minima 
• first with classical force fields 
• refine quantum mechanically 

2. Calculate vibrational spectrum for different minima 
• scale frequencies to account for anharmonicity 

3. Compare with measured spectrum and select the structure 
that matches best. 
• No fitting procedure. No goodness of fit.

Challenges: 
• No rotational resolution - only vibrational frequencies 
• Many vibrational bands of the same type, problem of overlap 
• Assignments of vibrational bands? 
• Multiple stable conformations

Our experimental 
approach



Cold-ion spectroscopy
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IR spectrum of protonated Ala-Tyr
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Example 1: 
helical peptides

Ion mobility studies of gas-phase helices

R. R. Hudgins and M. F. Jarrold,
 J. Am. Chem. Soc. 121, 3494 (1999).

Ac-Phe-(Ala)n-Lys H+

Ac-(Ala)n-Lys H+ helical structures for n>5

Ac-Lys H+-(Ala)n 

(Ala)n H+  globular structures}
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Conformer specific spectroscopy of gas-phase helices

Ac-Phe-(Ala)5 -Lys H+

UV spectrum
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Spectral assignments of Ac-Phe-(Ala)5 -Lys H+

Conformer B

Normal

N-15 at A5

F A1A2 A3 A4A5 K

N-15 at A1

N-15 at A3

Extending into the amide I and II regions
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Extending into the amide I and II regions
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Example 1 conclusions
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1. Need cooling and IR-UV to get single-conformer IR spectra 

2. Need isotopic substitution to get band assignments 

Challenge: do away with scale factors and calculate 
anharmonic vibrations
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Example 2: 
Peptide sequence scrambling 

in mass spectrometry

A practical example

Peptide sequencing by MS: collision-induced dissociation (CID)
Do CID fragments cyclize and permute their sequence?

F        A        G        F        A        G        P        G H+[ ]Example:  

20



A practical example

Peptide sequencing by MS: collision-induced dissociation (CID)
Do CID fragments cyclize and permute their sequence?
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H+[ ]Example:   b6 - fragment H+[ ]
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b6 - FAGFAGcyclo
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A challenging example on a “small” system

?

Do CID fragments cyclize and permute their sequence?

Peptide sequencing by MS

Example:  F        A        G        F        A        G H+[ ]
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b6 - FAGFAGcyclo

HN

N
H

NH

CH2

NH

H2
N

HN

H2C

O
O

O

O

O

O

A challenging example on a “small” system

?

Do CID fragments cyclize and permute their sequence?

Peptide sequencing by MS

Example:  F        A        G        F        A        G H+[ ]

Conformer-specific vibrational spectra
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C

Monitoring 
side-chain loss

Monitoring 
other fragments

UV photo fragment spectra
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b6 - FAGFAGcyclo
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Do CID fragments cyclize and permute their sequence?

Peptide sequencing by MS

Example:  F        A        G        F        A        G H+[ ]

Conformer-specific vibrational spectra
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Isotopic substitution for spectroscopic assignments
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[ F - A - G - F - A - G ] H+

~ 8 cm-1

GG

* *Conformer C
*denotes N-15 substitution on the amide NH

Isotopic substitution for spectroscopic assignments
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[ F - A - G - F - A - G ] H+

~ 8 cm-1

GG

* *

*denotes N-15 substitution on the amide NH

AA

Conformer C



Isotopic substitution for spectroscopic assignments
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[ F - A - G - F - A - G ] H+

~ 8 cm-1

GG

* *

*denotes N-15 substitution on the amide NH

AAFF

Conformer C

Isotopic substitution for spectroscopic assignments
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[ F - A - G - F - A - G ] H+

GG

*

*denotes N-15 substitution on the amide NH

AAFF

Conformer C

GG AA



Isotopic substitution for spectroscopic assignments
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[ F - A - G - F - A - G ] H+

GG

* *

*denotes N-15 substitution on the amide NH

AAFF

Conformer C

GG AA

A symmetrical structure . . .
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Quantum simulated annealing of conformer C

31
O. Aseev, M. A. S. Perez, U. Rothlisberger, and T. R. Rizzo, J. Chem. Phys. Lett. 6, 2524 (2015).

Comparison with calculated structures
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Computational details: 
Conformational search - simulated annealing (SA) using AIMD based on DFT (B3LYP and a 6-31G) 
Optimized energies - DFT M11//6-31G(d, p) 



Conformer C:  A symmetrical structure . . .
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90°

Conformer A:  A cyclic, non-symmetrical structure
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90°



Conformer A:  A cyclic, non-symmetrical structure

Example 2 conclusions

36

1. Conformational searches using FF’s must assume 
protonation site.  Cannot deal with mobile protons. 

Challenge: perform conformational searches quantum 
mechanically
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Example 3: 
Kinetic trapping of molecules 

produced by electrospray

38

What is the relationship between the 
structures of (bio)molecules produced by 

electrospray and those in solution?

?
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kinetically trapped?
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Vibrational spectrum
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Vibrational spectrum
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Conformational heterogeneity 
➡Need a new dimension!
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Conformational heterogeneity 
➡Need a new dimension!

Ion mobility as a conformational filter for spectroscopy
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Ion mobility as a conformational filter for spectroscopy
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Ion mobility as a conformational filter for spectroscopy
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Ion mobility as a conformational filter for spectroscopy
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Field Asymmetric Ion Mobility 
Spectrometry (FAIMS)

way that the integrated voltage-time product �thus the field-
time product⇤ applied to the plate during a complete cycle of
the waveform is zero �i.e., V1t1⇥V2t2⌅0); for example,
⇥2000 V for 10 ⇥s followed by �1000 V for 20 ⇥s. Figure
2 illustrates the ion trajectory for a portion of the waveform
shown as V(t). During the high voltage portion of the wave-
form, the field will cause the ion to move with velocity v1
⌅KhEhigh , where Ehigh is the applied field, and Kh is the
high-field mobility under ambient pressure and temperature
conditions. The distance traveled will be d1⌅v1thigh
⌅KhEhighthigh , where thigh is the time period of the applied
high voltage. During the longer duration, opposite polarity
low voltage portion of the waveform, the velocity of the ion
will be v2⌅KE low , where K is the low-field ion mobility
under ambient pressure and temperature conditions and the
distance traveled is d2⌅v2t low⌅KE lowt low . Since the asym-
metric waveform ensures that (V1t1)⇥(V2t2)⌅0, the field-
time products Ehighthigh and E lowt low are equal in magnitude.
It is clear that if Kh and K are identical, d1 and d2 are equal
and the ion will be returned to its original position relative to
the y axis during the negative cycle of the waveform �just as
would be expected if both portions of the waveform were
low voltage⇤. Under high electric fields, however, the ion
will experience a net radial displacement from its original
position relative to the y axis as is shown by the dashed line
in Fig. 2 because the distances d1 and d2 are not identical.
For example, positive ions, such as type A shown in Fig. 1,
will travel further during the positive portion of the wave-
form and therefore d1⇤d2 and the ion migrates away from

the upper plate. A similar argument shows that ions of type
C migrate towards the upper plate. Examples of ions of types
A and C will be described below.

If an ion of type A is migrating away from the upper
plate, a constant negative dc voltage can be applied to this
plate to reverse, or ‘‘compensate’’ for this offset drift, thus
the ion will not travel toward either plate. This dc voltage is
called the ‘‘compensation voltage.’’ If the ions derived from
two compounds respond differently to the applied high elec-
tric fields, the ratio of Kh to K is different for each com-
pound, and the magnitude of the compensation voltage nec-
essary to prevent the drift of the ion toward either plate will
be different for each compound. Under conditions in which
the compensation voltage is appropriate for transmission of
one compound, the other will drift towards one of the plates
and subsequently be lost. The FAIMS instrument is an ion
filter, capable of selective transmission of only those ions
with the appropriate ratio of Kh to K. To detect a mixture of
ions, the compensation voltage can be scanned to yield a
compensation voltage spectrum �CV spectrum⇤.

This concept was first shown by Buryakov et al.4 using
flat plates as described above. Later, Carnahan et al. im-
proved the sensor design by replacing the plates used to
separate the ions with concentric cylinders.5–7 This modifi-
cation has several advantages including higher sensitivity
than the flat plate configuration.4,6 This instrument has been
introduced by Mine Safety Appliances Company �MSA⇤ for
trace gas analysis under the name of Field Ion Spectrom-
eter® �FIS®⇤. This instrument �with electrometer based ion
sensing⇤ is referred to as FAIMS-E in this study. It has been
shown that the FAIMS-E is capable of separating com-
pounds that have the same low-field ion mobility.5 A major
limitation to date with this recent technology5,6 is that the
identity of the peaks appearing in the FAIMS-E CV spectra
has not yet been unambiguously confirmed due to the unpre-
dictable changes in behavior of ions under high electric
fields. In this article, we describe the first cylindrical-
geometry-FAIMS-E interface to a mass spectrometer
�FAIMS-MS⇤. With this new capability for ion identification,
we have undertaken a detailed study of the FAIMS opera-
tion, and the variables that affect the CV spectra.

II. EXPERIMENT

A simplified schematic of the Mine Safety Appliances
Company Field Ion Spectrometer® with an electrometer
based detection system �FAIMS-E⇤ is shown in three dimen-
sions in Fig. 3�a⇤ and in cross section in Fig. 3�b⇤. The
FAIMS ion filter is composed of two short inner cylinders,
which are axially aligned and positioned about 5 mm apart,
and a long outer cylinder which surrounds the two inner
cylinders. The inner cylinders �12 mm i.d., 14 mm o.d.⇤, are
about 30 mm and 90 mm long, respectively, while the outer
cylinder �18 mm i.d., 20 mm o.d.⇤ is about 125 mm long. Ion
separation takes place in the 2 mm annular space between the
long inner cylinder and the outer cylinder. Ionization in the
Mine Safety Appliances Company FAIMS-E instrument oc-
curs within the short cylinder, typically employing either a
63Ni source or an ultraviolet �UV⇤ lamp. The ions travel ra-

FIG. 1. Hypothetical dependence of the mobility of three different ions on
the electric field.

FIG. 2. Ion motion between two plates during application of an electric
potential shown as V(t); the ion is transported horizontally by a gas flow
�distance not to scale⇤.

4095Rev. Sci. Instrum., Vol. 69, No. 12, December 1998 Purves et al.
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Differential ion mobility spectrometry

if mobility at high field = mobility at low field≠
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Using FAIMS as a conformational filter
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Kinetic trapping of conformations

“gentle conditions”

spectrum of annealed gas-phase 
conformer distribution

nascent conformer distribution 
produced by electrospray
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Kinetic trapping of conformations

“gentle conditions”

spectrum of annealed gas-phase 
conformer distribution

nascent conformer distribution 
produced by electrospray

gas phase 
kinetically trappedsolution?? gas-phase annealing
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A 
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Example 3 conclusions
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1. Additional conformation separation techniques needed to 
simplify the spectra of large molecules. 

Challenge: finding high-energy, kinetically trapped species in 
conformational searches

Challenges for theory of isolated biomolecules
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➡ Anharmonic vibrational calculations 

➡ Conformational searching at the QM level 

➡ Ability to find kinetically trapped conformations
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