Representing and understanding

patterns in materials and molecules

Michele Ceriotti
EPFL/IMX/COSMO

MPG-EPFL Summer School

(|

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Outline (Wl

@ Analysis of molecular data from simulations: big data and high
dimensionality
@ Cluster analysis and recognition of molecular patterns
e Hydrogen bonds, and secondary structure patterns

@ Mapping high-dimensional data in low dimension

o Linear methods: Principal Compontents Analysis
o Non-linear methods: ISOMAP, LLE, Sketch-map
o From proteins to clusters
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High dimensional data in atomistic simulatia

@ Atomistic simulations provide too much information
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Pattern Recognition vs Nonlinear Maps (Wﬂ

@ Atomistic simulations provide too much information
@ It is hard to decipher the essential features in structurally-complex
compounds, materials, proteins, etc.

@ We can describe a complex molecular structure as a point in a
high-dimensional space.
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Pattern Recognition vs Nonlinear Maps (Wﬂ Pattern Recognition vs Nonlinear Maps (Wﬂ
@ We can describe a complex molecular structure as a point in a @ We can describe a complex molecular structure as a point in a
high-dimensional space. high-dimensional space.

o Clustering/pattern recognition partitions configuration space into
regions that can be assigned to (meta) stable structures

Image from: 2001, A Space Odyssey
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@ We can describe a complex molecular structure as a point in a
high-dimensional space.

o Clustering/pattern recognition partitions configuration space into
regions that can be assigned to (meta) stable structures
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Pattern Recognition vs Nonlinear Maps (PA

@ We can describe a complex molecular structure as a point in a
high-dimensional space.

o Clustering/pattern recognition partitions configuration space into
regions that can be assigned to (meta) stable structures
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Pattern Recognition vs Nonlinear Maps (PA

@ We can describe a complex molecular structure as a point in a
high-dimensional space.

o Clustering/pattern recognition partitions configuration space into
regions that can be assigned to (meta) stable structures
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Pattern Recognition vs Nonlinear Maps (Wﬂ

Mode Analysis of a Distribution

@ We can describe a complex molecular structure as a point in a
high-dimensional space.

@ A natural way of recognizing patterns in a distribution is to identify its
o Clustering/pattern recognition partitions configuration space into modes, and the basin of attraction of each mode.
regions that can be assigned to (meta) stable structures

@ (Non-linear) dimensionality reduction corresponds to making a
low-dimensional map: more informative!

P(x)

Piero Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)
Michele Ceriotti EPFL/IMX/COSMO
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Mode Analysis of a Distribution (PA Mode Analysis of a Distribution (PA

@ A natural way of recognizing patterns in a distribution is to identify its

@ A natural way of recognizing patterns in a distribution is to identify its
modes, and the basin of attraction of each mode.

modes, and the basin of attraction of each mode.

@ One can then fit a simple Gaussian model (with fixed centers), and use
posteriors to assign fingerprints to each cluster

P(x)

Piero Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)
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Mode Analysis of a Distribution (Wﬂ

@ A natural way of recognizing patterns in a distribution is to identify its
modes, and the basin of attraction of each mode.

@ One can then fit a simple Gaussian model (with fixed centers), and use
posteriors to assign fingerprints to each cluster

Piero Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)
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Recognizing molecular patterns (1 nl

@ We still need an effective high-dimensional description to start with

@ “Chemical intuition” builds on recognizing recurring patterns in atomic

configurations

@ Automatic scheme to single out structural motifs in atomistic

simulations

Sp Sp Sp
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Probabilistic Analysis of Molecular Motifs (PA

@ Evaluate the probability distribution of molecular structures

T2

#ro Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)
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@ Evaluate the probability distribution of molecular structures
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Probabilistic Analysis of Molecular Motifs (Wﬂ

@ Evaluate the probability distribution of molecular structures
@ Cluster it around the modes of the distribution

T2
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Probabilistic Analysis of Molecular Motifs (PA

Probabilistic Analysis of Molecular Motifs (Wﬂ

@ Evaluate the probability distribution of molecular structures
@ Cluster it around the modes of the distribution

z2
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Probabilistic Analysis of Molecular Motifs (PA

@ Evaluate the probability distribution of molecular structures
@ Cluster it around the modes of the distribution

X2
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@ Evaluate the probability distribution of molecular structures
@ Cluster it around the modes of the distribution

X2

#ro Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)
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Probabilistic Analysis of Molecular Motifs (Wﬂ

@ Evaluate the probability distribution of molecular structures
@ Cluster it around the modes of the distribution

T2
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Probabilistic Analysis of Molecular Motifs (PA

@ Evaluate the probability distribution of molecular structures

@ Cluster it around the modes of the distribution

@ Naturally gives a fuzzy and continuous partitioning of configuration
space
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Probabilistic Analysis of Molecular Motifs (Wﬂ

@ Evaluate the probability distribution of molecular structures
@ Cluster it around the modes of the distribution

P(x) ~ Yy piG (x|,

T2

#ro Gasparotto & Michele Ceriotti, JCP 174110, 141 (2014)

Michele Ceriotti EPFL/IMX/COSMO Representing and understanding patterns in materials and mol|

An Agnostic Definition of the H-Bond (Wﬂ

@ Most general description of a H-bond geometry: 3 distances

O r=d(A,D)

= d(A, H) +d(D, H)
v=d(D,H) — d(A, H)
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An Agnostic Definition of the H-Bond (Wﬂ

@ Most general description of a H-bond geometry: 3 distances
@ PAMM recognizes multiple modes - one corresponds to the H-bond
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An Agnostic Definition of the H-Bond (Wﬂ

@ Most general description of a H-bond geometry: 3 distances
@ PAMM recognizes multiple modes - one corresponds to the H-bond

@ PAMM H-bond fingerprints can be used as HB counts, but are adaptive,

unbiased and fuzzy
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@ Most general description of a H-bond geometry: 3 distances
@ PAMM recognizes multiple modes - one corresponds to the H-bond
@ PAMM H-bond fingerprints can be used as HB counts, but are adaptive,
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An Agnostic Definition of the H-Bond (Wﬂ

@ Most general description of a H-bond geometry: 3 distances
@ PAMM recognizes multiple modes - one corresponds to the H-bond

@ PAMM H-bond fingerprints can be used as HB counts, but are adaptive,

unbiased and fuzzy
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Adaptive H-bond Definition for ala,

Adaptive H-bond Definition for ala,

o Different groups should be treated with a different geometric definition

of HB of HB
@ PAMM provides data-driven, unbiased procedure to determine the @ PAMM provides data-driven, unbiased procedure to determine the
structures that can be labeled as bonded structures that can be labeled as bonded

o Different groups should be treated with a different geometric definition
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Machine-learning the Ramachandran plot (Wﬂ

Adaptive H-bond Definition for ala,

@ Secondary structure is induced by H-bonds, but correlates strongly with

o Different groups should be treated with a different geometric definition
of HB backbone dihedrals

@ PAMM provides data-driven, unbiased procedure to determine the _%- .
structures that can be labeled as bonded '{
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Machine-learning the Ramachandran plot (Wﬂ Machine-learning the Ramachandran plot (Wﬂ

@ Secondary structure is induced by H-bonds, but correlates strongly with @ Use data from the PDB, and “learn” with PAMM the stable patterns of
backbone dihedrals proteins in dihedral space
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Machine-learning the Ramachandran plot (Wﬂ Describing structural complexity (Wﬂ

@ Use data from the PDB, and “learn” with PAMM the stable patterns of
proteins in dihedral space

@ We are looking for collective variables that can describe structural
complexity globally

o Discriminate between different structures
o Follow the system across transitions

@ This is not only important for post-processing

e Good CVs make for better transition-state approximation to the rate
e Biased MD requires coarse-grained but thorough description of the
problem

@ Finding these variables is time-consuming and error-prone: can we
automate the process?

Michele Ceriotti EPFL/IMX/COSMO Representing and understanding patterns in materials and mol| Michele Ceriotti EPFL/IMX/COSMO Representing and understanding patterns in materials and mol|



Dimensionality reduction

@ We can describe a complex atomistic structure as a point in a
high-dimensional space. Then finding CVs means finding a
low-dimensional map to describe the accessible configurations!
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@ We can describe a complex atomistic structure as a point in a
high-dimensional space. Then finding CVs means finding a
low-dimensional map to describe the accessible configurations!

o Take a set of configurations = high-dim. landmark points
o Define a measure of dissimilarity between the points
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@ We can describe a complex atomistic structure as a point in a
high-dimensional space. Then finding CVs means finding a
low-dimensional map to describe the accessible configurations!

o Take a set of configurations = high-dim. landmark points

Us r r
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Dimensionality reduction (1 n\

@ We can describe a complex atomistic structure as a point in a
high-dimensional space. Then finding CVs means finding a
low-dimensional map to describe the accessible configurations!

o Take a set of configurations = high-dim. landmark points

o Define a measure of dissimilarity between the points
o Arrange low-dim. points so that the dissimilarities are preserved
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Dimensionality reduction Dimensionality reduction (1 n{

@ We can describe a complex atomistic structure as a point in a @ We can describe a complex atomistic structure as a point in a
high-dimensional space. Then finding CVs means finding a high-dimensional space. Then finding CVs means finding a
low-dimensional map to describe the accessible configurations! low-dimensional map to describe the accessible configurations!

o Take a set of configurations = high-dim. landmark points o Take a set of configurations = high-dim. landmark points

o Define a measure of dissimilarity between the points o Define a measure of dissimilarity between the points

o Arrange low-dim. points so that the dissimilarities are preserved o Arrange low-dim. points so that the dissimilarities are preserved
o Locate other configurations with an out-of-sample embedding o Locate other configurations with an out-of-sample embedding
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Principal component analysis (PA Principal component analysis
@ Principal component analysis: assumes that the “important” @ Principal component analysis: assumes that the “important”
coordinates are the linear combinations with the largest variance coordinates are the linear combinations with the largest variance
o {X;} are N vectors in D dimensions. Let X be the N x D matrix with the o {X;} are N vectors in D dimensions. Let X be the N x D matrix with the
X; as rows. X; as rows.

1

o Define the N x N centering matrix H; = d; — -

o Define the covariance matrix C = 1XTHX,
G by, (%), (% R,
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Principal component analysis (Wﬂ

@ Principal component analysis: assumes that the “important”
coordinates are the linear combinations with the largest variance

o {X;} are N vectors in D dimensions. Let X be the N x D matrix with the
X; as rows.

o Define the N x N centering matrix H; = §;; —

o Define the covariance matrix C = 1XTHX,
Ci=2>0 (X —X), (X — )_<)J.

o Pick the d eigenvectors P; associated with the largest eigenvalues \; and
use them as the rows of a linear projector P.

o The low-dimensional projections are x; = P X;

1
n

L,
0 0 HeNNssNeeNes _

>

Multidimensional scaling (Wﬂ

@ A literal implementation of the general idea of dimensionality reduction

o define Ay = A(Xj, X;) where A (X, Y) is a measure of similarity between
points in D dimensions
o find d-dimensional projections {x;} minimizing

2
X = (85— Ixi = x)
i

@ Classical MDS turns this iterative optimization in an eigenvalue problem

o Define 5; = A% and B = —3HSH. Note that B = (HX) (HX)"

o Compute the largest d eigenvalues of B, \; and the eigenvectors V;

o Make the n x d matrix whose columns are v/A;V;. The rows are the x;
low-dimensional projections

o If A(X;, Xj) is the Euclidean norm, classical MDS is the best linear
projection preserving the squared distances. It corresponds to PCA, but
it is more easily generalized to different dissimilarities

Cox & Cox, Multidimensional Scaling (CRC Press, 2010)
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The IRIS dataset (1 n\

@ Measures of four morphological features (petal/sepal width/length) of a
total of 150 samples of three species of iris

@ 4D dataset, strong correlation between the indicators, but also spread
within one species

Iris Setosa Iris Versicolor Iris Virginica
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The IRIS dataset (1 n\

@ Measures of four morphological features (petal/sepal width/length) of a
total of 150 samples of three species of iris
@ 4D dataset, strong correlation between the indicators, but also spread
within one species
@ Apply PCA and classical MDS — equivalent modulo a rotation.
o Clearly clustered in 2D.

PCA of IRIS dataset

. . ris Virginica
—4F Iris Versicolor -\ & g y

PCA2
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@ Measures of four morphological features (petal/sepal width/length) of a
total of 150 samples of three species of iris
@ 4D dataset, strong correlation between the indicators, but also spread
within one species
@ Apply PCA and classical MDS — equivalent modulo a rotation.
e Clearly clustered in 2D. Iterative MDS does not make a big difference

@ Measures of four morphological features (petal/sepal width/length) of a
total of 150 samples of three species of iris
@ 4D dataset, strong correlation between the indicators, but also spread

within one species
@ Apply PCA and classical MDS — equivalent modulo a rotation.

o Clearly clustered in 2D.

Iterative MDS of IRIS dataset

Classical MDS of IRIS dataset

Iris Setosa s |'. Iris Setosa
prageen™y I -y

1r n i T .- -
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The IRIS dataset (PHE The IRIS dataset EPAE

@ Measures of four morphological features (petal/sepal width/length) of a
total of 150 samples of three species of iris
@ 4D dataset, strong correlation between the indicators, but also spread
within one species
@ Apply PCA and classical MDS — equivalent modulo a rotation.
o Clearly clustered in 2D. Iterative MDS does not make a big difference
e Versicolor and Virginica are pretty close... and they look quite similar!

@ Measures of four morphological features (petal/sepal width/length) of a
total of 150 samples of three species of iris
@ 4D dataset, strong correlation between the indicators, but also spread
within one species
@ Apply PCA and classical MDS — equivalent modulo a rotation.
o Clearly clustered in 2D. Iterative MDS does not make a big difference
o Versicolor and Virginica are pretty close...

Iterative MDS of IRIS dataset
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The Swiss roll dataset (Wﬂ The Swiss roll dataset (Wﬂ

@ A 2D manifold embedded in three-dimensional space @ A 2D manifold embedded in three-dimensional space
@ PCA cannot capture the low-dimensional structure of the manifold,
because it is just a linear projection!

PCA of the Swiss raoll
£ T :‘;';\ﬂ' -'_ . gy

10-%%

PCA2

-10
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The Swiss roll dataset (PA The Swiss roll dataset (PA
@ A 2D manifold embedded in three-dimensional space @ A 2D manifold embedded in three-dimensional space
@ PCA cannot capture the low-dimensional structure of the manifold, @ PCA cannot capture the low-dimensional structure of the manifold,
because it is just a linear projection! because it is just a linear projection!
o Linear methods work when data lie (almost) on a plane o Linear methods work when data lie (almost) on a plane

@ One would need a method that can deal with a curved manifold which is
only locally linear

2} ;:: 2
pB 8
Us Us % aa
i .
Us |<U2 ‘ F
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Non-Linear DR: ISOMAP (PR Non-Linear DR: ISOMAP (il

@ A family of methods introduces non-linearity in the dissimilarity metric @ A family of methods introduces non-linearity in the dissimilarity metric
@ ISOMAP defines point-point distances based on geodesics @ ISOMAP defines point-point distances based on geodesics

»

Tenenbaum et al., Science (2000) Tenenbaum et al., Science (2000)
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Non-Linear DR: ISOMAP (LA Non-Linear DR: ISOMAP (LA
@ A family of methods introduces non-linearity in the dissimilarity metric @ A family of methods introduces non-linearity in the dissimilarity metric
@ ISOMAP defines point-point distances based on geodesics @ ISOMAP defines point-point distances based on geodesics

o Approximate geodesics by hopping between neighbours e Approximate geodesics by hopping between neighbours

o Problem: very sensitive to uneven sampling and noise. One “wrong”
neighbor detection can mess up geodesics completely.

Tenenbaum et al., Science (2000) Tenenbaum et al., Science (2000)
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Non-Linear DR: ISOMAP (Wﬂ ISOMAP and the Swiss roll (Wﬂ

@ A family of methods introduces non-linearity in the dissimilarity metric

@ ISOMAP defines point-point distances based on geodesics @ ISOMAP works very well for the Swiss roll, as it identifies beautifully
o Approximate geodesics by hopping between neighbours the manifold directions
o Problem: very sensitive to uneven sampling and noise. One “wrong”
neighbor detection can mess up geodesics completely.

@ Define neighbour relations between points (k nearest neighbours or

points within €)
ISOMAP of the Swiss roll

—u L

© Compute the graph distance matrix as an approximant to geodesics
© Run classical MDS.

1502

Tenenbaum et al., Science (2000)
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ISOMAP and the Swiss roll (LA ISOMAP and the Swiss roll (LA

o ISOMAP works very well for the Swiss roll, as it identifies beautifully o ISOMAP works very well for the Swiss roll, as it identifies beautifully
the manifold directions the manifold directions

@ It is however very sensitive to noise, and to uneven sampling. When it @ It is however very sensitive to noise, and to uneven sampling. When it
fails, it fails dramatically! fails, it fails dramatically!

ISOMAP of the Noigx roll (0.25)

ISOMAP of the Noisy rall (0.50)
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ISOMAP and the Swiss roll (Wﬂ Locally Linear Embedding (Wﬂ

@ Use the fact that if the manifold is locally flat each point can be

@ ISOMAP works very well for the Swiss roll, as it identifies beautifully expressed as a combination of its neighbors.

the manifold directions © Determine a neighborhood of each point X, and the weights w; that best

@ It is however very sensitive to noise, and to uneven sampling. When it match X and its embedding

fails, it fails dramatically!

ISOMAP of the Naisy roll (0.75)

a3

Is02

Roweis, Saul, Science (2000)

Michele Ceriotti EPFL/IMX/COSMO Representing and understanding patterns in materials and mol|

Michele Ceriotti EPFL/IMX/COSMO Representing and understanding patterns in materials and mol|

Locally Linear Embedding (PA Locally Linear Embedding ({¥l

@ Use the fact that if the manifold is locally flat each point can be
expressed as a combination of its neighbors.

© Determine a neighborhood of each point X, and the weights w; that best

match X and its embedding
@ Determine the low-dimensional points such that for each point, x an its
embedding are as close as possible keeping the weights fixed

@ Use the fact that if the manifold is locally flat each point can be
expressed as a combination of its neighbors.

@ Determine a neighborhood of each point X, and the weights w; that best
match X and its embedding

® o
.é
Uz
> Wik
®
Uy

Roweis, Saul, Science (2000) Roweis, Saul, Science (2000)
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Locally Linear Embedding (Wﬂ LLE and the Swiss roll (Wﬂ

@ Use the fact that if the manifold is locally flat each point can be
expressed as a combination of its neighbors. @ LLE seems not to work ... 2-but some higher variables do capture the

© Determine a neighborhood of each point X, and the weights w; that best manifold structure

match X and its embedding

@ Determine the low-dimensional points such that for each point, x an its
embedding are as close as possible keeping the weights fixed

© This is again formulated as an eigenvalue problem

o
° o E|
.6
U2
> Wi
o
uy

Roweis, Saul, Science (2000)
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LLE and the Swiss roll (LA LLE and the Swiss roll (LA
@ LLE seems not to work ... 2-but some higher variables do capture the @ LLE seems not to work ... 2-but some higher variables do capture the
manifold structure manifold structure

@ Growing noise destabilizes the embedding, and shifts to even
higher-order LLE vectors the reasonable map

; LLE of the noisy roll (0.25) )
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= ‘— 0— |
w
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LLE and the Swiss roll (Wﬂ

@ LLE seems not to work ... 2-but some higher variables do capture the
manifold structure

@ Growing noise destabilizes the embedding, and shifts to even
higher-order LLE vectors the reasonable map

LLE of the noisy roll (0.5)
= T

LLE4

-0.05
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NLDR and atomistic simulations (PA

@ Non-linear dimensionality reduction algorithms:
o Describe curved, “locally-flat” manifolds
o Developed by the CS community (image recognition)
o Attempts to apply to chemical problems (PCA, ISOMAP, LLE,...)

Top arch anculason

Us
]<U2 ‘
Uy
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LLE and the Swiss roll (Wﬂ

@ LLE seems not to work ... 2-but some higher variables do capture the
manifold structure

@ Growing noise destabilizes the embedding, and shifts to even
higher-order LLE vectors the reasonable map
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NLDR and atomistic simulations

@ Non-linear dimensionality reduction algorithms:

e Describe curved, “locally-flat” manifolds

o Developed by the CS community (image recognition)

o Attempts to apply to chemical problems (PCA, ISOMAP, LLE,...)
@ Atomistic simulations are harder:

o Thermal fluctuations are high-dimensional
e A network of transition pathways with a complex topology
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Features of a folding landscape (Wﬂ Features of a folding landscape (Wﬂ

@ The free energy landscape for alay contains low-energy basins and a @ The free energy landscape for alay contains low-energy basins and a
spider web of transition pathways spider web of transition pathways

@ Reconnaissance metadynamics! for alajo: similar distribution of points
for any pair of dihedrals

! !
-150 -100 -50 0 50 100 150
[

/2 n

Tribello, Ceriotti, Parrinello, PNAS 2010

Tribello, Ceriotti, Parrinello, PNAS 2010
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Matching fluctuations: a space odyssey (PA Matching fluctuations: a space odyssey (PA

@ Inherent problem when projecting full-dimensional features @ Inherent problem when projecting full-dimensional features

@ Take for instance the distribution of distances between points taken @ Take for instance the distribution of distances between points taken
from a D-dimensional Gaussian

from a D-dimensional Gaussian

Michele Ceriotti EPFL/IMX/COSMO
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Matching fluctuations: a space odyssey (Wﬂ Matching fluctuations: a space odyssey (Wﬂ

@ Inherent problem when projecting full-dimensional features @ Inherent problem when projecting full-dimensional features
@ Take for instance the distribution of distances between points taken @ Take for instance the distribution of distances between points taken
from a D-dimensional Gaussian from a D-dimensional Gaussian
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Matching fluctuations: a space odyssey (PA No need for a perfect map (PA

@ Inherent problem when projecting full-dimensional features @ Developing a NLDR method which is more robust and suited for

@ Take for instance the distribution of distances between points taken trajectory data

from a D-dimensional Gaussian o Basic idea: we don’t need a precise, isometric map.

@ This is a disaster for distance matching! It is impossible to match the
distances for a 24-dimensional Gaussian using a 3d Gaussian!

P (d)
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No need for a perfect map (Wﬂ No need for a perfect map (Wﬂ

@ Developing a NLDR method which is more robust and suited for @ Developing a NLDR method which is more robust and suited for
trajectory data trajectory data
o Basic idea: we don't need a precise, isometric map. o Basic idea: we don't need a precise, isometric map.

o We need the computational equivalent of a hand sketched map

@P’» T TowN

—

c
¢
sarl g o
00 &
o o
o~

LAke (EMANS

Michele Ceriotti EPFL/IMX/COSMO Representing and understanding patterns in materials and mol|

Proximity matching (Wﬂ Proximity matching (Wﬂ
@ We would like to capture the low-dimensional structure of complex @ We would like to capture the low-dimensional structure of complex
transitions transitions

Uy

Ceriotti, Tribello, Parrinello, PNAS (2011); JCTC (2013) Ceriotti, Tribello, Parrinello, PNAS (2011); JCTC (2013)
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Proximityjiarenig (P Proximity matching ({¥il

@ We would like to capture the low-dimensional structure of complex @ We would like to capture the low-dimensional structure of complex
transitions transitions

@ How to deal with full-dimensional thermal fluctuations? Portions of the @ How to deal with full-dimensional thermal fluctuations? Portions of the
landscape cannot be projected by matching high and low-dimensional landscape cannot be projected by matching high and low-dimensional
distances. distances.

o Idea: simpler task, aim for proximity matching: close<>close, far<far

1
1
“close” 1 “far”

Ul U] 1
P 1

 — | 1

1

@ @olfme o vt 0. cmemifpmmmens
— U]
Ceriotti, Tribello, Parrinello, PNAS (2011); JCTC (2013) Ceriotti, Tribello, Parrinello, PNAS (2011); JCTC (2013)
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Sketch-map algorithm (PA Sketch-map algorithm (PA
@ In “metric” MDS a stress function that measures how well distances are @ In “metric” MDS a stress function that measures how well distances are
reproduced is minimized reproduced is minimized

@ Modify the objective function to aim for proximity matching
o Distances are transformed by sigmoid functions in both high and low

dimension
N N
2 2 2 2
X2 = [IX = Xl = x — 1] X2 =Y [s(1Xi = Xi1) — s (Ixi —x])]
hi=1 ij=1
=
w
rlo
Ceriotti, Tribello, Parrinello, PNAS (2011); JCTC (2013) Ceriotti, Tribello, Parrinello, PNAS (2011); JCTC (2013)
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The folding landscape of ala;,

(ifil

F[kJ/mol]
"“Conventional” CVs
recognize the folded

state, but many
meta-stable structures .
overlap with each other

e
w

MSD [nm?]

4
S

Michele Ceriotti EPFL/IMX/COSMO Representing and understanding patterns in materials and mol|

Sketch-map CVs give a
very detailed picture,
where each meta-stable
configuration is clearly
singled out!

Can be used effectively
for accelerated
dynamics:
field-overlap
metadynamics

Ceriotti, Tribello,
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The folding landscape of ala;,

Sketch-map CVs give a
very detailed picture,
where each meta-stable
configuration is clearly
singled out!

Ceriotti, Tribello, Parrinello, PNAS (2011); Tribello, Ceriotti, Parrinello PNAS (2012)

Michele Ceriotti EPFL/IMX/COSMO Representing and understanding patterns in materials and mol|

Sketch-map and secondary structure (Wﬂ

@ Same qualitative features of the hi-D description (basins + network of
transitions)

o Sketch-map CVs correlate nicely with the secondary structure

B sheet (n. res.)
orpravauzeSIE

-
0123456789101112
a helix (n. res.)
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Sketch-map and secondary structure (Wﬂ Out-of-sample embedding (Wﬂ

@ Same qualitative features of the hi-D description (basins + network of @ In order to use (N)LDR as CV, one needs a way to project an arbitrary
transitions) point X to low dimension.
o Sketch-map CVs correlate nicely with the secondary structure o PCA has a ver)./ n'atural |in.ear projec.tor solution: x” = LXT
o Qualitatively similar picture if using contact-maps distance o There are specialized solutions for different NLDR methods

Spiwok, Kralova, J. Chem. Phys. 2011
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Out-of-sample embedding (PA Out-of-sample embedding (PA
@ In order to use (N)LDR as CV, one needs a way to project an arbitrary @ In order to use (N)LDR as CV, one needs a way to project an arbitrary
point X to low dimension. point X to low dimension.
o PCA has a very natural linear projector solution: x7 = LXT o PCA has a very natural linear projector solution: x7 = LX7
o There are specialized solutions for different NLDR methods o There are specialized solutions for different NLDR methods
@ A general approach: “generalized” path coordinates @ A general approach: “generalized” path coordinates
x(X) =% Xie_lx_Xil/A/Zi e X=X/ x(X) = Zixie_lx_XiV/\/Zi e X=Xil/A

o Problem: this is a convex embedding so points away from everything will
map to the center of the landmark projections

U3 ’
Uy
-_‘ U2 kY
Us 3 ‘ p
* Uy 1’
Spiwok, Kralova, J. Chem. Phys. 2011 Spiwok, Kralova, J. Chem. Phys. 2011
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Sketch-map based collective variables (Wﬂ Sketch-map based collective variables (Wﬂ

@ Sketch-map only provides projections x; for the landmark points X; @ Sketch-map only provides projections x; for the landmark points X;
@ One can work out a very natural out-of-sample embedding for a new @ One can work out a very natural out-of-sample embedding for a new
point X point X

o Introduce a “stress function” based on a set of landmarks and their
projections

N
X (6 X) =Y [s(IX = Xil) = s (Ix = )]’

i=1
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Sketch-map based collective variables (PA Mapping in no man’s land (PA
@ Sketch map can describe configurations that are in “no man’s land”, far
@ Sketch-map only provides projections x; for the landmark points X; from any landmark point!
@ One can work out a very natural out-of-sample embedding for a new o We can build a useful map from rough preliminary sampling.
point X o We can compare different systems using the same map.
@ Introduce a “stress function” based on a set of landmarks and their _ A, S LR % :;".':?.‘”..;:.“.'\ ;

projections

X (6 X) = [s(IX = Xil) = s (Ix = )]’

i=1

o The d-dimensional projection of the point X can be defined as the X

which minimizes x2 (x, X)

" 1 3y b /
[‘:‘_" 7. "!:”“‘\ '\“f.?g R e putannil

X (X) = x : min x? (x, X) >
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Mapping in no man’s land (Wﬂ Mapping in no man’s land (Wﬂ

@ Sketch map can describe configurations that are in “no man’s land”, far @ Sketch map can describe configurations that are in “no man’'s land”, far
from any landmark point! from any landmark point!
o We can build a useful map from rough preliminary sampling. e We can build a useful map from rough preliminary sampling.
o We can compare different systems using the same map. e We can compare different systems using the same map.

Ceriotti, Tribello, Parrinello, JCTC (2013) Ceriotti, Tribello, Parrinello, JCTC (2013)
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Mapping in no man’s land (PA From clusters to defects in the bulk (PA

. @ Start building a map for a Lennard-Jones cluster
@ Sketch map can describe configurations that are in “no man’s land”, far

from any landmark point!

o We can build a useful map from rough preliminary sampling.
o We can compare different systems using the same map.

Ceriotti, Tribello, Parrinello, JCTC (2013) Ceriotti, Tribello, Parrinello, JCTC (2013)
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From clusters to defects in the bulk (Wﬂ From clusters to defects in the bulk (Wﬂ

@ Start building a map for a Lennard-Jones cluster @ Start building a map for a Lennard-Jones cluster
@ The same map describes the cluster across phase transitions @ The same map describes the cluster across phase transitions
@ ... and can even be used to identify defects in a bulk system!

AT

Partial dislocation .
13 <1,1,1> <%

Frenkel pair
Vacancy-
o [

%EC bl;lk Interstitial
Ceriotti, Tribello, Parrinello, JCTC (2013) Ceriotti, Tribello, Parrinello, JCTC (2013)

Liquid N
LJsg sketch-map [}
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Wrap up and take home (Wﬂ

@ A problem that is common in atomistic simulations (but also data
analysis in general) is how to
o Recognize recurring patterns, appearing more often than expected
o Perform dimensionality reduction, to describe a complex problem with
few order parameters
@ One can perform these analyses automatically
o Mode analysis of molecular patterns by PAMM
o PCA/Classical MDS are robust but linear techniques
o ISOMAP, works well for “locally flat”, densely sampled data. Very
sensitive to noise!
o Sketch map targets specifically the features of atomistic simulation data.
@ Another problem one should keep in mind: out-of-sample embedding.
Should be continuous and predictive
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