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Outline
Analysis of molecular data from simulations: big data and high
dimensionality
Cluster analysis and recognition of molecular patterns

Hydrogen bonds, and secondary structure patterns
Mapping high-dimensional data in low dimension

Linear methods: Principal Compontents Analysis
Non-linear methods: ISOMAP, LLE, Sketch-map
From proteins to clusters
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High dimensional data in atomistic simulations
Atomistic simulations provide too much information
It is hard to decipher the essential features in structurally-complex
compounds, materials, proteins, etc.

4 Michele Ceriotti EPFL/IMX/COSMO Representing and understanding patterns in materials and molecules



High dimensional data in atomistic simulations
Atomistic simulations provide too much information
It is hard to decipher the essential features in structurally-complex
compounds, materials, proteins, etc.

4 Michele Ceriotti EPFL/IMX/COSMO Representing and understanding patterns in materials and molecules

Pattern Recognition vs Nonlinear Maps

We can describe a complex molecular structure as a point in a
high-dimensional space.
Clustering/pattern recognition partitions configuration space into
regions that can be assigned to (meta) stable structures
(Non-linear) dimensionality reduction corresponds to making a
low-dimensional map: more informative!
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Image from: 2001, A Space Odyssey
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Mode Analysis of a Distribution

A natural way of recognizing patterns in a distribution is to identify its
modes, and the basin of attraction of each mode.
One can then fit a simple Gaussian model (with fixed centers), and use
posteriors to assign fingerprints to each cluster

‘
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Recognizing molecular patterns

We still need an e�ective high-dimensional description to start with
“Chemical intuition” builds on recognizing recurring patterns in atomic
configurations
Automatic scheme to single out structural motifs in atomistic
simulations
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Probabilistic Analysis of Molecular Motifs
Evaluate the probability distribution of molecular structures
Cluster it around the modes of the distribution
Naturally gives a fuzzy and continuous partitioning of configuration
space
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An Agnostic Definition of the H-Bond

Most general description of a H-bond geometry: 3 distances
PAMM recognizes multiple modes - one corresponds to the H-bond
PAMM H-bond fingerprints can be used as HB counts, but are adaptive,
unbiased and fuzzy
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Adaptive H-bond Definition for ala2

Di�erent groups should be treated with a di�erent geometric definition
of HB
PAMM provides data-driven, unbiased procedure to determine the
structures that can be labeled as bonded

<0.1 12.4 64.7 21.7
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Adaptive H-bond Definition for ala2

Di�erent groups should be treated with a di�erent geometric definition
of HB
PAMM provides data-driven, unbiased procedure to determine the
structures that can be labeled as bonded
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Machine-learning the Ramachandran plot

Secondary structure is induced by H-bonds, but correlates strongly with
backbone dihedrals
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Machine-learning the Ramachandran plot

Use data from the PDB, and “learn” with PAMM the stable patterns of
proteins in dihedral space
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Describing structural complexity

We are looking for collective variables that can describe structural
complexity globally

Discriminate between di�erent structures
Follow the system across transitions

This is not only important for post-processing
Good CVs make for better transition-state approximation to the rate
Biased MD requires coarse-grained but thorough description of the
problem

Finding these variables is time-consuming and error-prone: can we
automate the process?
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Dimensionality reduction
We can describe a complex atomistic structure as a point in a
high-dimensional space. Then finding CVs means finding a
low-dimensional map to describe the accessible configurations!

Take a set of configurations ∆ high-dim. landmark points
Define a measure of dissimilarity between the points
Arrange low-dim. points so that the dissimilarities are preserved
Locate other configurations with an out-of-sample embedding
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Principal component analysis
Principal component analysis: assumes that the “important”
coordinates are the linear combinations with the largest variance
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Multidimensional scaling

A literal implementation of the general idea of dimensionality reduction
define �

ij

= � (X
i

, X
j

) where � (X , Y ) is a measure of similarity between
points in D dimensions
find d-dimensional projections {x

i

} minimizing

‰2 =
ÿ

ij

(�
ij

≠ |x
i

≠ x
j

|)2

Classical MDS turns this iterative optimization in an eigenvalue problem
Define S

ij

= �2
ij

and B = ≠ 1
2 HSH. Note that B = (HX) (HX)T

Compute the largest d eigenvalues of B, ⁄
i

and the eigenvectors V
i

Make the n ◊ d matrix whose columns are
Ô

⁄
i

V
i

. The rows are the x
i

low-dimensional projections

If � (X
i

, X
j

) is the Euclidean norm, classical MDS is the best linear
projection preserving the squared distances. It corresponds to PCA, but
it is more easily generalized to di�erent dissimilarities
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Cox & Cox, Multidimensional Scaling (CRC Press, 2010)

The IRIS dataset
Measures of four morphological features (petal/sepal width/length) of a
total of 150 samples of three species of iris
4D dataset, strong correlation between the indicators, but also spread
within one species
Apply PCA and classical MDS – equivalent modulo a rotation.

Clearly clustered in 2D.

Iterative MDS does not make a big di�erence

Versicolor and Virginica are pretty close...

and they look quite similar!

Iris Setosa Iris Versicolor Iris Virginica
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The Swiss roll dataset
A 2D manifold embedded in three-dimensional space
PCA cannot capture the low-dimensional structure of the manifold,
because it is just a linear projection!

Linear methods work when data lie (almost) on a plane
One would need a method that can deal with a curved manifold which is
only locally linear

17 Michele Ceriotti EPFL/IMX/COSMO Representing and understanding patterns in materials and molecules

The Swiss roll dataset
A 2D manifold embedded in three-dimensional space
PCA cannot capture the low-dimensional structure of the manifold,
because it is just a linear projection!

Linear methods work when data lie (almost) on a plane
One would need a method that can deal with a curved manifold which is
only locally linear

17 Michele Ceriotti EPFL/IMX/COSMO Representing and understanding patterns in materials and molecules

The Swiss roll dataset
A 2D manifold embedded in three-dimensional space
PCA cannot capture the low-dimensional structure of the manifold,
because it is just a linear projection!

Linear methods work when data lie (almost) on a plane
One would need a method that can deal with a curved manifold which is
only locally linear

17 Michele Ceriotti EPFL/IMX/COSMO Representing and understanding patterns in materials and molecules

The Swiss roll dataset
A 2D manifold embedded in three-dimensional space
PCA cannot capture the low-dimensional structure of the manifold,
because it is just a linear projection!

Linear methods work when data lie (almost) on a plane
One would need a method that can deal with a curved manifold which is
only locally linear

17 Michele Ceriotti EPFL/IMX/COSMO Representing and understanding patterns in materials and molecules



Non-Linear DR: ISOMAP
A family of methods introduces non-linearity in the dissimilarity metric
ISOMAP defines point-point distances based on geodesics

Approximate geodesics by hopping between neighbours
Problem: very sensitive to uneven sampling and noise. One “wrong”
neighbor detection can mess up geodesics completely.
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Non-Linear DR: ISOMAP
A family of methods introduces non-linearity in the dissimilarity metric
ISOMAP defines point-point distances based on geodesics

Approximate geodesics by hopping between neighbours
Problem: very sensitive to uneven sampling and noise. One “wrong”
neighbor detection can mess up geodesics completely.

1 Define neighbour relations between points (k nearest neighbours or
points within ‘)

2 Compute the graph distance matrix as an approximant to geodesics
3 Run classical MDS.
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ISOMAP and the Swiss roll

ISOMAP works very well for the Swiss roll, as it identifies beautifully
the manifold directions
It is however very sensitive to noise, and to uneven sampling. When it
fails, it fails dramatically!
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Locally Linear Embedding

Use the fact that if the manifold is locally flat each point can be
expressed as a combination of its neighbors.

1 Determine a neighborhood of each point X , and the weights w
i

that best
match X and its embedding

2 Determine the low-dimensional points such that for each point, x an its
embedding are as close as possible keeping the weights fixed

3 This is again formulated as an eigenvalue problem
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LLE and the Swiss roll

LLE seems not to work . . . 2-but some higher variables do capture the
manifold structure
Growing noise destabilizes the embedding, and shifts to even
higher-order LLE vectors the reasonable map
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NLDR and atomistic simulations
Non-linear dimensionality reduction algorithms:

Describe curved, “locally-flat” manifolds
Developed by the CS community (image recognition)
Attempts to apply to chemical problems (PCA, ISOMAP, LLE,. . . )

Atomistic simulations are harder:
Thermal fluctuations are high-dimensional
A network of transition pathways with a complex topology
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Features of a folding landscape
The free energy landscape for ala2 contains low-energy basins and a
spider web of transition pathways
Reconnaissance metadynamics1 for ala12: similar distribution of points
for any pair of dihedrals
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Features of a folding landscape
The free energy landscape for ala2 contains low-energy basins and a
spider web of transition pathways
Reconnaissance metadynamics1 for ala12: similar distribution of points
for any pair of dihedrals
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Matching fluctuations: a space odyssey

Inherent problem when projecting full-dimensional features
Take for instance the distribution of distances between points taken
from a D-dimensional Gaussian
This is a disaster for distance matching! It is impossible to match the
distances for a 24-dimensional Gaussian using a 3d Gaussian!
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No need for a perfect map
Developing a NLDR method which is more robust and suited for
trajectory data

Basic idea: we don’t need a precise, isometric map.
We need the computational equivalent of a hand sketched map
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Proximity matching

We would like to capture the low-dimensional structure of complex
transitions
How to deal with full-dimensional thermal fluctuations? Portions of the
landscape cannot be projected by matching high and low-dimensional
distances.

Idea: simpler task, aim for proximity matching: close¡close, far¡far
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Sketch-map algorithm
In “metric” MDS a stress function that measures how well distances are
reproduced is minimized
Modify the objective function to aim for proximity matching

Distances are transformed by sigmoid functions in both high and low
dimension

‰2 =
Nÿ

i ,j=1
[|X

i

≠ X
j

| ≠ |x
i

≠ x
j

|]2
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The folding landscape of ala12
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“Conventional” CVs
recognize the folded
state, but many
meta-stable structures
overlap with each other

Ceriotti, Tribello, Parrinello, PNAS (2011); Tribello, Ceriotti, Parrinello PNAS (2012)
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Sketch-map CVs give a
very detailed picture,
where each meta-stable
configuration is clearly
singled out1

Ceriotti, Tribello, Parrinello, PNAS (2011); Tribello, Ceriotti, Parrinello PNAS (2012)

The folding landscape of ala12
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Sketch-map CVs give a
very detailed picture,
where each meta-stable
configuration is clearly
singled out1

Can be used e�ectively
for accelerated
dynamics:
field-overlap
metadynamics

Ceriotti, Tribello, Parrinello, PNAS (2011); Tribello, Ceriotti, Parrinello PNAS (2012)

Sketch-map and secondary structure
Same qualitative features of the hi-D description (basins + network of
transitions)

Sketch-map CVs correlate nicely with the secondary structure
Qualitatively similar picture if using contact-maps distance
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Out-of-sample embedding
In order to use (N)LDR as CV, one needs a way to project an arbitrary
point X to low dimension.

PCA has a very natural linear projector solution: xT = LXT

There are specialized solutions for di�erent NLDR methods
A general approach: “generalized” path coordinates

x (X ) =
q

i

x
i

e≠|X≠X

i

|/⁄
Oq

i

e≠|X≠X

i

|/⁄

Problem: this is a convex embedding so points away from everything will
map to the center of the landmark projections
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Sketch-map based collective variables

Sketch-map only provides projections x
i

for the landmark points X
i

One can work out a very natural out-of-sample embedding for a new
point X

Introduce a “stress function” based on a set of landmarks and their
projections

‰2 (x , X ) =
Nÿ

i=1
[s (|X ≠ X

i

|) ≠ s (|x ≠ x
i

|)]2

The d-dimensional projection of the point X can be defined as the x̄
which minimizes ‰2 (x , X )

x̄ (X ) = x : min ‰2 (x , X )
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Mapping in no man’s land

Sketch map can describe configurations that are in “no man’s land”, far
from any landmark point!

We can build a useful map from rough preliminary sampling.
We can compare di�erent systems using the same map.
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From clusters to defects in the bulk
Start building a map for a Lennard-Jones cluster
The same map describes the cluster across phase transitions
... and can even be used to identify defects in a bulk system!
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Wrap up and take home
A problem that is common in atomistic simulations (but also data
analysis in general) is how to

Recognize recurring patterns, appearing more often than expected
Perform dimensionality reduction, to describe a complex problem with
few order parameters

One can perform these analyses automatically
Mode analysis of molecular patterns by PAMM
PCA/Classical MDS are robust but linear techniques
ISOMAP, works well for “locally flat”, densely sampled data. Very
sensitive to noise!
Sketch map targets specifically the features of atomistic simulation data.

Another problem one should keep in mind: out-of-sample embedding.
Should be continuous and predictive
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